The Need for the Higgs in the SM

Jorge C. Romão
Instituto Superior Técnico, Departamento de Física \& CFTP
A. Rovisco Pais 1, 1049-001 Lisboa, Portugal

November 2011 (Revised September 2019)

Summary

- In this talk we review the role of the Higgs boson in preserving unitarity of the scattering amplitudes in the Standard Model.
- We will look at the processes
- $\nu_{e}+\bar{\nu}_{e} \rightarrow W_{L}^{-}+W_{L}^{+}$
- $W_{L}^{-}+W_{L}^{+} \rightarrow W_{L}^{-}+W_{L}^{+}$
- $e^{-}+e^{+} \rightarrow W_{L}^{-}+W_{L}^{+}$
for longitudinally polarized gauge bosons.
ㅁ Special emphasis will be put in using algebraic methods to evaluate the amplitudes and cross sections.

Gauge Boson Self-Couplings

Summary
Introduction
\bullet Couplings

- Pol. Vectors
- Unitarity
$\underline{\nu_{e}+\bar{\nu}_{e} \rightarrow W_{L}^{+}+W_{L}^{-}}$
$W_{L}^{-}+w_{L}^{+} \rightarrow W_{L}^{-}+w_{L}^{+}$
$\xrightarrow{e^{-}+e^{+} \rightarrow W_{L}^{-}+W_{L}^{+}}$
Precision and speed
Conclusions

$$
\Gamma_{\alpha \beta \mu}(p, k, q) \equiv\left[g_{\alpha \beta}(p-k)_{\mu}+g_{\beta \mu}(k-q)_{\alpha}+g_{\mu \alpha}(q-p)_{\beta}\right]
$$

Gauge Couplings to Fermions

where

$$
g_{V}^{f}=\frac{1}{2} T_{3}^{f}-Q_{f} \sin ^{2} \theta_{W}, \quad g_{A}^{f}=\frac{1}{2} T_{3}^{f}
$$

Using

$$
P_{L}=\frac{1-\gamma_{5}}{2}, \quad P_{R}=\frac{1+\gamma_{5}}{2}
$$

We get

$$
g_{V}^{f}-g_{A}^{f} \gamma_{5}=g_{L}^{f} P_{L}+g_{R}^{f} P_{R}
$$

where

$$
g_{L}^{f}=g_{V}^{f}+g_{A}^{f}=T_{3}^{f}-Q_{f} \sin ^{2} \theta_{W}, \quad g_{R}^{f}=g_{V}^{f}-g_{A}^{f}=-Q_{f} \sin ^{2} \theta_{W}
$$

Polarization Vectors

ㄱ In many problems with massive gauge bosons we do not measure their polarization, and therefore we sum over all polarizations using the well known result,

$$
\sum_{\lambda} \varepsilon^{\mu}(k, \lambda) \varepsilon^{* \nu}(k, \lambda)=-g^{\mu \nu}+\frac{k^{\mu} k^{\nu}}{M_{W}^{2}}
$$

where we used the W boson as an example.
\square As we will be considering the case of longitudinal polarized gauge bosons, we have to review the expressions for the polarization vectors.
\square Let us start with the case of longitudinal polarization. In the gauge boson rest frame where $p^{\mu}=\left(M_{W}, 0,0,0\right)$, the longitudinal polarization vector is

$$
\varepsilon_{L}^{\mu}(p)=(0,0,0,1), \quad \text { satisfying } \quad \varepsilon_{L}(p) \cdot \varepsilon_{L}(p)=-1, \varepsilon_{L}(p) \cdot p=0
$$

Polarization Vectors ...

ㅁ In the frame where the gauge boson is moving with velocity $\vec{\beta}$ we have

Summary
Introduction

- Couplings
- Unitarity
$\underline{\nu_{e}+\bar{\nu}_{e} \rightarrow W_{L}^{+}+W_{L}^{-}}$
$W_{L}^{-}+W_{L}^{+} \rightarrow W_{L}^{-}+W_{I}^{+}$
$\underline{e^{-}+e^{+} \rightarrow W_{L}^{-}+W_{L}^{+}}$
Precision and speed

$$
\varepsilon_{L}^{\mu}(p)=(\gamma \beta, \gamma \hat{\beta})
$$

where, $\vec{\beta}=\vec{p} / E, \gamma^{-1}=\sqrt{1-\beta^{2}}$ e $\hat{\beta}=\vec{\beta} / \beta$, verifying the invariant relations $\varepsilon_{L}(p) \cdot \varepsilon_{L}(p)=-1$ e $\varepsilon_{L}(p) \cdot p=0$. For $E \gg M_{W}$ we have approximately

$$
\varepsilon_{L}^{\mu}(p) \simeq \frac{p^{\mu}}{M_{W}}
$$

- We should notice that this relation is only approximate (the invariant relations are violated by terms of the order of M_{W}^{2} / E^{2}). A better approximation is

$$
\varepsilon_{L}^{\mu}(p)=\frac{p^{\mu}}{M_{W}}+\frac{1}{2 \gamma^{2}} \frac{Q^{\mu}}{M_{W}}+\cdots
$$

where

$$
Q^{\mu}=(-E, \vec{p})
$$

Polarization Vectors ...

- With this relation one can show that

$$
\varepsilon_{L}(p) \cdot \varepsilon_{L}(p)=-1+\mathcal{O}\left(\frac{1}{\gamma^{4}}\right), \quad \varepsilon_{L}(p) \cdot p=0+\mathcal{O}\left(\frac{1}{\gamma^{4}}\right)
$$

Depending on the case, one can use the simpler, the more correct or the exact expression.

- Now we consider the case of transverse polarized gauge bosons. Here we have in the frame where the gauge boson moves along the z axis, that is, $p^{\mu}=E_{W}(1,0,0, \beta)$ that the two degrees of transverse polarization can be written as

$$
\varepsilon_{T}^{\mu}=\left(0, \vec{\varepsilon}_{T_{1,2}}\right)
$$

where $\vec{\varepsilon}_{T_{1,2}}$ lie in the plane perpendicular to the z axis. Any combination of linearly independent vectors will do, but there are obviously two preferred choices.

Polarization Vectors ...

\square The first one, corresponds to two linearly polarized perpendicular vectors,

Summary
Introduction

- Couplings
- Unitarity
$\underline{\nu_{e}+\bar{\nu}_{e} \rightarrow W_{I}^{+}+W_{L}^{-}}$
$W_{L}^{-}+W_{L}^{+} \rightarrow W_{L}^{-}+W_{I}^{+}$
$\underline{e^{-}+e^{+} \rightarrow W_{L}^{-}+W_{L}^{+}}$
Precision and speed
Conclusions

$$
\varepsilon_{T_{1}}^{\mu}=(0,1,0,0), \quad \varepsilon_{T_{1}}=(0,0,1,0)
$$

and the other choice corresponds to helicity \pm,

$$
\varepsilon_{ \pm}^{\mu}=\left(0, \frac{1}{\sqrt{2}}, \pm \frac{i}{\sqrt{2}}, 0\right)
$$

satisfying the correct normalization conditions $\varepsilon(p) \cdot \varepsilon^{*}(p)=-1, \varepsilon(p) \cdot p=0$.
\square Note that for the case of helicity vectors, as they are complex, we have to take the complex conjugate in the normalization condition. In real situations the gauge bosons will be moving along some direction $\vec{\beta}=\vec{k} / E_{W}$ with respect to some reference frame, usually defined by the incident particles.

Polarization Vectors ...

Summary
Introduction

- Couplings
- Unitarity
$\underline{\nu_{e}+\nu_{e} \rightarrow W_{L}^{+}+W_{L}^{-}}$
$W_{L}^{-}+w_{L}^{+} \rightarrow w_{L}^{-}+w_{L}^{+}$
$\xrightarrow{e^{-}+e^{+} \rightarrow W_{L}^{-}+W_{L}^{+}}$
Precision and speed
Conclusions

If we have the situation indicated in Fig. 1

Figure 1: Kinematics of the gauge boson
then we will have for the two choices of transverse polarization vectors,

$$
\varepsilon^{\mu}(\lambda= \pm)=\left(0, \frac{1}{\sqrt{2}} \cos \theta, \pm \frac{i}{\sqrt{2}},-\frac{1}{\sqrt{2}} \sin \theta\right)
$$

and

$$
\varepsilon^{\mu}\left(\lambda=\vec{e}_{x}\right)=(0, \cos \theta, 0,-\sin \theta), \quad \varepsilon^{\mu}\left(\lambda=\vec{e}_{y}\right)=(0,0,1,0)
$$

Polarization Vectors ...

Summary
Introduction

- Couplings
- Unitarity
$\underline{\nu_{e}+\bar{\nu}_{e} \rightarrow W_{L}^{+}+W_{L}^{-}}$ $\underline{W_{L}^{-}+w_{L}^{+} \rightarrow W_{L}^{-}+w_{L}^{+}}$ $\xrightarrow{e^{-}+e^{+} \rightarrow W_{L}^{-}+W_{L}^{+}}$

ㅁ We can verify that using these definitions of we can reproduce the general result of the sum over all polarizations

$$
\sum_{\lambda} \varepsilon^{\mu}(k, \lambda) \varepsilon^{* \nu}(k, \lambda)=-g^{\mu \nu}+\frac{k^{\mu} k^{\nu}}{M_{W}^{2}}
$$

Take for instance

- $\varepsilon_{T}^{\mu}(1)=(0, \cos \theta, 0, \sin \theta)$
- $\varepsilon_{T}^{\mu}(2)=(0,0,1,0)$
- $\varepsilon_{L}^{\mu}=(\gamma \beta, \gamma \sin \theta, 0, \gamma \cos \theta)$
- Also a more compact expression for the polarization vector, valid for all polarizations, can be shown to be given by,

$$
\varepsilon^{\mu}=[\gamma(\vec{\beta} \cdot \vec{\varepsilon}), \vec{\varepsilon}+(\gamma-1)(\hat{\beta} \cdot \vec{\varepsilon}) \hat{\beta}]
$$

where $\vec{\varepsilon}$ is the polarization vector in the rest frame of the gauge boson.

Unitarity and Growth of the Amplitudes with \sqrt{s}

Summary
Introduction

- Couplings
- Pol. Vectors

- Unitarity

$\xrightarrow{\nu_{e}+\bar{\nu}_{e} \rightarrow W_{L}^{+}+W_{L}^{-}}$
$\underline{W_{L}^{-}+W_{L}^{+} \rightarrow W_{L}^{-}+W_{L}^{+}}$
$\xrightarrow{e^{-}+e^{+} \rightarrow W_{L}^{-}+W_{L}^{+}}$

- The last topic we want to discuss in this introduction is the behavior of the amplitudes with the growth of the center of mass energy.
- For these $1+2 \rightarrow 3+4$ processes, it can be shown, that the amplitudes for large values of \sqrt{s} should, at most, be constant with the energy,

$$
\lim _{\sqrt{s} \rightarrow \infty} \mathcal{M}=\text { constant }
$$

ㅁ This in turn will imply that the cross sections given by,

$$
\frac{d \sigma}{d \Omega}=\frac{1}{64 \pi^{2} s} \frac{\left|\vec{p}_{3 C M}\right|}{\left|\vec{p}_{1 C M}\right|} \overline{\mathcal{M} \mid}^{2}
$$

will decrease for values of $\sqrt{s} \gg M$, where M is any mass in the problem.

The scattering $\nu_{e}+\bar{\nu}_{e} \rightarrow W_{L}^{+}+W_{L}^{-}$

Summary

- Unitarity
- Cross section
$\underline{W_{L}^{-}+W_{L}^{+} \rightarrow W_{L}^{-}+W_{L}^{+}}$ $\underline{e^{-}+e^{+} \rightarrow W_{L}^{-}+W_{L}^{+}}$

ㅁ As a first exercise on the structure of the $S M$ we will look at the process

$$
\nu_{e}\left(p_{1}\right)+\bar{\nu}_{e}\left(p_{2}\right) \rightarrow W_{L}^{+}\left(q_{1}\right)+W_{L}^{-}\left(q_{2}\right)
$$

$\square \quad$ In the SM this process has the tree-level diagrams

Kinematics for $\nu_{e}+\bar{\nu}_{e} \rightarrow W_{L}^{+}+W_{L}^{-}$

Summary
Introduction

- The Amplitudes
- Unitarity
- Cross section
$\underline{W_{L}^{-}+W_{L}^{+} \rightarrow W_{L}^{-}+W_{L}^{+}}$
$\xrightarrow{e^{-}+e^{+} \rightarrow W_{L}^{-}+W_{L}^{+}}$
Precision and speed
Conclusions

The kinematics in the CM frame is given in the figure, where $\theta_{C M}$ is the scattering angle in the CM frame.

which can be written as

$$
\left\{\begin{aligned}
p_{1} & =\frac{\sqrt{s}}{2}(1,0,0,1) \\
p_{2} & =\frac{\sqrt{s}}{2}(1,0,0,-1) \\
q_{1} & =\frac{\sqrt{s}}{2}\left(1, \beta \sin \theta_{\mathrm{CM}}, 0, \beta \cos \theta_{C M}\right) \\
q_{2} & =\frac{\sqrt{s}}{2}\left(1,-\beta \sin \theta_{\mathrm{CM}}, 0,-\beta \cos \theta_{C M}\right)
\end{aligned}\right.
$$

Kinematics ...

Summary
Introduction $\nu_{e}+\bar{\nu}_{e} \rightarrow W_{L}^{+}+W_{L}^{-}$ - Kinematics

- The Amplitudes
- Unitarity
- Cross section
$\underline{W_{L}^{-}+W_{L}^{+} \rightarrow W_{L}^{-}+W_{L}^{+}}$ $\xrightarrow{e^{-}+e^{+} \rightarrow W_{L}^{-}+W_{L}^{+}}$ Precision and speed
Conclusions
where β is the velocity of the W in the CM frame,

$$
\beta=\sqrt{1-\frac{4 M_{W}^{2}}{s}}
$$

It is also important to write down the explicit expressions for the longitudinal polarization vectors. We have

$$
\begin{aligned}
& \varepsilon_{L}^{\mu}\left(q_{1}\right)=\frac{\sqrt{s}}{2 M_{W}}\left(\beta, \sin \theta_{\mathrm{CM}}, 0, \cos \theta_{C M}\right) \\
& \varepsilon_{L}^{\mu}\left(q_{2}\right)=\frac{\sqrt{s}}{2 M_{W}}\left(\beta,-\sin \theta_{\mathrm{CM}}, 0,-\cos \theta_{C M}\right)
\end{aligned}
$$

\square Let us begin by writing the amplitudes for the two diagrams. We have (in this case it is safe to neglect the electron mass in the propagator)

$$
\begin{aligned}
\mathcal{M}_{t}= & -\frac{g^{2}}{2} \bar{v}\left(p_{2}\right) \gamma_{\nu}\left(p_{1}-\not q_{1}\right) \gamma_{\mu} u\left(p_{1}\right) \frac{1}{t} \varepsilon_{L}^{\mu}\left(q_{1}\right) \varepsilon_{L}^{\nu}\left(q_{2}\right) \\
\mathcal{M}_{s}= & -\frac{g^{2}}{2} \bar{v}\left(p_{2}\right) \gamma_{\alpha} P_{L} u\left(p_{1}\right)\left[-g^{\alpha \beta}+\frac{\left(p_{1}+p_{2}\right)^{\alpha}\left(p_{1}+p_{2}\right)^{\beta}}{M_{W}^{2} / c_{W}^{2}}\right] \\
& \times \frac{\Gamma_{\mu \nu \beta}\left(-q_{1},-q_{2}, q_{1}+q_{2}\right)}{s-M_{W}^{2} / c_{W}^{2}} \varepsilon_{L}^{\mu}\left(q_{1}\right) \varepsilon_{L}^{\nu}\left(q_{2}\right) \\
= & \frac{g^{2}}{2} \bar{v}\left(p_{2}\right) \gamma^{\alpha} P_{L} u\left(p_{1}\right) \frac{\Gamma_{\mu \nu \alpha}\left(-q_{1},-q_{2}, q_{1}+q_{2}\right)}{s-M_{W}^{2} / c_{W}^{2}} \varepsilon_{L}^{\mu}\left(q_{1}\right) \varepsilon_{L}^{\nu}\left(q_{2}\right)
\end{aligned}
$$

\square We have used the SM relation $M_{W}=M_{Z} c_{W}$ with $c_{W}=\cos \theta_{W}$
ㅁ In the last step, we have used the Dirac equation and the fact that the neutrinos (in the SM) have no mass to simplify the numerator of the Z propagator.

Summary
Introduction
$\nu_{e}+\bar{\nu}_{e} \rightarrow W_{L}^{+}+W_{L}^{-}$

- Kinematics
- The Amplitudes

- Unitarity

- Cross section
$W_{L}^{-}+W_{L}^{+} \rightarrow W_{L}^{-}+W_{L}^{+}$
$\xrightarrow{e^{-}+e^{+} \rightarrow W_{L}^{-}+W_{L}^{+}}$
Precision and speed
Conclusions

Unitarity and the cancellation of the bad behavior

- Each of the amplitudes do not obey the constraint from unitarity.
- To see this one has to understand that at high energy we have

$$
\bar{v}\left(p_{2}\right) u\left(p_{1}\right) \propto \sqrt{s}, \quad p_{i}, q_{i} \propto \sqrt{s}, \quad \varepsilon_{L}^{\mu}\left(q_{i}\right) \propto \frac{\sqrt{s}}{M_{W}}
$$

and therefore

$$
\mathcal{M}_{t}, \mathcal{M}_{s} \propto s
$$

- Then, unless there is a cancellation between the fastest growing terms with \sqrt{s}, we will have a problem. This cancellation comes about because gauge invariance of the theory forces the couplings to be related.
ㅁ To see this let us start by the simplest formula for the longitudinal polarization, $\varepsilon_{L}^{\mu} \simeq p^{\mu} / M_{W}$.

Unitarity and ...

ㅁ Using this relation we obtain

Summary
Introduction
$\nu_{e}+\bar{\nu}_{e} \rightarrow W_{L}^{+}+W_{L}^{-}$

- Kinematics
- The Amplitudes
- Cross section
$W_{L}^{-}+W_{L}^{+} \rightarrow W_{L}^{-}+W_{L}^{+}$
$\underline{e^{-}+e^{+} \rightarrow W_{L}^{-}+W_{I}^{+}}$
Precision and speed
Conclusions

$$
\mathcal{M}_{t}=\frac{g^{2}}{2 M_{W}^{2}} \bar{v}\left(p_{2}\right) q_{2} P_{L} u\left(p_{1}\right)+\mathcal{O}(1)
$$

which indeed shows that the amplitude grows with s.
■ If we do the same for the s-channel diagram of the Z, we obtain,

$$
\begin{aligned}
\mathcal{M}_{s} & =\frac{g^{2}}{4 M_{W}^{2}} \bar{v}\left(p_{2}\right) \phi_{1} P_{L} u\left(p_{1}\right)-\frac{g^{2}}{4 M_{W}^{2}} \bar{v}\left(p_{2}\right) \phi_{2} P_{L} u\left(p_{1}\right)+\mathcal{O}(1) \\
& =-\frac{g^{2}}{2 M_{W}^{2}} \bar{v}\left(p_{2}\right) q_{2} P_{L} u\left(p_{1}\right)+\mathcal{O}(1)
\end{aligned}
$$

where we have used $q_{1}=-q_{2}+p_{1}+p_{2}$ and the Dirac equation for massless neutrinos. We therefore obtain,

$$
\mathcal{M}=\mathcal{M}_{\nu}+\mathcal{M}_{Z}=\mathcal{O}(1)
$$

in agreement with the unitarity argument. It should be stressed that the cancellation depends on the relation between the couplings of different particles and these were dictated by gauge invariance.

Let us calculate the cross section to display the effect of the cancellation. Writing, in an obvious notation,

$$
|\mathcal{M}|^{2}=\left|\mathcal{M}_{t}\right|^{2}+\left|\mathcal{M}_{s}\right|^{2}+\left(\mathcal{M}_{t} \mathcal{M}_{s}^{*}+\mathcal{M}_{t}^{*} \mathcal{M}_{s}\right)
$$

we get (we used the Mathematica package FeynCalc),

- t-channel

$$
\begin{aligned}
\left|\mathcal{M}_{t}\right|^{2} & =-\frac{g^{4}\left(4 M_{W}^{4}+s t\right)^{2}\left[M_{W}^{4}-2 M_{W}^{2} t+t(s+t)\right]}{4 M_{W}^{4} t^{2}\left(s-4 M_{W}^{2}\right)^{2}} \\
& =g^{4}\left[\sin ^{2} \theta x^{2}+\sin ^{2} \theta x-\cos ^{2} \theta-\cos \theta+\mathcal{O}\left(x^{-1}\right)\right]
\end{aligned}
$$

where we have defined $x=\frac{s}{4 M_{W}^{2}}$ and the expansion is for $x \gg 1$.

Cross section ...
ㅁ For the s-channel Z exchange we get

Introduction
$\nu_{e}+\bar{\nu}_{e} \rightarrow W_{L}^{+}+W_{L}^{-}$

- Kinematics
- The Amplitudes
- Unitarity

$$
\begin{aligned}
\left|\mathcal{M}_{s}\right|^{2} & =-\frac{g^{4}\left(2 M_{W}^{2}+s\right)^{2}\left(M_{W}^{4}-2 M_{W}^{2} t+t(s+t)\right)}{4 M_{W}^{4}\left(M_{Z}^{2}-s\right)^{2}} \\
& =g^{4}\left[\sin ^{2} \theta x^{2}+\frac{M_{Z}^{2} \sin ^{2} \theta}{2 M_{W}^{2}} x+\frac{3 M_{Z}^{4} \sin ^{2} \theta}{16 M_{W}^{4}}-\frac{3 \sin ^{2} \theta}{4}+\mathcal{O}\left(x^{-1}\right)\right]
\end{aligned}
$$

ㅁ For the interference term

$$
\begin{aligned}
& \left(\mathcal{M}_{t} \mathcal{M}_{s}^{*}+\mathcal{M}_{t}^{*} \mathcal{M}_{s}\right)= \\
& =\frac{g^{4}\left(8 M_{W}^{10}+4 M_{W}^{8}(s-4 t)+2 M_{W}^{6} t(s+4 t)+5 M_{W}^{4} s^{2} t+2 M_{W}^{2} s t^{3}+s^{2} t^{2}(s+t)\right)}{2 M_{W}^{4} t\left(4 M_{W}^{2}-s\right)\left(M_{Z}^{2}-s\right)} \\
& =g^{4}\left[-2 \sin ^{2} \theta x^{2}-\sin ^{2} \theta x-\frac{M_{Z}^{2} \sin ^{2} \theta}{2 M_{W}^{2}} x+\cos \theta+1-\frac{M_{Z}^{4} \sin ^{2} \theta}{8 M_{W}^{4}}\right. \\
& \left.\quad \quad-\frac{M_{Z}^{2} \sin ^{2} \theta}{4 M_{W}^{2}}+\mathcal{O}\left(x^{-1}\right)\right]
\end{aligned}
$$

व One can see that the terms proportional to x^{2} and x exactly cancel.

ㅁ The high energy the behavior is

Summary
Introduction
$\nu_{e}+\bar{\nu}_{e} \rightarrow W_{L}^{+}+W_{L}^{-}$

- Kinematics
- The Amplitudes
- Unitarity

- Cross section

$W_{I}^{-}+W_{I}^{+} \rightarrow W_{I}^{-}+W_{I}^{+}$ $\underline{e^{-}+e^{+} \rightarrow W_{L}^{-}+W_{L}^{+}}$ Precision and speed Conclusions

$$
|\mathcal{M}|^{2}=\frac{g^{4} \sin ^{2} \theta\left(M_{Z}^{2}-2 M_{W}^{2}\right)^{2}}{16 M_{W}^{4}}+\mathcal{O}\left(x^{-1}\right)
$$

consistent with unitarity.

- The behavior of the various terms is shown in the figure.

The scattering $W_{L}^{-}+W_{L}^{+} \rightarrow W_{L}^{-}+W_{L}^{+}$

- The next process that we will consider is the scattering of longitudinal $W_{L}^{ \pm}$.

$$
W_{L}^{-}\left(p_{1}\right)+W_{L}^{+}\left(p_{2}\right) \rightarrow W_{L}^{-}\left(q_{1}\right)+W_{L}^{+}\left(q_{2}\right)
$$

where the momenta are as indicated and the subscript L means that the gauge bosons $W^{ \pm}$are longitudinally polarized.

- In the SM this process has seven tree-level diagrams

Figure 2: Diagrams contributing to $W_{L}^{-}+W_{L}^{+} \rightarrow W_{L}^{-}+W_{L}^{+}$.

- The Amplitudes
- Unitarity
- Cross section
$\xrightarrow{e^{-}+e^{+} \rightarrow W_{L}^{-}+W_{L}^{+}}$

$$
\left\{\begin{array} { l }
{ p _ { 1 } = \frac { \sqrt { s } } { 2 } (1 , 0 , 0 , \beta) } \\
{ p _ { 2 } = \frac { \sqrt { s } } { 2 } (1 , 0 , 0 , - \beta) } \\
{ q _ { 1 } = \frac { \sqrt { s } } { 2 } (1 , \beta \operatorname { s i n } \theta _ { \mathrm { CM } } , 0 , \beta \operatorname { c o s } \theta _ { C M }) } \\
{ q _ { 2 } = \frac { \sqrt { s } } { 2 } (1 , - \beta \operatorname { s i n } \theta _ { \mathrm { CM } } , 0 , - \beta \operatorname { c o s } \theta _ { C M }) }
\end{array} \left\{\begin{array}{l}
\varepsilon_{L}\left(p_{1}\right)=\frac{\sqrt{s}}{2 M_{W}}(\beta, 0,0,1) \\
\varepsilon_{L}\left(p_{2}\right)=\frac{\sqrt{s}}{2 M_{W}}(\beta, 0,0,-1) \\
\varepsilon_{L}\left(q_{1}\right)=\frac{\sqrt{s}}{2 M_{W}}\left(\beta, \sin \theta_{\mathrm{CM}}, 0, \cos \theta_{C M}\right) \\
\varepsilon_{L}\left(q_{2}\right)=\frac{\sqrt{s}}{2 M_{W}}\left(\beta,-\sin \theta_{\mathrm{CM}}, 0,-\cos \theta_{C M}\right)
\end{array}\right.\right.
$$

ㅁ $\beta=\sqrt{1-4 M_{W}^{2} / s}$
\square Notice that the invariant relations of the type $\varepsilon_{L}\left(p_{1}\right) \cdot \varepsilon_{L}\left(p_{1}\right)=-1$ and $\varepsilon_{L}\left(p_{1}\right) \cdot p_{1}=0$ are verified for all cases.
$\square \quad$ This case is very interesting, because not only the gauge structure is necessary for the amplitudes to have the correct behavior, as in the previous case, but also the Higgs boson is fundamental.

The Amplitudes

- Unitarity
- Cross section

We have then,
Let us denote, in an obvious notation, the amplitudes as

$$
\mathcal{M}=\mathcal{M}_{\gamma+Z}^{s}+\mathcal{M}_{\gamma+Z}^{t}+\mathcal{M}_{4 W}+\mathcal{M}_{H}^{s+t}
$$

$$
\begin{aligned}
\mathcal{M}_{\gamma}^{s}=\frac{g^{2} s_{W}^{2}}{s} & \epsilon_{L}^{\alpha}\left(p_{1}\right) \epsilon_{L}^{\beta}\left(p_{2}\right) \epsilon_{L}^{\gamma}\left(q_{1}\right) \epsilon_{L}^{\delta}\left(q_{2}\right) \Gamma_{\alpha, \beta, \mu}\left(p_{1}, p_{2},-p_{1}-p_{2}\right) \\
& \times \Gamma_{\delta, \gamma, \nu}\left(-q_{2},-q_{1}, p_{1}+p_{2}\right) g^{\mu \nu} \\
\mathcal{M}_{Z}^{s}= & \frac{g^{2} c_{W}^{2}}{s-M_{W}^{2} / c_{W}^{2}} \epsilon_{L}^{\alpha}\left(p_{1}\right) \epsilon_{L}^{\beta}\left(p_{2}\right) \epsilon_{L}^{\gamma}\left(q_{1}\right) \epsilon_{L}^{\delta}\left(q_{2}\right) \Gamma_{\alpha, \beta, \mu}\left(p_{1}, p_{2},-p_{1}-p_{2}\right) \\
& \times \Gamma_{\delta, \gamma, \nu}\left(-q_{2},-q_{1}, p_{1}+p_{2}\right)\left[g^{\mu \nu}-\frac{\left(p_{1}+p_{2}\right)^{\mu}\left(p_{1}+p_{2}\right)^{\nu}}{M_{W}^{2} / c_{W}^{2}}\right] \\
\mathcal{M}_{\gamma}^{t}=\frac{g^{2} s_{W}^{2}}{t} & \epsilon_{L}^{\alpha}\left(p_{1}\right) \epsilon_{L}^{\beta}\left(p_{2}\right) \epsilon_{L}^{\gamma}\left(q_{1}\right) \epsilon_{L}^{\delta}\left(q_{2}\right) \Gamma_{\alpha, \gamma, \mu}\left(p_{1},-q_{1}, q_{1}-p_{1}\right) \\
& \times \Gamma_{\delta, \beta, \nu}\left(-q_{2}, p_{2}, q_{2}-p_{2}\right) g^{\mu \nu}
\end{aligned}
$$

Summary
Introduction
$\nu_{e}+\bar{\nu}_{e} \rightarrow W_{L}^{+}+W_{L}^{-}$
$W_{工}^{-}+W_{L}^{+} \rightarrow W_{L}^{-}+W_{L}^{+}$

- KInematics
- Unitarity
- Cross section
$\xrightarrow{e^{-}+e^{+} \rightarrow W_{L}^{-}+W_{L}^{+}}$
Precision and speed
Conclusions

$$
\begin{aligned}
\mathcal{M}_{Z}^{t}= & \frac{g^{2} c_{W}^{2}}{t-M_{W}^{2} / c_{W}^{2}} \epsilon_{L}^{\alpha}\left(p_{1}\right) \epsilon_{L}^{\beta}\left(p_{2}\right) \epsilon_{L}^{\gamma}\left(q_{1}\right) \epsilon_{L}^{\delta}\left(q_{2}\right) \Gamma_{\alpha, \gamma, \mu}\left(p_{1},-q_{1}, q_{1}-p_{1}\right) \\
& \times \Gamma_{\delta, \beta, \nu}\left(-q_{2}, p_{2}, q_{2}-p_{2}\right)\left[g^{\mu \nu}-\frac{\left(p_{1}-q_{1}\right)^{\mu}\left(p_{1}-q_{1}\right)^{\nu}}{M_{W}^{2} / c_{W}^{2}}\right] \\
\mathcal{M}_{4 W}= & g^{2} \epsilon_{L}^{\alpha}\left(p_{1}\right) \epsilon_{L}^{\beta}\left(p_{2}\right) \epsilon_{L}^{\gamma}\left(q_{1}\right) \epsilon_{L}^{\delta}\left(q_{2}\right)\left[2 g_{\alpha \delta} g_{\beta \gamma}-g_{\alpha \beta} g_{\delta \gamma}-g_{\alpha \gamma} g_{\delta \beta}\right] \\
\mathcal{M}_{H}^{s}= & -\frac{g^{2} M_{W}^{2}}{s-M_{H}^{2}} \epsilon_{L}^{\alpha}\left(p_{1}\right) \epsilon_{L}^{\beta}\left(p_{2}\right) \epsilon_{L}^{\gamma}\left(q_{1}\right) \epsilon_{L}^{\delta}\left(q_{2}\right) g_{\alpha \beta} g_{\gamma \delta} \\
\mathcal{M}_{H}^{t}= & -\frac{g^{2} M_{W}^{2}}{t-M_{H}^{2}} \epsilon_{L}^{\alpha}\left(p_{1}\right) \epsilon_{L}^{\beta}\left(p_{2}\right) \epsilon_{L}^{\gamma}\left(q_{1}\right) \epsilon_{L}^{\delta}\left(q_{2}\right) g_{\alpha \gamma} g_{\beta \delta}
\end{aligned}
$$

व Where $s_{W}^{2}=\sin ^{2} \theta_{W}, c_{W}^{2}=\cos ^{2} \theta_{W}$, and use the SM relations $M_{W}=c_{W} M_{Z}$ and $e=g s_{W}$.

- If we insert the $\epsilon_{L}^{\mu} \simeq p^{\mu} / M_{W}$ we see that the amplitudes can grow potentially as s^{2} or even s^{3}.
\square We calculate the amplitudes using the exact expressions for ϵ_{L}^{μ}

Summary
Introduction
$\underline{\nu_{e}+\bar{\nu}_{e} \rightarrow W_{L}^{+}+W_{L}^{-}}$
$W_{L}^{-}+W_{L}^{+} \rightarrow W_{\tau}^{-}+W_{L}^{+}$ - KInematics

- Unitarity
- Cross section

$$
\begin{aligned}
\mathcal{M}_{\gamma}^{s}= & \frac{g^{2} s_{W}^{2}}{4 M_{W}^{4} s}\left(2 M_{W}^{2}+s\right)^{2}\left(4 M_{W}^{2}-s-2 t\right) \\
\mathcal{M}_{Z}^{s}= & \frac{g^{2} c_{W}^{2}}{4 M_{W}^{4}\left(s-M_{W}^{2} / c_{W}^{2}\right)}\left(2 M_{W}^{2}+s\right)^{2}\left(4 M_{W}^{2}-s-2 t\right) \\
\mathcal{M}_{\gamma}^{t}= & \frac{g^{2} s_{W}^{2}}{4 M_{W}^{4} t\left(s-4 M_{W}^{2}\right)^{2}}\left[256 M_{W}^{10}-64 M_{W}^{8}(4 s+t)+16 M_{W}^{6} s(5 s+14 t)\right. \\
& \left.-4 M_{W}^{4} s\left(2 s^{2}+21 s t+20 t^{2}\right)+8 M_{W}^{2} s^{2} t(s+3 t)-s^{2} t^{2}(2 s+t)\right] \\
\mathcal{M}_{Z}^{t}= & \frac{g^{2} c_{W}^{2}}{4 M_{W}^{4}\left(s-4 M_{W}^{2}\right)^{2}\left(t-M_{W}^{2} / c_{W}^{2}\right)}\left[256 M_{W}^{10}-64 M_{W}^{8}(4 s+t)+16 M_{W}^{6} s(5 s+14 t)\right.
\end{aligned}
$$

$$
\mathcal{M}_{4 W}=\frac{g^{2} s}{4 M_{W}^{4}\left(s-4 M_{W}^{2}\right)^{2}}\left[-64 M_{W}^{6}+48 M_{W}^{4}(s+t)-4 M_{W}^{2} s(3 s+7 t)\right.
$$

$$
\left.+s\left(s^{2}+4 s t+t^{2}\right)\right]
$$

Summary
Introduction
$\underline{\nu_{e}+\bar{\nu}_{e} \rightarrow W_{L}^{+}+W_{L}^{-}}$
$W_{工}^{-}+W_{L}^{+} \rightarrow W_{L}^{-}+W_{工}^{-}$

- KInematics
- The Amplitudes
- Unitarity
- Cross section
$\underline{e^{-}+e^{+} \rightarrow W_{L}^{-}+W_{L}^{+}}$
Precision and speed
Conclusions

And finally for the Higgs mediated diagrams,

$$
\begin{aligned}
& \mathcal{M}_{H}^{s}=-g^{2} \frac{\left(s-2 M_{W}^{2}\right)^{2}}{4 M_{W}^{2}\left(s-M_{H}^{2}\right)} \\
& \mathcal{M}_{H}^{t}=-g^{2} \frac{\left(-8 M_{W}^{4}+2 M_{W}^{2} s+s t\right)^{2}}{4\left(t-M_{H}^{2}\right)\left(M_{W} s-4 M_{W}^{3}\right)^{2}}
\end{aligned}
$$

व For $\sqrt{s} \gg M_{W}$ the first five amplitudes grow as s^{2} and the last two (from the Higgs exchange) as s.
\square We define, as before, the dimensionless variable $x=s /\left(4 M_{W}^{2}\right)$, for $x \gg 1$ we should be able to write all amplitudes in the form

$$
\mathcal{M}_{i}=A_{i} x^{2}+B_{i} x+C_{i}+\mathcal{O}(1 / x)
$$

Unitarity and the cancellation of the bad behavior

Summary
Introduction
$\nu_{e}+\bar{\nu}_{e} \rightarrow W_{L}^{+}+W_{L}^{-}$
$W_{L}^{-}+w_{L}^{+} \rightarrow W_{L}^{-}+w_{L}^{+}$

- KInematics
- The Amplitudes

- Unitarity

- Cross section
$\xrightarrow{e^{-}+e^{+} \rightarrow W_{L}^{-}+W_{L}^{+}}$
Precision and speed
Conclusions

$$
\mathcal{M}_{i}=A_{i} x^{2}+B_{i} x+C_{i}+\mathcal{O}(1 / x)
$$

	A_{i}	B_{i}	C_{i}
\mathcal{M}_{γ}^{s}	$-g^{2} 4 s_{W}^{2} \cos \theta$	0	$g^{2} 3 s_{W}^{2} \cos \theta$
\mathcal{M}_{Z}^{s}	$-g^{2} 4 c_{W}^{2} \cos \theta$	$-g^{2} \cos \theta$	$g^{2}\left[3 \cos \theta c_{W}^{2}-\frac{\cos \theta}{4 c_{W}^{2}}\right]$
\mathcal{M}_{γ}^{t}	$g^{2} s_{W}^{2}\left(-\cos ^{2} \theta-2 \cos \theta+3\right)$	$g^{2} 8 s_{W}^{2} \cos \theta$	$g^{2} s_{W}^{2}$
\mathcal{M}_{Z}^{t}	$g^{2} c_{W}^{2}\left(-\cos ^{2} \theta-2 \cos \theta+3\right)$	$g^{2}\left(8 \cos \theta c_{W}^{2}-\frac{\cos \theta}{2}-\frac{3}{2}\right)$	$\frac{g^{2}}{\cos \theta-1}\left[-2 \cos ^{2} \theta-\cos \theta-1\right)$
$\mathcal{M}_{4 W}$	$g^{2}\left(\cos ^{2} \theta+6 c_{W}^{2}-\frac{\cos ^{2} \theta}{2}-\cos \theta-1 c_{W}^{2}-\frac{\cos \theta}{4 c_{W}^{2}}\right.$		
$\sum_{\gamma Z}$	0	$g^{2}(2-6 \cos \theta)$	$\left.+3 \cos \theta-c_{W}^{2}-\frac{3}{4 c_{W}^{2}}+\frac{3}{2}\right]$
\mathcal{M}_{H}^{s}	0	$g^{2} \frac{1+\cos \theta}{2}$	0
\mathcal{M}_{H}^{t}	0	$-g^{2}$	$g^{2} 3 \cos \theta+\cdots$
$\sum_{\gamma Z H}$	0	$g^{2}\left(\frac{1}{2}-\frac{\cos \theta}{2}\right)$	$g^{2}\left(1-\frac{M_{H}^{2}}{4 M_{W}^{2}}\right)$

Summary
Introduction
$\underline{\nu_{e}+\bar{\nu}_{e} \rightarrow W_{L}^{+}+W_{L}^{-}}$

- We see that the terms proportional to x^{2} cancel among the first five diagrams involving only the gauge bosons.
\square The term proportional do x remains after we sum over the gauge part. So, if we consider only a gauge theory of intermediate gauge bosons, we are in trouble.
\square This trouble can be traced back to the fact that with mass the gauge invariance is lost, and the theory is inconsistent if the diagrams involving the Higgs boson field are not taken in account.
- In conclusion, the Higgs boson is crucial to make the SM consistent.
\square As, in this case, the amplitudes are pure c-numbers with no spinor part, the cross section is simply obtained by summing all the amplitudes and taking the absolute value of the result to obtain $\left.\mathcal{M}\right|^{2}$.
\square As it is well known the t-channel contribution of the photon has a colinear divergence. We avoid that by making cuts in the scattering angle θ. We consider two cases, $\theta_{\text {min }}=1^{\circ}, 10^{\circ}$
- We get

Introduction
$\underline{\nu_{e}+\bar{\nu}_{e} \rightarrow W_{L}^{+}+W_{L}^{-}}$
$W_{L}^{-}+w_{L}^{+} \rightarrow W_{L}^{-}+W_{L}^{+}$

- KInematics
- The Amplitudes
- Unitarity
- Cross section
$\underline{e^{-}+e^{+} \rightarrow W_{L}^{-}+W_{I}^{+}}$
Precision and speed
Conclusions

- As a last example of the importance of the Higgs boson for the consistency of the SM we consider the process,

$$
e^{-}\left(p_{1}\right)+e^{+}\left(p_{2}\right) \rightarrow W_{L}^{-}\left(q_{1}\right)+W_{L}^{+}\left(q_{2}\right)
$$

ㅁ Compared to other two, this process has the advantage of not being an academic problem, it has in fact already been tested at the LEP experiments.

- In the SM this process has four tree-level diagrams

Summary Introduction $\underline{\nu_{e}+\bar{\nu}_{e} \rightarrow W_{L}^{+}+W_{L}^{-}}$
$W_{L}^{-}+w_{L}^{+} \rightarrow W_{L}^{-}+w_{L}^{+}$
$\xrightarrow{e^{-}+e^{+} \rightarrow W_{L}^{-}+W_{L}^{+}}$

- Kinematics

- The Amplitudes
- Unitarity
- Cross section
- Other Polarizations

Precision and speed
Conclusions

$$
\left\{\begin{array} { l }
{ p _ { 1 } = \frac { \sqrt { s } } { 2 } (1 , 0 , 0 , \beta _ { e }) } \\
{ p _ { 2 } = \frac { \sqrt { s } } { 2 } (1 , 0 , 0 , - \beta _ { e }) } \\
{ q _ { 1 } = \frac { \sqrt { s } } { 2 } (1 , \beta \operatorname { s i n } \theta _ { \mathrm { CM } } , 0 , \beta \operatorname { c o s } \theta _ { C M }) } \\
{ q _ { 2 } = \frac { \sqrt { s } } { 2 } (1 , - \beta \operatorname { s i n } \theta _ { \mathrm { CM } } , 0 , - \beta \operatorname { c o s } \theta _ { C M }) }
\end{array} \left\{\begin{array}{l}
\varepsilon_{L}\left(q_{1}\right)=\frac{\sqrt{s}}{2 M_{W}}\left(\beta, \sin \theta_{\mathrm{CM}}, 0, \cos \theta_{C M}\right) \\
\varepsilon_{L}\left(q_{2}\right)=\frac{\sqrt{s}}{2 M_{W}}\left(\beta,-\sin \theta_{\mathrm{CM}}, 0,-\cos \theta_{C M}\right)
\end{array}\right.\right.
$$

ㅁ Where, as before, $\beta=\sqrt{1-4 M_{W}^{2} / s}$
ㅁ And, $\left(\right.$ we keep $\left.m_{e} \neq 0\right), \beta_{e}=\sqrt{1-4 m_{e}^{2} / s}$

Summary
Introduction
$\nu_{e}+\bar{\nu}_{e} \rightarrow W_{L}^{+}+W_{L}^{-}$
$\xrightarrow[W_{L}^{-}+W_{L}^{+} \rightarrow W_{L}^{-}+W_{L}^{+}]{ }$
$\xrightarrow{e^{-}+e^{+} \rightarrow W_{L}^{-}+W_{L}^{+}}$

- Kinematics
- The Amplitudes
- Unitarity
- Cross section
- Other Polarizations Precision and speed Conclusions
- As the Higgs coupling to the electrons is proportional to the electron mass, we expect, that for sufficiently high energy there will be a piece of the first three diagrams proportional to m_{e} that will increase with energy.
- Therefore, we are not making any approximation with regard to m_{e}.

$$
\begin{aligned}
\mathcal{M}_{\nu}^{t}= & -\frac{g^{2}}{2 t} \bar{v}\left(p_{2}\right) \gamma_{\nu} P_{L}\left(\not p_{1}-\not q_{1}\right) \gamma_{\mu} P_{L} u\left(p_{1}\right) \epsilon_{L}^{\mu}\left(q_{1}\right) \epsilon_{L}^{\nu}\left(q_{2}\right) \\
\mathcal{M}_{\gamma}^{s}= & -\frac{g^{2} s_{W}^{2}}{s} \bar{v}\left(p_{2}\right) \gamma^{\alpha} u\left(p_{1}\right) \Gamma_{\nu \mu \alpha}\left(-q_{2},-q_{1}, q_{1}+q_{2}\right) \epsilon_{L}^{\mu}\left(q_{1}\right) \epsilon_{L}^{\nu}\left(q_{2}\right) \\
\mathcal{M}_{Z}^{s}= & -\frac{g^{2}}{s-M_{W}^{2} / c_{W}^{2}}\left[-g_{\alpha \beta}+\frac{Q^{\alpha} Q^{\beta}}{M_{W}^{2} / c_{W}^{2}}\right] \bar{v}\left(p_{2}\right) \gamma^{\beta}\left(g_{L} P_{L}+g_{R} P_{R}\right) u\left(p_{1}\right) \\
& \quad \times \Gamma_{\nu \mu \alpha}\left(-q_{2},-q_{1}, q_{1}+q_{2}\right) \epsilon_{L}^{\mu}\left(q_{1}\right) \epsilon_{L}^{\nu}\left(q_{2}\right) \\
\mathcal{M}_{H}^{s}= & \frac{g^{2} m_{e}}{2} \frac{1}{s-M_{H}^{2}} \bar{v}\left(p_{2}\right) u\left(p_{1}\right) g_{\mu \nu} \epsilon_{L}^{\mu}\left(q_{1}\right) \epsilon_{L}^{\nu}\left(q_{2}\right)
\end{aligned}
$$

Summary
Introduction
$\underline{\nu_{e}+\bar{\nu}_{e} \rightarrow W_{L}^{+}+W_{L}^{-}}$
$W_{L}^{-}+W_{L}^{+} \rightarrow W_{L}^{-}+W_{L}^{+}$
$e^{-}+e^{+} \rightarrow W_{L}^{-}+W_{L}^{+}$

- Kinematics
- The Amplitudes
- Unitarity
- Cross section
- Other Polarizations Precision and speed Conclusions

■ Where we have defined $Q=p_{1}+p_{2}$, and made use again of the $S M$ relations like $e=g s_{W}$.
\square If we neglect for the moment m_{e} this process is very much like the neutrino scattering.
\square One can convince ourselves that the first three amplitudes are proportional to s for $\sqrt{s} \gg m_{e}, M_{W}$.

- However we should be careful, because the Higgs exchange diagram is proportional to $m_{e} \sqrt{s}$ and that these terms, although subleading, will be important for sufficiently high energy.

With the help of FeynCalc we obtain

$$
\begin{aligned}
\mathcal{M}_{\nu}= & \frac{g^{2}}{2 M_{W}^{2}}\left[-\bar{v}\left(p_{2}\right) \phi_{1} P_{L} u\left(p_{1}\right)-m_{e} \bar{v}\left(p_{2}\right) P_{L} u\left(p_{1}\right)\right]+\mathcal{O}(1 / x) \\
\mathcal{M}_{\gamma}= & \frac{g^{2} s_{W}^{2}}{M_{W}^{2}} \bar{v}\left(p_{2}\right) \phi_{1}\left(P_{L}+P_{R}\right) u\left(p_{1}\right)+\mathcal{O}(1 / x) \\
\mathcal{M}_{Z}= & -\frac{g^{2} s_{W}^{2}}{M_{W}^{2}} \bar{v}\left(p_{2}\right) \phi_{1}\left(P_{L}+P_{R}\right) u\left(p_{1}\right)+\frac{g^{2}}{2 M_{W}^{2}} \bar{v}\left(p_{2}\right) \phi_{1} P_{L} u\left(p_{1}\right) \\
& +\frac{g^{2}}{4 M_{W}^{2}} m_{e}\left[\bar{v}\left(p_{2}\right) P_{L} u\left(p_{1}\right)-\bar{v}\left(p_{2}\right) P_{R} u\left(p_{1}\right)\right]+\mathcal{O}(1 / x) \\
\mathcal{M}_{H}= & \frac{g^{2}}{4 M_{W}^{2}} m_{e}\left[\bar{v}\left(p_{2}\right) P_{L} u\left(p_{1}\right)+\bar{v}\left(p_{2}\right) P_{R} u\left(p_{1}\right)\right]+\mathcal{O}(1 / x)
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{M}_{\nu}+\mathcal{M}_{\gamma}+\mathcal{M}_{Z} & =-\frac{g^{2}}{4 M_{W}^{2}} m_{e}\left[\bar{v}\left(p_{2}\right) P_{L} u\left(p_{1}\right)+\bar{v}\left(p_{2}\right) P_{R} u\left(p_{1}\right)\right]+\mathcal{O}(1 / x) \\
\mathcal{M}_{H} & =\frac{g^{2}}{4 M_{W}^{2}} m_{e}\left[\bar{v}\left(p_{2}\right) P_{L} u\left(p_{1}\right)+\bar{v}\left(p_{2}\right) P_{R} u\left(p_{1}\right)\right]+\mathcal{O}(1 / x)
\end{aligned}
$$

$$
\mathcal{M}_{\nu}+\mathcal{M}_{\gamma}+\mathcal{M}_{Z}+\mathcal{M}_{H}=\mathcal{O}(1 / x)
$$

Hence the Higgs boson exchange is needed to cancel the contribution of the amplitude that grows like $\frac{m_{e} \sqrt{s}}{M_{W}^{2}}$.

- Kinematics
- The Amplitudes
- Unitarity
- Other Polarizations Precision and speed Conclusions

To evaluate the cross section it is simpler to write the total amplitude as

$$
\mathcal{M}=g^{2} \bar{v}\left(p_{2}\right) \Gamma_{\mu \nu} u\left(p_{1}\right) \epsilon_{L}^{\mu}\left(q_{1}\right) \epsilon_{L}^{\nu}\left(q_{2}\right), \quad \Gamma_{\mu \nu}=\sum_{i} \Gamma_{\mu \nu}^{i}
$$

where the $\Gamma_{\mu \nu}^{i}$ are

$$
\begin{aligned}
\Gamma_{\mu \nu}^{\nu t}= & -\frac{1}{2 t} \gamma_{\nu} P_{L}\left(\not p_{1}-\not q_{1}\right) \gamma_{\mu} P_{L} u\left(p_{1}\right) \\
\Gamma_{\mu \nu}^{\gamma s}= & -\frac{s_{W}^{2}}{s} \gamma^{\alpha} \Gamma_{\nu \mu \alpha}\left(-q_{2},-q_{1}, q_{1}+q_{2}\right) \\
\Gamma_{\mu \nu}^{Z s}= & -\frac{1}{s-M_{W}^{2} / c_{W}^{2}}\left[-g_{\alpha \beta}+\frac{Q^{\alpha} Q^{\beta}}{M_{W}^{2} / c_{W}^{2}}\right] \gamma^{\beta}\left(g_{L} P_{L}+g_{R} P_{R}\right) \\
& \quad \times \Gamma_{\nu \mu \alpha}\left(-q_{2},-q_{1}, q_{1}+q_{2}\right)
\end{aligned} \quad \begin{aligned}
\Gamma_{\mu \nu}^{H s}= & \frac{m_{e}}{2} \frac{1}{s-M_{H}^{2}} g_{\mu \nu}
\end{aligned}
$$

- Kinematics
- The Amplitudes
- Unitarity

ㅁ With the help of FeynCalc we evaluate

$$
|\mathcal{M}|^{2}=\frac{1}{4} \operatorname{Tr}\left[\left(\not p_{2}-m_{e}\right) \Gamma\left(\not p_{1}+m_{e}\right) \bar{\Gamma}\right] \text { where } \bar{\Gamma}=\gamma^{0} \Gamma^{\dagger} \gamma^{0}
$$

■ We get:

$$
\begin{aligned}
\left|\mathcal{M}_{\nu}\right|^{2}= & -\frac{g^{4}}{16 M_{W}^{4} t^{2}\left(s-4 M_{W}^{2}\right)^{2}}\left[m_{e}^{8} s^{2}-2 m_{e}^{6} s\left(4 M_{W}^{4}+M_{W}^{2} s+2 s t\right)\right. \\
& +m_{e}^{4}\left(16 M_{W}^{8}+16 M_{W}^{6} s+M_{W}^{4} s(s+24 t)+2 M_{W}^{2} s^{2} t+s^{2} t(s+6 t)\right) \\
& -2 m_{e}^{2}\left(16 M_{W}^{10}+4 M_{W}^{8} s+8 M_{W}^{6} s t+4 M_{W}^{4} s t(s+3 t)-M_{W}^{2} s^{2} t^{2}+s^{2} t^{2}(s+2 t)\right) \\
& \left.+\left(4 M_{W}^{4}+s t\right)^{2}\left(M_{W}^{4}-2 M_{W}^{2} t+t(s+t)\right)\right] \\
\left|\mathcal{M}_{\gamma}\right|^{2}= & -\frac{g^{4} s_{W}^{4}}{2 M_{W}^{4} s^{2}}\left(2 M_{W}^{2}+s\right)^{2}\left[m_{e}^{4}+m_{e}^{2}\left(2 M_{W}^{2}-s-2 t\right)+M_{W}^{4}-2 M_{W}^{2} t+t(s+t)\right]
\end{aligned}
$$

- Kinematics
- The Amplitudes
- Unitarity

$$
\begin{aligned}
\left|\mathcal{M}_{Z}\right|^{2}= & \frac{g^{4} c_{W}^{4}}{32 M_{W}^{4}\left(M_{W}^{2}-c_{W}^{2} s\right)^{2}}\left(2 M_{W}^{2}+s\right)^{2}\left[-2 m_{e}^{4}\left(8 s_{W}^{4}-4 s_{W}^{2}+1\right)\right. \\
& +m_{e}^{2}\left(4\left(-8 M_{W}^{2} s_{W}^{4}+4 M_{W}^{2} s_{W}^{2}+8 s_{W}^{4} t-4 s_{W}^{2} t+t\right)+s\left(1-4 s_{W}^{2}\right)^{2}\right) \\
& \left.-2\left(8 s_{W}^{4}-4 s_{W}^{2}+1\right)\left(M_{W}^{4}-2 M_{W}^{2} t+t(s+t)\right)\right]
\end{aligned}
$$

$$
\mathcal{M}_{\nu} \mathcal{M}_{\gamma}^{*}=\mathcal{M}_{\nu}^{*} \mathcal{M}_{\gamma}
$$

$$
=\frac{g^{4} s_{W}^{2}}{8 M_{W}^{4} s t\left(4 M_{W}^{2}-s\right)}\left[m_{e}^{6} s\left(2 M_{W}^{2}+s\right)+m_{e}^{4}\left(2 M_{W}^{2}+s\right)\left(4 M_{W}^{4}-4 M_{W}^{2} s-3 s t\right)\right.
$$

$$
+m_{e}^{2} s\left(6 M_{W}^{6}+M_{W}^{4}(3 s+4 t)+2 M_{W}^{2} t(2 s+3 t)+s t(s+3 t)\right)
$$

$$
\left.-8 M_{W}^{10}-4 M_{W}^{8}(s-4 t)-2 M_{W}^{6} t(s+4 t)-5 M_{W}^{4} s^{2} t-2 M_{W}^{2} s t^{3}-s^{2} t^{2}(s+t)\right]
$$

$$
\begin{aligned}
\mathcal{M}_{\nu} \mathcal{M}_{Z}^{*}= & \mathcal{M}_{\nu}^{*} \mathcal{M}_{Z}=-\frac{g^{4} c_{W}^{2}\left(2 M_{W}^{2}+s\right)}{16 M_{W}^{4} t\left(4 M_{W}^{2}-s\right)\left(M_{W}^{2}-c_{W}^{2} s\right)} \\
& \times\left[m_{e}^{6}\left(s-2 s s_{W}^{2}\right)+m_{e}^{4}\left(-8 M_{W}^{4} s_{W}^{2}+M_{W}^{2} s\left(8 s_{W}^{2}-3\right)+3 s\left(2 s_{W}^{2}-1\right) t\right)\right. \\
& +m_{e}^{2}\left(4 M_{W}^{6}+M_{W}^{4}\left(-6 s s_{W}^{2}+2 s+4 t\right)+M_{W}^{2} s\left(1-4 s_{W}^{2}\right) t-s\left(2 s_{W}^{2}-1\right) t(s+3 t)\right) \\
& \left.+\left(2 s_{W}^{2}-1\right)\left(4 M_{W}^{8}-8 M_{W}^{6} t+M_{W}^{4} t(5 s+4 t)-2 M_{W}^{2} s t^{2}+s t^{2}(s+t)\right)\right] \\
\mathcal{M}_{\gamma} \mathcal{M}_{Z}^{*}= & \mathcal{M}_{\gamma}^{*} \mathcal{M}_{Z}=-\frac{g^{4} c_{W}^{2} s_{W}^{2}\left(4 s_{W}^{2}-1\right)\left(2 M_{W}^{2}+s\right)^{2}}{8 M_{W}^{4} s\left(M_{W}^{2}-c_{W}^{2} s\right)} \\
& \times\left[m_{e}^{4}+m_{e}^{2}\left(2 M_{W}^{2}-s-2 t\right)+M_{W}^{4}-2 M_{W}^{2} t+t(s+t)\right] \\
\left|\mathcal{M}_{H}\right|^{2}= & -\frac{g^{4} m_{e}^{2}\left(4 m_{e}^{2}-s\right)\left(s-2 M_{W}^{2}\right)^{2}}{32 M_{W}^{4}\left(M_{H}^{2}-s\right)^{2}}
\end{aligned}
$$

Summary

Introduction
$\underline{\nu_{e}+\bar{\nu}_{e} \rightarrow W_{L}^{+}+W_{L}^{-}}$
$\xrightarrow[W_{L}^{-}+W_{L}^{+} \rightarrow W_{L}^{-}+W_{L}^{+}]{ }$
$\xrightarrow{e^{-}+e^{+} \rightarrow W_{L}^{-}+W_{L}^{+}}$

- Kinematics
- The Amplitudes
- Unitarity
- Cross section
- Other Polarizations

Precision and speed
Conclusions

$$
\begin{aligned}
\mathcal{M}_{\nu} \mathcal{M}_{H}^{*}= & \mathcal{M}_{\nu}^{*} \mathcal{M}_{H}=-\frac{g^{4} m_{e}^{2}\left(2 M_{W}^{2}-s\right)}{16 M_{W}^{4} t\left(M_{H}^{2}-s\right)\left(s-4 M_{W}^{2}\right)} \\
\times & {\left[m_{e}^{4} s+m_{e}^{2}\left(4 M_{W}^{4}-3 M_{W}^{2} s-2 s t\right)-4 M_{W}^{6}+2 M_{W}^{4}(s+2 t)-3 M_{W}^{2} s t\right.} \\
& \quad+s t(s+t)] \\
\mathcal{M}_{\gamma} \mathcal{M}_{H}^{*}= & \mathcal{M}_{\gamma}^{*} \mathcal{M}_{H}=\frac{g^{4} m_{e}^{2} s_{W}^{2}\left(2 M_{W}^{2}-s\right)\left(2 M_{W}^{2}+s\right)\left(2 m_{e}^{2}+2 M_{W}^{2}-s-2 t\right)}{8 M_{W}^{4} s\left(s-M_{H}^{2}\right)} \\
\mathcal{M}_{Z} \mathcal{M}_{H}^{*}= & \mathcal{M}_{Z}^{*} \mathcal{M}_{H} \\
= & \frac{g^{4} c_{W}^{2} m_{e}^{2}\left(4 s_{W}^{2}-1\right)\left(2 M_{W}^{2}-s\right)\left(2 M_{W}^{2}+s\right)\left(2 m_{e}^{2}+2 M_{W}^{2}-s-2 t\right)}{32 M_{W}^{4}\left(s-M_{H}^{2}\right)\left(M_{W}^{2}-c_{W}^{2} s\right)}
\end{aligned}
$$

The total $|\mathcal{M}|^{2}$ is

$$
\begin{aligned}
|\mathcal{M}|^{2}= & \left|\mathcal{M}_{\nu}\right|^{2}+\left|\mathcal{M}_{\gamma}\right|^{2}+\left|\mathcal{M}_{Z}\right|^{2}+\left|\mathcal{M}_{H}\right|^{2} \\
& +\left(\mathcal{M}_{\nu} \mathcal{M}_{\gamma}^{*}+\mathcal{M}_{\nu}^{*} \mathcal{M}_{\gamma}\right)+\left(\mathcal{M}_{\nu} \mathcal{M}_{Z}^{*}+\mathcal{M}_{\nu}^{*} \mathcal{M}_{Z}\right)+\left(\mathcal{M}_{\gamma} \mathcal{M}_{Z}^{*}+\mathcal{M}_{\gamma}^{*} \mathcal{M}_{Z}\right) \\
& +\left(\mathcal{M}_{\nu} \mathcal{M}_{H}^{*}+\mathcal{M}_{\nu}^{*} \mathcal{M}_{H}\right)+\left(\mathcal{M}_{\gamma} \mathcal{M}_{H}^{*}+\mathcal{M}_{\gamma}^{*} \mathcal{M}_{H}\right)+\left(\mathcal{M}_{Z} \mathcal{M}_{H}^{*}+\mathcal{M}_{Z}^{*} \mathcal{M}_{H}\right)
\end{aligned}
$$

Summary
Introduction
$\nu_{e}+\bar{\nu}_{e} \rightarrow W_{L}^{+}+W_{L}^{-}$
$\underline{W_{L}^{-}+W_{L}^{+} \rightarrow W_{L}^{-}+W_{L}^{+}}$
$\xrightarrow{e^{-}+e^{+} \rightarrow W_{L}^{-}+W_{L}^{+}}$

- Kinematics
- The Amplitudes
- Unitarity - Cross section
- Other Polarizations Precision and speed Conclusions

ㅁ All these complicated expressions were obtained with the package FeynCalc for Mathematica.

- We manipulate the expressions using the functions TeXForm for LaTeX output and FortranForm for the Fortran output.
\square In this way we minimize the errors of handling complicated expressions.

Summary
Introduction
$\underline{\nu_{e}+\bar{\nu}_{e} \rightarrow W_{L}^{+}+W_{L}^{-}}$

$\xrightarrow{e^{-}+e^{+} \rightarrow W_{L}^{-}+W_{L}^{+}}$

- Kinematics
- The Amplitudes
- Unitarity
- Cross section
- Other Polarizations Precision and speed Conclusions

Figure 3: On the left panel it is shown the total cross section for $e^{-}+e^{+} \rightarrow$ $W_{L}^{-}+W_{L}^{+}$(black). Also shown are the ν exchange cross section (red) and the sum of the ν exchange with the s-channel exchange of gauge bosons (magenta). On the right panel it is shown the LEP result for $e^{-}+e^{+} \rightarrow W^{-}+W^{+}$.

Summary
Introduction
$\underline{\nu_{e}+\bar{\nu}_{e} \rightarrow W_{L}^{+}+W_{L}^{-}}$
$W_{L}^{-}+W_{L}^{+} \rightarrow W_{L}^{-}+W_{L}^{+}$
$\underline{e^{-}+e^{+} \rightarrow W_{L}^{-}+W_{L}^{+}}$

- Kinematics
- The Amplitudes
- Unitarity
- Other Polarizations

Precision and speed

ㅁ At these energies the contribution of the diagrams involving the Higgs boson is very small, due to the smallness of the cross section the electron mass and can be completed neglected at LEP energies.
\square One can estimate that the importance of the Higgs boson diagrams will show up when

$$
\frac{m_{e} \sqrt{s}}{M_{W}^{2}} \simeq 1, \rightarrow \sqrt{s} \simeq 10^{7} \mathrm{GeV}
$$

an energy completely outside the reach of man-made accelerators.
] However, from the consistency point of view, the cancellation of the bad behavior at those energies should be there.

\square In the Figure we show the contribution of the various pieces to the cross section of the process $e^{-}+e^{+} \rightarrow W_{L}^{-}+W_{L}^{+}$. We see that for high enough energy, $\sqrt{s} \simeq M_{W}^{2} / m_{e} \simeq 10^{7} \mathrm{GeV}$,

- The Higgs boson contribution is crucial to avoid the cross section to be constant. If the electron mass was not so small, the effect would be seen much earlier as in the case of $W_{L}^{-}+W_{L}^{+} \rightarrow W_{L}^{-}+W_{L}^{+}$.

Other Polarizations of the W 's

Summary
Introduction
$\underline{\nu_{e}+\bar{\nu}_{e} \rightarrow W_{L}^{+}+W_{L}^{-}}$
$\xrightarrow[W_{L}^{-}+W_{L}^{+} \rightarrow W_{L}^{-}+W_{L}^{+}]{ }$
$\xrightarrow{e^{-}+e^{+} \rightarrow W_{L}^{-}+W_{L}^{+}}$

- Kinematics
- The Amplitudes
- Unitarity
- Cross section
- Other Polarizations

As a last exercise let us calculate the cross sections for various final polarizations of the W bosons. First, let us look at the total cross sections for the various possibilities. This is shown in the Figure, confirming what we said before concerning the relative importance of the various polarizations. On the right panel of that figure we show LEP results for comparison.

Summary
Introduction
$\nu_{e}+\bar{\nu}_{e} \rightarrow W_{L}^{+}+W_{L}^{-}$
$\xrightarrow[W_{L}^{-}+W_{L}^{+} \rightarrow W_{L}^{-}+W_{L}^{+}]{ }$
$\xrightarrow{e^{-}+e^{+} \rightarrow W_{L}^{-}+W_{L}^{+}}$

- Kinematics
- The Amplitudes
- Unitarity
- Cross section
- Other Polarizations

Precision and speed

Conclusions

Figure 4: Angular dependence of the differential cross section for two values of the center of mass energy.

Summary
Introduction
$\underline{\nu_{e}+\bar{\nu}_{e} \rightarrow W_{L}^{+}+W_{L}^{-}}$
$\xrightarrow[W_{L}^{-}+W_{L}^{+} \rightarrow W_{L}^{-}+W_{L}^{+}]{ }$
$\xrightarrow{e^{-}+e^{+} \rightarrow W_{L}^{-}+W_{L}^{+}}$

- Kinematics
- The Amplitudes
- Unitarity
- Cross section
\square The more relevant fact is that the cross section is peaked in the forward direction and this feature increases with increasing beam energy.
\square The other relevant piece of information has to do with the fact that for $\theta=0$, meaning the W^{-}in the same direction as the incident electron, both the TT and LL differential cross section vanish, while the TL+LT has a maximum.
] This can be understood as follows. Due to the ($V-A$) nature of the charged current interaction, the electron will have helicity $-1 / 2$ while the positron helicity $+1 / 2$, resulting in a total helicity -1 in the direction of the electron. So if the W bosons are produced in the same direction their total helicity must be -1 and that can only be achieved if one is transverse and the other longitudinal polarization, more precisely,

$$
W^{-}(\lambda=-1), W^{+}(\lambda=0), \quad \text { or } \quad W^{+}(\lambda=+1), W^{-}(\lambda=0)
$$

Precision and speed: Mathematica, FORM and Fortran

Summary

Introduction

$\nu_{e}+\bar{\nu}_{e} \rightarrow W_{L}^{+}+W_{L}^{-}$
$W_{工}^{-}+W_{L}^{+} \rightarrow W_{L}^{-}+W_{I}^{+}$ $\xrightarrow{e^{-}+e^{+} \rightarrow W_{L}^{-}+W_{L}^{+}}$

In the previous discussion the more experienced should have been a bit puzzled. To make the point, let us enlarge the plot.

Precision and speed ...

Summary
Introduction
$\underline{\nu_{e}+\bar{\nu}_{e} \rightarrow W_{L}^{+}+W_{L}^{-}}$
$W_{L}^{-}+W_{L}^{+} \rightarrow W_{L}^{-}+W_{L}^{+}$

- We see that for $\sqrt{s}=10^{7} \mathrm{GeV}$ the cancellation has to be achieved better than one part in 10^{20}. For numerical calculations in double precision in C or Fortran this is a problem. How come that we could achieve this precision without resorting to quadrupole precision?.
\square The key to the answer lies in the fact that our formula for the total cross section already has the bad behaviour cancelled before we insert it into the Fortran program. This is achieved with Mathematica. One could think that this makes Mathematica a better choice to make the calculation of $|\mathcal{M}|^{2}$.
\square However Mathematica is quite slow when compared with, for instance, FORM. For this problem in an Intel Core-2 at 2.56 MHz , it takes close to 350 s . The same problem with FORM takes less than 7 s , a factor of 50 !. For larger problems, one has to use FORM.

Precision and speed ...

Summary
Introduction
$\nu_{e}+\bar{\nu}_{e} \rightarrow W_{L}^{+}+W_{L}^{-}$
$W_{L}^{-}+W_{L}^{+} \rightarrow W_{L}^{-}+W_{L}^{+}$
\square The problem with FORM is that has poor capabilities for simplifying expressions. So with FORM we can get (in 7 s) a Fortran output that is the sum of the all the contributions to $|\mathcal{M}|^{2}$ without great simplification. If we use this output we get the situtation in the right panel.

- The precision problems appear exactly where they should, at 1 part in 10^{13}. But we can get the best of both programs, we can use FORM to evaluate the traces and input it into Mathematica to simplify the expressions and make a Fortran output.
\square In this way we can get the same result as with Mathematica with a total time of around 20 s instead of 350 s ! The whole process can be automatized [?].

Summary Introduction $\underline{\nu_{e}+\bar{\nu}_{e} \rightarrow W_{L}^{+}+W_{L}^{-}}$ $\xrightarrow[W_{L}^{-}+W_{L}^{+} \rightarrow W_{L}^{-}+W_{L}^{+}]{ }$ $\xrightarrow{e^{-}+e^{+} \rightarrow W_{L}^{-}+W_{L}^{+}}$

Precision and speed

Conclusions - Conclusions

