Problems in Quantum Field Theory

J. C. Romão
Departamento de Física and CFTP, Instituto Superior Técnico Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal

Abstract

We collect here problems for the four Lectures I gave in Quantum Field Theory at the 2nd IDPASC School held at Udine, January 23rd to February 3rd, 2012.

1 Problems Quantum Mechanics: Lecture 1

1.1 Consider the system of units used in high energy physics, that is, where we define $\hbar=1, c=1$. In this system all the physical quantities can be expressed in units of the energy or powers of the energy.
a) Express $1 \mathrm{~s}, 1 \mathrm{Kg}$ and 1 m in MeV .
b) Write you weight, height and age in MeV .
1.2 The lifetime τ of an unstable particle is defined as the time needed for the initial number of particles to reduced to $1 / e$ of its value, that is,

$$
N(t)=N_{0} e^{-\frac{t}{\tau}}
$$

where N_{0} is the number of particles at $t=0$. Knowing that the charged pions have, in their rest frame, $\tau_{\pi}=2.6 \times 10^{-8} \mathrm{~s}$ and $m_{\pi}=140 \mathrm{MeV}$ evaluate:
a) The γ factor for a beam of 200 GeV pions.
b) The lifetime in the laboratory frame.
c) The percentage of pions that have decayed after travelling 300 m in the laboratory. If there was no time dilation, what would have been the percentage?
1.3 Consider the decay $\pi^{-} \rightarrow \mu^{-}+\bar{\nu}$, where $m_{\pi}=139.6 \mathrm{MeV}, m_{\mu}=105.7 \mathrm{MeV}$ and $m_{\nu}=0$. Determine:
a) The linear momenta of the μ^{-}and of the $\bar{\nu}$ in the center of mass frame, that is, where the π^{-}is at rest.
b) The linear momenta of the μ^{-}and of the $\bar{\nu}$ in the laboratory frame, assuming that the $\bar{\nu}$ is emitted in the same direction of the π^{-}.
c) Repeat b) assuming now that it was the μ^{-}that was emitted in the direction of the π^{-}.
1.4 A photon can be described as a particle of zero mass and 4-momenta $k^{\alpha}=(\omega, \vec{k})$ where $\omega=2 \pi \nu=2 \pi / \lambda$ and $|\vec{k}|=\omega(\hbar=c=1)$. If a photon collides with an electron with mass m_{e} at rest, it will be scattered with an angle θ and with energy ω^{\prime} (Compton scattering). Show that

$$
\lambda^{\prime}-\lambda=2 \lambda_{c} \sin ^{2} \frac{\theta}{2} \quad \text { onde } \quad \lambda_{c}=\frac{2 \pi}{m}
$$

1.5 Consider the electromagnetic field tensor $F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}$. From this we can define the dual tensor

$$
\mathcal{F}^{\mu \nu}=\frac{1}{2} \epsilon^{\mu \nu \rho \sigma} F_{\rho \sigma} .
$$

a) Show that Maxwell equations with sources (Gauss's and Ampère's Laws) can be written

$$
\partial_{\mu} F^{\mu \nu}=J^{\nu}
$$

b) Show that we have

$$
\partial_{\mu} \mathcal{F}^{\mu \nu}=0
$$

Verify that this equation contains the so-called homogeneous Maxwell equations, $\vec{\nabla} \cdot \vec{B}=0$, and $\vec{\nabla} \times \vec{E}=-\partial \vec{B} / \partial t$. Verify that the above relation is equivalent to the more usual form (Bianchi identity)

$$
\partial_{\mu} F_{\nu \rho}+\partial_{\nu} F_{\rho \mu}+\partial_{\rho} F_{\mu \nu}=0
$$

c) Express the invariants $F_{\mu \nu} F^{\mu \nu}, F_{\mu \nu} \mathcal{F}^{\mu \nu}$ and $\mathcal{F}_{\mu \nu} \mathcal{F}^{\mu \nu}$ in terms of the fields \vec{E} and \vec{B}.
d) Show that if \vec{E} and \vec{B} are orthogonal in a reference frame they will remain orthogonal in all reference frames
e) Consider a reference frame where $\vec{E} \neq 0$ and $\vec{B}=0$. Can we find a reference frame where $\vec{E}=0$ e $\vec{B} \neq 0$? Justify your answer.
1.6 Use the relations

$$
a^{\mu}{ }_{\alpha} g_{\mu \nu} a^{\nu}{ }_{\beta}=g_{\alpha \beta} \quad \text { or in matrix form } \quad a^{T} g a=g
$$

to show that for infinitesimal transformations

$$
a^{\nu}{ }_{\mu}=g^{\nu}{ }_{\mu}+\omega_{\mu}^{\nu}+\cdots
$$

we have

$$
\omega^{\mu \nu}=-\omega^{\nu \mu}
$$

1.7 Use the explicit expressions

$$
\begin{aligned}
S_{R} & =\cos \frac{\theta}{2}+i \hat{\theta} \cdot \vec{\Sigma} \sin \frac{\theta}{2} \\
S_{L} & =\cosh \frac{\omega}{2}-\hat{\omega} \cdot \vec{\alpha} \sinh \frac{\omega}{2}
\end{aligned}
$$

to verify that for finite transformations we also have

$$
S^{-1} \gamma^{\mu} S=a^{\mu}{ }_{\nu} \gamma^{\nu}
$$

1.8 Show the following relations

$$
\begin{aligned}
& \left(\Gamma^{a}\right)^{2}= \pm 1 \\
& \operatorname{Tr}\left(\Gamma^{a}\right)=0, \forall a \neq s \\
& \gamma^{\mu} \gamma_{\mu}=4 ; \gamma^{\mu} \gamma^{\nu} \gamma_{\mu}=-2 \gamma^{\nu} ; \gamma^{\mu} \gamma^{\nu} \gamma^{\rho} \gamma_{\mu}=4 g^{\nu \rho} \\
& \gamma^{\mu} \gamma^{\nu} \gamma^{\rho}=g^{\mu \nu} \gamma^{\rho}-g^{\mu \rho} \gamma^{\nu}+g^{\nu \rho} \gamma^{\mu}+i \varepsilon^{\mu \nu \rho \alpha} \gamma_{\alpha} \gamma_{5}
\end{aligned}
$$

1.9 Show that the spinors $w^{r}(\vec{p})$ obey the relations

$$
\begin{aligned}
& \left(p-\varepsilon_{r} m\right) w^{r}(\vec{p})=0 ; \bar{w}^{r}(\vec{p})\left(p-\varepsilon_{r} m\right)=0 \\
& \bar{w}^{r}(\vec{p}) w^{r^{\prime}}(\vec{p})=2 m \delta_{r r^{\prime}} \varepsilon_{r} \\
& \sum_{r=1}^{4} \varepsilon_{r} w_{\alpha}^{r}(\vec{p}) \bar{w}_{\beta}^{r}(\vec{p})=2 m \delta_{\alpha \beta} \\
& w^{r \dagger}\left(\varepsilon_{r} \vec{p}\right) w^{r^{\prime}}\left(\varepsilon_{r^{\prime}} \vec{p}\right)=2 E \delta_{r r^{\prime}}
\end{aligned}
$$

1.10 Show that for the Dirac equation the eigenvalue of W^{2} is

$$
W^{2}=-\frac{3}{4} m^{2}
$$

1.11 Show that

$$
(\vec{\sigma} \cdot \vec{\pi})(\vec{\sigma} \cdot \vec{\pi})=\vec{\pi} \cdot \vec{\pi}-e \vec{\sigma} \cdot \vec{B}
$$

where

$$
\left\{\begin{array}{c}
\vec{\pi}=-i \vec{\nabla}-e \vec{A} \\
\vec{B}=\vec{\nabla} \times \vec{A}
\end{array}\right.
$$

1.12 Verify the following relations

$$
\begin{aligned}
& \bar{u}(p, s) u\left(p, s^{\prime}\right)=2 m \delta_{s s^{\prime}} \\
& \bar{v}(p, s) v\left(p, s^{\prime}\right)=-2 m \delta_{s s^{\prime}} \\
& u^{\dagger}(p, s) u\left(p, s^{\prime}\right)=2 E_{p} \delta_{s s^{\prime}} \\
& v^{\dagger}(p, s) v\left(p, s^{\prime}\right)=2 E_{p} \delta_{s s^{\prime}} \\
& \bar{v}(p, s) u\left(p, s^{\prime}\right)=0 \\
& v^{\dagger}(p, s) u\left(-p, s^{\prime}\right)=0 \\
& \sum_{s}\left[u_{\alpha}(p, s) \bar{u}_{\beta}(p, s)\right]=(\not p+m)_{\alpha \beta} \\
& \sum_{s}\left[v_{\alpha}(p, s) \bar{v}_{\beta}(p, s)\right]=-(-\not p+m)_{\alpha \beta} \\
& \sum_{s}\left[u_{\alpha}(p, s) \bar{u}_{\beta}(p, s)-v_{\alpha}(p, s) \bar{v}_{\beta}(p, s)\right]=2 m \delta_{\alpha \beta}
\end{aligned}
$$

2 Problems Field Theory: Lecture 2

2.1 Derive the following results

1. The trace of an odd number of γ matrices is zero.
2. The following recurrence form holds for n even.

$$
\begin{aligned}
\operatorname{Tr}\left[\phi_{1} \cdots \phi_{n}\right]= & a_{1} \cdot a_{2} \operatorname{Tr}\left[\phi_{3} \cdots \phi_{n}\right]-a_{1} \cdot a_{3} \operatorname{Tr}\left[\phi_{2} \phi_{4} \cdots \not \phi_{n}\right] \\
& +a_{1} \cdot a_{n} \operatorname{Tr}\left[\phi_{2} \cdots \not \phi_{n-1}\right]
\end{aligned}
$$

3. Evaluate the trace of 4γ matrices

$$
\begin{aligned}
\operatorname{Tr}\left[\phi_{1} \phi_{2} \phi_{3} \phi_{4}\right] & =a_{1} \cdot a_{2} \operatorname{Tr}\left[\phi_{3} \phi_{4}\right]-a_{1} \cdot a_{3} \operatorname{Tr}\left[\phi_{2} \phi_{4}\right]+a_{1} \cdot a_{4} \operatorname{Tr}\left[\phi_{2} \phi_{3}\right] \\
& =4\left[a_{1} \cdot a_{2} a_{3} \cdot a_{4}-a_{1} \cdot a_{3} a_{2} \cdot a_{4}+a_{1} \cdot a_{4} a_{2} \cdot a_{3}\right]
\end{aligned}
$$

4. Derive the following results

$$
\begin{aligned}
& \operatorname{Tr}\left[\gamma_{5}\right]=0 \\
& \operatorname{Tr}\left[\gamma_{5} \phi \phi b\right]=0 \\
& \operatorname{Tr}\left[\gamma_{5} \phi \phi b \not \subset d\right]=-4 i \varepsilon_{\mu \nu \rho \sigma} a^{\mu} b^{\nu} c^{\rho} d^{\sigma}
\end{aligned}
$$

5. Derive the following identities

$$
\begin{aligned}
& \gamma_{\mu} \gamma^{\mu}=4 \\
& \gamma_{\mu} \phi \gamma^{\mu}=-2 \not \alpha \\
& \gamma_{\mu} d b \gamma^{\mu}=4 a . b \\
& \gamma_{\mu} \phi b \phi \gamma^{\mu}=-2 \notin b \phi \\
& \gamma_{\mu} d b c d \gamma^{\mu}=2[d d b c+k \cdot b d d]
\end{aligned}
$$

2.2 Consider the matrix Γ defined by

$$
\begin{equation*}
\Gamma=\gamma^{\mu}\left(g_{V}-g_{A} \gamma_{5}\right) \tag{1}
\end{equation*}
$$

where g_{V} and g_{A} are constants. Show that

$$
\begin{equation*}
\bar{\Gamma}=\Gamma \tag{2}
\end{equation*}
$$

where $\bar{\Gamma}=\gamma^{0} \Gamma^{\dagger} \gamma^{0}$.
2.3 Consider the decay of an unstable particle of mass M and 4-momentum P in n fragments $(n \geq 2)$ with 4 -momenta q_{i}. Show that the expression for the decay width, defined as the rate of transition per unit time, per unit volume and per unit particle that decays is given by

$$
\begin{equation*}
d \Gamma=\frac{1}{2 M} \overline{\left|M_{f i}\right|^{2}}(2 \pi)^{4} \delta^{4}\left(P-\sum_{i}^{n} q_{i}\right) \prod_{i}^{n} \frac{d^{3} q_{i}}{(2 \pi)^{3} 2 q_{i}^{0}} \tag{3}
\end{equation*}
$$

2.4 Write the relation between the lifetime expressed in seconds, $\tau(\mathrm{seg})$, and the decay with expressed in $\mathrm{MeV}, \Gamma(\mathrm{MeV})$.
2.5 Show that the differential cross section for the process $p_{1}+p_{2} \rightarrow p_{3}+p_{4}$ can be written in the center of mass frame as

$$
\begin{equation*}
\frac{d \sigma}{d \Omega}=\frac{1}{64 \pi^{2} s} \frac{\left|\vec{p}_{3 c m}\right|}{\left|\vec{p}_{1 c m}\right|} \overline{\left|M_{f i}\right|^{2}} \tag{4}
\end{equation*}
$$

where $\left|\vec{p}_{1 \mathrm{~cm}}\right|$ and $\left|\vec{p}_{3 \mathrm{~cm}}\right|$ are the momenta of particles 1 and 3 in the center of mass frame. Consider then the particular case when the incident particles are massless.
2.6 Show that for the decay $P \rightarrow q_{1}+q_{2}$, the width, in the rest frame of the decaying particle, can be written as

$$
\begin{equation*}
\frac{d \Gamma}{d \Omega}=\frac{1}{32 \pi^{2}} \frac{\left|\vec{q}_{1 c m}\right|}{M^{2}} \overline{\left|M_{f i}\right|^{2}} \tag{5}
\end{equation*}
$$

where $P^{2}=M^{2}$.
2.7 Consider in QED the process $\gamma \gamma \rightarrow e^{+} e^{-}$.
a) Write the amplitude $M=\epsilon^{\mu}\left(k_{1}\right) \epsilon^{\nu}\left(k_{2}\right) M_{\mu \nu}$ for the process, where k_{1}, k_{2} are the 4 -momenta of the photons.
b) Show that the amplitude is gauge invariant, that is

$$
k_{1}^{\mu} M_{\mu \nu}=k_{2}^{\nu} M_{\mu \nu}=0
$$

2.8 Consider the process $e^{-} e^{+} \rightarrow e^{-} e^{+}$, known as Bhabha scattering. In QED there are two diagrams contributing to the process

and there is a relative minus sign between them. Show that in the high energy limit, where $\sqrt{s} \gg m$, and \sqrt{s} is the total center of mass energy, we get

$$
\begin{equation*}
\frac{d \sigma}{d \Omega}=\frac{\alpha^{2}}{2 s}\left[\frac{1+\cos ^{4}(\theta / 2)}{\sin ^{4}(\theta / 2)}-\frac{2 \cos ^{4}(\theta / 2)}{\sin ^{2}(\theta / 2)}+\frac{1+\cos ^{2} \theta}{2}\right] \tag{6}
\end{equation*}
$$

where θ is the electron scattering angle in the center of mass frame.

3 Problems Field Theory: Lecture 3

3.1 Show that the Lagrangian

$$
\mathcal{L}_{Y M}=-\frac{1}{4} F_{\mu \nu}^{a} F^{a \mu \nu}
$$

is invariant under the transformations

$$
\delta A_{\mu}^{a}=-f^{b c a} \varepsilon^{b} A_{\mu}^{c}-\frac{1}{g} \partial_{\mu} \varepsilon^{a}
$$

3.2 Show that

$$
P^{\mu \nu}(k) \equiv \sum_{\lambda} \varepsilon^{\mu}(k, \lambda) \varepsilon^{\nu}(k, \lambda)=-g^{\mu \nu}+\frac{k^{\mu} \eta^{\nu}+k^{\nu} \eta^{\mu}}{k \cdot \eta}
$$

where $k^{\mu}, \varepsilon^{\nu}(k, 1), \varepsilon^{\rho}(k, 2)$ are η^{σ} four independent 4-vectors satisfying

$$
\begin{align*}
& \eta \cdot \varepsilon(k, \sigma)=0 \quad \sigma=1,2 \\
& \varepsilon(k, 1) \cdot \varepsilon(k, 2)=0 \\
& k \cdot \varepsilon(k, \sigma)=0 \quad \sigma=1,2 \\
& k^{2}=0 \\
& \eta^{2}=0 \quad \text { (convenient choice) } \\
& \varepsilon^{2}(k, \sigma)=-1 \quad \sigma=1,2 \tag{7}
\end{align*}
$$

Hint: The most general expression for $P^{\mu \nu}$ is

$$
P^{\mu \nu}=a g^{\mu \nu}+b k^{\mu} k^{\nu}+c \eta^{\mu} \eta^{\nu}+d\left(k^{\mu} \eta^{\nu}+k^{\nu} \eta^{\mu}\right) .
$$

Use the above relations to determine a, b, c, d.
3.3 Show that the Yang-Mills tensor $F_{\mu \nu}^{a}$ satisfies the Bianchi identities

$$
D_{\mu}^{a b} F_{\rho \sigma}^{b}+D_{\rho}^{a b} F_{\sigma \mu}^{b}+D_{\sigma}^{a b} F_{\mu \rho}^{b}=0
$$

or

$$
D_{\mu}^{a b *} F^{\mu \nu b}=0
$$

where

$$
{ }^{*} F^{\mu \nu a}=\frac{1}{2} \varepsilon^{\mu \nu \rho \sigma} F_{\rho \sigma}^{a}
$$

3.4 Consider the pure Yang-Mills theory. Show that the field equations can be written as

$$
\left\{\begin{array}{l}
\vec{\nabla} \cdot \vec{E}^{a}=\rho^{a} \\
\vec{\nabla} \cdot \vec{B}^{a}={ }^{*} \rho^{a} \\
\vec{\nabla} \times \vec{E}^{a}=-\frac{\partial \vec{B}^{a}}{\partial t}+\vec{J}^{a} \\
\vec{\nabla} \times \vec{B}^{a}=-\frac{\partial \vec{E}^{a}}{\partial t}+{ }^{*} \vec{J}^{a}
\end{array}\right.
$$

and evaluate $\rho^{a},{ }^{*} \rho^{a}, \overrightarrow{J^{a}}$ and ${ }^{*} \overrightarrow{J^{a}}$.
3.5 Consider the Wu-Yang Ansatze for static solutions of pure $\mathrm{SU}(2)$ Yang-Mills,

$$
A^{0 a}=x^{a} \frac{G(r)}{r^{2}} \quad A^{i a}=\varepsilon^{a i j} x^{j} \frac{F(r)}{r^{2}}
$$

a) Derive the equations of motion for F and G
b) Show that they are satisfied for $F=-1 / g$ and $G=$ constant. Show that these solutions correspond to $\rho^{a}={ }^{*} \rho^{a}=0$ and $\vec{J}^{a}={ }^{*} \vec{J}^{a}=0$ where $\rho^{a} \ldots$ are define in problem 3.4.

4 Problems Standard Model: Lecture 4

4.1 Consider the two decays of the Z^{0}

$$
Z^{0} \rightarrow \nu \bar{\nu}, \quad Z^{0} \rightarrow e^{-} e^{+} .
$$

Show that

$$
\frac{\Gamma\left(Z^{0} \rightarrow \nu \bar{\nu}\right)}{\Gamma\left(Z^{0} \rightarrow e^{-} e^{)}\right.} \simeq 2
$$

4.2 Evaluate the trace

$$
\begin{aligned}
T_{1}= & \operatorname{Tr}\left[\left(\phi_{1}+m_{f}\right) \gamma_{\mu}\left(g_{V}^{f}-g_{A}^{f} \gamma_{5}\right)\left(q_{2}-m_{f}\right) \gamma_{\nu}\left(g_{V}^{f}-g_{A}^{f} \gamma_{5}\right)\right] \\
= & 4\left[\left(g_{V}^{f 2}+g_{A}^{f 2}\right)\left(q_{1 \mu} q_{2 \nu}+q_{1 \nu} q_{2 \mu}-g_{\mu \nu} q_{1} \cdot q_{2}\right)-g_{\mu \nu} m_{f}^{2}\left(g_{V}^{f 2}-g_{A}^{f 2}\right)\right. \\
& \left.\quad-2 i \epsilon^{\alpha \beta}{ }_{\mu \nu} q_{1 \alpha} q_{2 \beta} g_{V}^{f} g_{A}^{f}\right]
\end{aligned}
$$

4.3 Neglecting the fermions masses show that

$$
B R\left(Z^{0} \rightarrow e^{-} e^{+}\right) \equiv \frac{\Gamma\left(Z^{0} \rightarrow e^{-} e^{+}\right)}{\Gamma_{Z}} \simeq 3.4 \%
$$

where $\Gamma_{Z} \equiv \Gamma\left(Z^{0} \rightarrow\right.$ all $)$.
4.4 Consider the process $e^{+} e^{-} \rightarrow \nu_{e} \bar{\nu}_{e}$.
a) What are the diagrams that contribute?
b) Write the amplitude corresponding to the dominant diagram for $\sqrt{s} \simeq M_{z}$.
c) Show that for $\sqrt{s} \simeq M_{Z}$ we have

$$
\frac{\sigma\left(e^{+} e^{-} \rightarrow \nu_{e} \bar{\nu}_{e}\right)}{\sigma\left(e^{+} e^{-} \rightarrow e^{+} e^{-}\right)} \simeq 2
$$

4.5 Consider the decay $W^{-} \rightarrow e^{-} \bar{\nu}_{e}$.
a) Calculate the speed of the electron in the frame where the W is at rest.
b) Write the amplitude for the process.
c) Neglecting the electron mass calculate the decay width.
4.6 Evaluate the Branching Ratio, $B R\left(W^{-} \rightarrow e^{-} \nu\right)$, defined by

$$
B R\left(W^{-} \rightarrow e^{-} \nu\right) \equiv \frac{\Gamma\left(W^{-} \rightarrow e^{-} \nu\right)}{\Gamma\left(W^{-} \rightarrow \text { all }\right)}
$$

where $\Gamma\left(W^{-} \rightarrow\right.$ all $)=\Gamma_{W} \simeq 2.0 \mathrm{GeV}$.
4.7 Consider the process $Z^{0} \rightarrow e^{-} e^{+} \gamma$.
a) Draw the diagrams in lowest order.
b) Write the amplitude and verify gauge invariance, that is, if

$$
\mathcal{M}=\varepsilon^{\mu}(k) V_{\mu}
$$

then

$$
k^{\mu} V_{\mu}=0
$$

where k^{μ} is the 4 -momentum of the photon.
4.8 When we neglect the lepton masses and consider that the energy in the CM, \sqrt{s}, is much less than the W and Z masses, then the cross section for the processes in the table

Process	λ_{i}
$\nu_{\mu}+e^{-} \rightarrow \mu^{-}+\nu_{e}$	1
$\bar{\nu}_{e}+e^{-} \rightarrow \mu^{-}+\bar{\nu}_{\mu}$	$\frac{1}{3}$
$\nu_{\mu}+e^{-} \rightarrow \nu_{\mu}+e^{-}$	$\sigma=\frac{32}{3}\left[\left(g_{V}^{\nu}{ }^{2}+g_{A}^{\nu}{ }^{2}\right)\left(g_{V}^{e}{ }^{2}+g_{A}^{e}{ }^{2}\right)+2 g_{V}^{\nu} g_{A}^{\nu} g_{V}^{e} g_{A}^{e}\right]$
$\bar{\nu}_{\mu}+e^{-} \rightarrow \bar{\nu}_{\mu}+e^{-}$	
$\mu^{-}+e^{+} \rightarrow \nu_{\mu}+\bar{\nu}_{e}$	
$\nu_{e}+e^{-} \rightarrow \nu_{e}+e^{-}$	

can be written as

$$
\sigma_{i}=\frac{\lambda_{i}}{\pi} G_{F}^{2} s
$$

a) Show this and fill the entries
b) Show that

$$
\frac{\sigma\left(\nu_{\mu}+e^{-} \rightarrow \nu_{\mu}+e^{-}\right)}{\sigma\left(\bar{\nu}_{\mu}+e^{-} \rightarrow \bar{\nu}_{\mu}+e^{-}\right)}=\frac{3 L_{e}^{2}+R_{e}^{2}}{L_{e}^{2}+3 R_{e}^{2}}
$$

where

$$
L_{e}=g_{V}^{e}+g_{A}^{e}, \quad R_{e}=g_{V}^{e}-g_{A}^{e}
$$

c) Define $R(x)=\sigma\left(\nu_{\mu} e^{-} \rightarrow \nu_{\mu} e^{-}\right) / \sigma\left(\bar{\nu}_{\mu}+e^{-} \rightarrow \bar{\nu}_{\mu}+e^{-}\right)$where $x=\sin ^{2} \theta_{W}$. Verify that $R(0.25)=1$.
4.9 Consider the process $e^{+}+e^{-} \rightarrow \phi+\gamma$ in the theory described by the following Lagrangian

$$
\mathcal{L}=\mathcal{L}_{\mathrm{QED}}+\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi-\frac{1}{2} m_{\phi}^{2} \phi^{2}-\beta \bar{\psi} \gamma_{5} \psi \phi
$$

where ϕ is a neutral spin 0 scalar field and ψ is the electron Besides the propagators and vertex of QED we have

a) Draw the diagram(s) that contribute in lowest order to the process.
b) Write the amplitude for the process.
c) Show that the amplitude is gauge invariant, that is if $\mathcal{M} \equiv \epsilon^{\mu}(k) \mathcal{M}_{\mu}$ where k is the 4 -momentum of the photon, then we have $k^{\mu} \mathcal{M}_{\mu}=0$.
4.10 Consider the process $\phi \rightarrow e^{+}+e^{-}$in the theory described in problem 4.9.
a) Write the amplitude for the process
b) Evaluate the decay width $\Gamma\left(\phi \rightarrow e^{+}+e^{-}\right)$as a function of the parameters of the model.
c) Assume that you measure $m_{\phi}=1.8 \mathrm{GeV}$ and a lifetime $\tau_{\phi}=8.5 \times 10^{-23} \mathrm{~s}$. What is the value of $\beta ?\left(m_{e}=0.511 \mathrm{MeV}\right)$
4.11 Consider the process $e^{+}+e^{-} \rightarrow \phi+\phi+\gamma$ in the theory described by the following Lagrangian

$$
\mathcal{L}=\mathcal{L}_{\mathrm{QED}}+\frac{1}{2} \partial_{\mu} \chi \partial^{\mu} \chi+\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi-\frac{1}{2} m_{\chi}^{2} \chi^{2}-\frac{1}{2} m_{\phi}^{2} \phi^{2}+\frac{\mu}{2} \phi^{2} \chi-\lambda \bar{\psi} \psi \chi
$$

where χ and ϕ are real neutral scalar fields $(\operatorname{spin} 0)$ and ψ is the electron. The constant μ has the dimension of a mass (in the system $\hbar=c=1$). The new propagators and vertices are

$$
\begin{gathered}
p \\

\end{gathered} \frac{i}{p^{2}-m_{\phi, \chi}^{2}}
$$

a) Draw the diagram(s) that contribute to the process in lowest order.
b) Write the amplitude for the process.
c) Show that the amplitude is gauge invariant, that is if $\mathcal{M} \equiv \epsilon^{\mu}(k) \mathcal{M}_{\mu}$ where k is the 4 -momentum of the photon, then we have $k^{\mu} \mathcal{M}_{\mu}=0$.
4.12 Consider the decay $\chi \rightarrow e^{+}+e^{-}$in the model described in problem 4.11.
a) Write the amplitude in lowest order.
b) Evaluate the decay width $\Gamma\left(\chi \rightarrow e^{+}+e^{-}\right)$.
c) Assume that you measure $m_{\chi}=1.8 \mathrm{GeV}$ and a lifetime $\tau_{\chi}=1.3 \times 10^{-25} \mathrm{~s}$. What is the value of $\lambda ?\left(m_{e}=0.511 \mathrm{MeV}\right)$
4.13 Consider the decay of the top quark, $t \rightarrow b+W^{+}$, in the Standard Model. In this problem neglect the mass of the bottom quark b.
a) Write the amplitude for the process
b) What is the speed of the W in the rest frame of the top.
c) Evaluate the decay width $\Gamma\left(t \rightarrow b+W^{+}\right)$as a function of the model parameters.
d) Knowing that the polarization vector of the W^{+}in the frame where it moves with velocity $\vec{\beta}$ is $\varepsilon_{L}^{\mu}=(\gamma \beta, \gamma \vec{\beta} / \beta)$, show that the fraction of the decays where the W^{+}is polarized longitudinally is

$$
F_{L}=\frac{m_{t}^{2}}{m_{t}^{2}+2 M_{W}^{2}}
$$

