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❐ We consider the theory described by the Lagrangian

LQED = −
1

4
FµνF

µν −
1

2
(∂ ·A)2 + ψ(i∂/+ eA/−m)ψ

❐ In first order the contribution to the photon propagator is

kk

p

p+ k
that we write in the form

G(1)
µν (k) ≡ G0

µµ′ iΠµ
′ν′

(k)G0
ν′ν(k)

where

iΠµν = −(+ie)2
∫

d4p

(2π)4
Tr

(

γµ
i(p/+m)

p2 −m2 + iε
γν

i(p/+ k/+m)

(p+ k)2 −m2 + iε

)
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❐ Evaluating the trace we get

iΠµν = −4e2
∫

d4p

(2π)4
[2pµpν + pµkν + pνkµ − gµν(p

2 + p · k −m2)

(p2 −m2 + iε)((p+ k)2 −m2 + iε)

❐ Simple power counting indicates that this integral is quadratically divergent.

❐ The integral being divergent we have first to regularize it and then to define
a renormalization procedure to cancel the infinities.

❐ We will use the method of dimensional regularization. For a value of d small
enough the integral converges. We define ǫ = 4− d, and we will have a
divergent result in the limit ǫ→ 0.

iΠµν(k, ǫ) =− 4e2 µǫ
∫

ddp

(2π)d
[2pµpν + pµkν + pνkµ − gµν(p

2 + p · k −m2)]

(p2 −m2 + iε)((p+ k)2 −m2 + iε)

=− 4e2 µǫ
∫

ddp

(2π)d
Nµν(p, k)

(p2 −m2 + iε)((p+ k)2 −m2 + iε)
where

Nµν(p, k) = 2pµpν + pµkν + pνkµ − gµν(p
2 + p · k −m2)

[e] = 4−d
2 = ǫ

2

e→ eµ
ǫ
2
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❐ Now we use the Feynman parameterization to rewrite the denominator as a
single term

1

ab
=

∫ 1

0

dx

[ax+ b(1− x)]2

to get

iΠµν(k, ǫ) = −4e2 µǫ
∫ 1

0

dx

∫
ddp

(2π)d
Nµν(p, k)

[(p+ kx)2 + k2x(1− x)−m2 + iε]2

❐ For dimension d sufficiently small this integral converges and we can change
variables, p→ p− kx, to get

iΠµν(k, ǫ) = −4e2 µǫ
∫ 1

0

dx

∫
ddp

(2π)d
Nµν(p− kx, k)

[p2 − C + iǫ]
2

where

C = m2 − k2x(1− x)
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❐ Nµν is a polynomial of second degree in the loop momenta. As the
denominator in only depends on p2 we can show

∫
ddp

(2π)d
pµ

[p2 − C + iǫ]
2 = 0

∫
ddp

(2π)d
pµpν

[p2 − C + iǫ]
2 =

1

d
gµν

∫
ddp

(2π)d
p2

[p2 − C + iǫ]
2

❐ This means that we only have to calculate integrals of the form

Ir,m =

∫
ddp

(2π)d
(p2)r

[p2 − C + iǫ]
m

=iCr−m+d
2

(−1)r−m

(4π)
d
2

Γ(r + d
2 )

Γ(d2 )

Γ(m− r − d
2 )

Γ(m)

=i
(−1)r−m

(4π)2

(
4π

C

) ǫ
2

C2+r−m Γ(2 + r − ǫ
2 )

Γ(2− ǫ
2 )

Γ(m− r − 2 + ǫ
2 )

Γ(m)

that has poles for m− r − 2 ≤ 0 due to the properties of the Γ function.
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❐ For the relevant terms we have to expand in powers if ǫ. For instance

µǫI0,2 =
i

16π2

(
4πµ2

C

) ǫ
2 Γ( ǫ2 )

Γ(2)

=
i

16π2

(

∆ǫ − ln
C

µ2

)

+O(ǫ)

where we have used the expansion of the Γ function

Γ
( ǫ

2

)

=
2

ǫ
− γ +O(ǫ), and ∆ǫ =

2

ǫ
− γ + ln 4π

and γ is the Euler constant

❐ Putting everything together we finally get

Πµν = −
(
gµνk

2 − kµkν
)
Π(k2, ǫ)

where

Π(k2, ǫ) ≡
2α

π

∫ 1

0

dx x(1− x)

[

∆ǫ − ln
m2 − x(1− x)k2

µ2

]
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❐ Consider the sum of all 1-PI contributions to photon propagator

+ +

+ + . . .

Gµν =

where

≡ iΠµν(k) = sum of all one-particle irreducible
(proper) diagrams to all orders

which we just calculated in lowest order =

❐ Now we separate the propagator in transverse and longitudinal parts

iG0
µν =

(

gµν −
kµkν
k2

)
1

k2
+
kµkν
k4

= PTµν
1

k2
+
kµkν
k4

≡ iG0T
µν + iG0L

µν

PTµν =

(

gµν −
kµkν
k2

)

, kµPTµν = 0, PTµ
νPTνρ = PTµρ
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❐ The same is true for the full propagator

Gµν = GTµν +GLµν , GTµν = PTµνGµν

❐ We have obtained, in first order, that the vacuum polarization tensor is
transversal, that is

iΠµν(k) = −ik2PTµν Π(k)

❐ This can be shown to be true to all orders ( Ward-Takahashi identities). So

iGTµν =PTµν
1

k2
+ PTµµ′

1

k2
(−i)k2PTµ

′ν′

Π(k)(−i)PTν′ν

1

k2

+ PTµρ
1

k2
(−i)k2PTρλ Π(k)(−i)PTλτ

1

k2
(−i)k2PTτσ Π(k)(−i)PTσν

1

k2
+ · · ·

=PTµν
1

k2
[
1−Π(k) + Π2(k2) + · · ·

]

❐ Summing the geometric series,

iGTµν = PTµν
1

k2
[
1 + Π(k)

]
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❐ All that we have done up to this point is formal because the function Π(k)
diverges.

❐ The most satisfying way to solve this problem is the following. The correct
Lagrangian is obtained by adding corrections to the classical Lagrangian,
order by order in perturbation theory, so that we keep the definitions of
charge and mass as well as the normalization of the wave functions. The
terms that we add to the Lagrangian are called counter-terms

Ltotal = L(e,m, ...) + ∆L

❐ Counter-terms are defined from the normalization conditions that we impose
on the fields and other parameters of the theory. We define the normalization
of the photon field as (GRTµν is the renormalized photon propagator)

lim
k→0

k2iGRTµν = 1 · PTµν

❐ The justification for this definition comes from the definition of electric
charge as we will now show
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❐ Consider the corrections to Coulomb scattering

=

= 0lim
q→0

Ward-Takahashi

❐ Then the normalization condition, limk→0 k
2iGRTµν = 1 · PTµν , means that the

experimental value of the electric charge is determined in the limit q → 0 of
the Coulomb scattering by the lowest order

=lim
q→0



IST Counter-term Lagrangian

Summary

Renormalization QED

•Vacuum Polarization

•Full Propagator

•Renormalization

•Charge definition

•Counter-term

•Counter-term

•Power counting

• QED

Non Abelian Classical

Quantization GHS

Quantization NAGT

Vacuum Pol in QCD

Jorge C. Romão IDPASC School Udine – 12

❐ The counter-term Lagrangian has to have the same form as the classical
Lagrangian to respect the symmetries of the theory. For the photon field it is
traditional to write

∆L = −
1

4
(Z3 − 1)FµνF

µν = −
1

4
δZ3 FµνF

µν

corresponding to the following Feynman rule

µ ν
kk

− i δZ3k
2

(

gµν −
kµkν
k2

)

❐ We have then

iΠµν = iΠloop
µν − i δZ3k

2

(

gµν −
kµkν
k2

)

= −i [Π(k, ǫ) + δZ3] k
2 PTµν

Therefore we should make the substitution in the photon propagator

Π(k, ǫ) → Π(k, ǫ) + δZ3
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❐ We obtain for the full photon propagator

iGTµν = PTµν
1

k2
1

1 + Π(k, ǫ) + δZ3

❐ The normalization condition implies

Π(k, ǫ) + δZ3 = 0

from which one determines the constant δZ3. We get

δZ3 =−Π(0, ǫ) = −
2α

π

∫ 1

0

dx x(1− x)

[

∆ǫ − ln
m2

µ2

]

=−
α

3π

[

∆ǫ − ln
m2

µ2

]

❐ The renormalized photon propagator can then be written as

iGµν(k) =
PTµν

k2[1 + ΠR(k2)]
+ iGLµν , ΠR(k2) ≡ Π(k2, ǫ)−Π(0, ǫ)
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❐ All that we have shown in the previous sections can be interpreted as follows.
The initial Lagrangian L(e,m, · · · ) has to be modified by quantum
corrections

Ltotal = L(e,m, · · · ) + ∆L, ∆L = ∆L[1] +∆L[2] + · · ·

where ∆L[i] is the ith − loops correction.

❐ Up to first order

L(e,m, · · · ) =−
1

4
FµνF

µν −
1

2
(∂ ·A)2 + iψ∂/ψ −mψψ − eψA/ψ

∆L(1) =−
1

4
(Z3 − 1)FµνF

µν + (Z2 − 1)(iψ∂/ψ −mψψ)

+ Z2δmψψ − e(Z1 − 1)ψA/ψ

❐ This Lagrangian will give finite Green functions up to first order.

❐ The question arises, how do we know that there are no other divergent
diagrams, or how can we tell if a theory is renormalizable?
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❐ Let us consider a Feynman diagram G, with L loops, IB bosonic and IF
fermionic internal lines. If there are vertices with derivatives, δv is the
number of derivatives in that vertex.

❐ We define then the superficial degree of divergence of the diagram (note
that L = IB + IF + 1− V ) by,

ω(G) =4L+
∑

v

δv − IF − 2IB

=4 + 3IF + 2IB +
∑

v

(δv − 4)

❐ For large values of the momenta the diagram will be divergent as

Λω(G) if ω(G) > 0, or ln Λ if ω(G) = 0

❐ The expression is more useful in terms of the external lines. We define ωv to
be the dimension, in terms of mass, of the vertex v. One can shown

∑

v ωv=
∑

v δv + 3IF + 2IB + 3
2EF + EB ω(G)=4− 3

2EF − EB+
∑

v(ωv − 4)

∫
d4q

(2π)4
→ 4L

∂µ ⇔ kµ → δv
i

q/−m
→ −IF

i
q2 −m2 → −2IB
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ω(G)=4− 3
2EF−EB+

∑

v(ωv−4)

❐ We can then classify theories in three classes,

◆ Non-renormalizable Theories

They have at least one vertex with ωv > 4. The superficial degree of
divergence increases with the number of vertices, that is, with the order
of perturbation theory. For an order high enough all the Green
functions will diverge

◆ Renormalizable Theories

All the vertices have ωv ≤ 4 and at least one has ωv = 4. If all vertices
have ωv = 4 then

ω(G) = 4−
3

2
EF − EB

and all the diagrams contributing to a given Green function have the
same degree of divergence. Only a finite number of Green functions are
divergent.

◆ Super-Renormalizable Theories

All the vertices have ωv < 4. Only a finite number of diagrams are
divergent
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ω(G)=4− 3
2EF−EB

❐ Coming back to our question of knowing which are the divergent diagram in
QED, we can now summarize the situation

EF EB ω(G) Effective degree
of divergence

0 2 2 0 (Current Conservation (CC))
0 3 0 (Furry’s Theorem)
0 4 0 Convergent (CC)
2 0 1 0 (Current Conservation)
2 1 0 0

❐ All the other diagrams are superficially convergent. We have therefore a
situation where there are only a finite number of divergent diagrams, exactly
the ones that we considered before.

❐ Successes of the renormalization program in QED

◆ Calculation of the anomalous magnetic moment of the electron to 1
part in 1011. Needing 8th order in perturbation theory

◆ Cancellation of infrared divergences in all processes in QED
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❐ This is a generalization of what we have done in QED. We start with the
Lagrangian

L = Ψ(i∂/−m)Ψ, Ψ =








ψ1

ψ2

...
ψn








❐ Ψ is a vector in a space of dimension n where acts a representation of a
Non-Abelian group G. Under infinitesimal local transformations

δΨ = iεa(x)ΩaΨ, a = 1, . . .m

where Ωa are m (dimension of G) hermitian n× n matrices that obey the
commutation relations of G

[
Ωa,Ωb

]
= ifabcΩc

and fabc are the structure constants of G
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❐ To make the Lagrangian invariant under local gauge transformations, like in
QED, we introduce the covariant derivative

∂µ → DµΨ = (∂µ + igAaµΩ
a)Ψ

where the vector fields Aaµ (a = 1, 2, . . . ,m), the analog of the photon, are
called gauge fields

❐ The transformation law for Aaµ is obtained requiring that DµΨ transforms as
Ψ. It is convenient to introduce the compact matrix notation,

ε ≡ εaΩa, Aµ ≡ AaµΩ
a, δΨ = i ε Ψ

❐ The variation of DµΨ is

δ(DµΨ) =∂µ(δΨ) + ig δ(Aµ Ψ)

=i ε ∂µΨ+ i∂µ ε Ψ− g Aµ ε Ψ+ igδAµ Ψ
but

δ(DµΨ) = i ε DµΨ = i ε ∂µΨ−g ε Aµ Ψ → δAµ = i
[
ε, Aµ

]
−

1

g
∂µε
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❐ In component form we have

δAaµ = −f bca εb Acµ −
1

g
∂µε

a

❐ The commutator of two covariant derivatives is

(DµDν −DνDµ)Ψ =(∂µ + ig Aµ)(∂ν + ig Aν) Ψ− (µ↔ ν)

=ig (∂µAν − ∂νAµ + ig
[
Aµ, Aν

]
) Ψ ≡ ig FµνΨ

where

Fµν ≡ F aµν Ωa, Fµν ≡ ∂µ Aν − ∂ν Aµ + ig
[
Aµ, Aν

]

❐ Fµν is the generalization to the non abelian case of the Maxwell tensor. It
transforms as

δ(Fµν) = i
[
ε, Fµν

]
, δF aµν = −f bcaεbF cµν
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❐ The generalization of the Maxwell Lagrangian (called Yang-Mills theory)

LYM = −
1

4
F aµνF

aµν , F aµν ≡ ∂µA
a
ν − ∂νA

a
µ − g f bcaAbµA

c
ν

is invariant

δLYM = −
1

2
F aµνδF

aµν =
1

2
εbF aµνF

cµνf bca = 0

❐ Therefore the Lagrangian

L = Ψ(iD/−m)Ψ−
1

4
F aµνF

aµν

is invariant under local gauge transformations

❐ If G = SU(3) this is the theory for the strong interactions, the so-called
Quantum Chromodynamics (QCD), a part of the Standard Model, as we will
see

❐ A mass term, Lmass = − 1
2 m

2AaµA
aµ, would not be gauge invariant, so

photons and gluons are massless
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❐ The energy-momentum tensor is the analog of the electromagnetic case,

θµν = F aµρF aνρ −
1

4
gµνF ρσaF aρσ

❐ Its conservation follows from the equation of motion, ∂µF
aµρ = 0, and the

Bianchi Identity

∂µθ
µν =∂µF

aµρF aνρ + F aµρ∂µF
aν
ρ −

1

2
∂νF aρµF aρµ

=
1

2
F aµρg

νσ
(
∂µF

a
σρ − ∂ρF

a
σµ + ∂σF

a
ρµ

)

=
1

2
F aµρg

νσ
(
∂µF

a
σρ + ∂σF

a
ρµ + ∂ρF

a
µσ

)
= 0 Bianchi Identity

❐ Introducing the analog of electric and magnetic fields

Eia = F i0a ; Bka = −
1

2
εijkF

ij
a i, j, k = 1, 2, 3

θ00 = 1
2 (
~Ea · ~Ea + ~Ba · ~Ba) θ0i = ( ~Ea × ~Ba)i
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❐ From the expression for θ00 we get the Hamiltonian

H =

∫

d3x
1

2
( ~Ea · ~Ea + ~Ba · ~Ba) ≡

∫

d3xH

where H is the Hamiltonian density

❐ The main point we want to emphasize is that the relation between
Hamiltonian and Lagrangian is not the usual one. For this we start with the
action in the form (1st order formalism)

S =

∫

d4x

{

−
1

2
(∂µA

a
ν − ∂νA

a
µ + gfabcAbµA

c
ν)F

µνa +
1

4
F aµνF

µνa

}

where Aaµ and F aµν independent variables. The equation of motion for F aµν
gives its definition.

❐ Using the definitions of ~Ea and ~Ba we get

S =

∫

d4x−(∂0 ~Aa + ~∇A0a − gfabcA0b ~Ac) · ~Ea −
1

2
( ~Ea · ~Ea + ~Ba · ~Ba)

=

∫

d4x

{

−∂0 ~Aa · ~Ea −
1

2
( ~E2 + ~B2) +A0a(~∇ · ~Ea − gfabc ~Ab · ~Ec)

}
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❐ The Lagrangian density can then be written as

L = −Eak∂0Aak −H(Eak, Aak) +Aa0Ca

where

H ≡ 1
2 (
~Ea · ~Ea + ~Ba · ~Ba)

Bak ≡ − 1
2ǫ
kmnF amn

Ca = ~∇ · ~Ea − gfabc ~Ab · ~Ec

❐ Aak are the coordinates and −Eak the conjugated momenta, H(Eak , A
a
k) is

the Hamiltonian density. The variables A0a are Lagrange multipliers for the
conditions

Ca = ~∇ · ~Ea − gfabc ~Ab · ~Ec = 0

which are the equations of motion for ν = 0 (Gauss’s Law)
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❐ Consider a system with canonical variables (pi, qi) that generate the phase
space Γ2n (i = 1, . . . , n).

❐ Then the action for a (canonical) Hamilton System is

S =

∫

dtL(t)

where

L(t) =

n∑

i=1

piq̇i − h(p, q)

❐ We can also consider Generalized Hamilton Systems (GHS) where

L(t) =

n∑

i=1

piq̇i − h(p, q)−
m∑

α=1

λαϕα(p, q)

❐ The quantization of Generalized Hamilton Systems was studied by Dirac
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❐ The variables λα(α = 1, ...m) are Lagrange multipliers and ϕα are
constraints. For the system to be a generalized Hamilton system the
following conditions should be verified

{ϕα, ϕβ} =
∑

α

Cαβγ(p, q)ϕγ { , } is the Poisson Bracket

{h, ϕα} =Cαβ(p, q)ϕβ

❐ Gauge theories

{Ca(x), Cb(y)}x0=y0 = −gfabcCc(x)δ3(~x− ~y)

{H, Ca(x)} = 0

are a particular case with Cαβ = 0.

❐ We have therefore to learn how to quantize generalized Hamilton systems
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❐ Consider the GHS described by

L(t) = piq̇i − h(p, q)− λαϕα(p, q)

❐ This leads to the equations of motion







q̇i =
∂h
∂pi

+ λα
∂ϕα

∂pi

ṗi = − ∂h
∂qi

− λα
∂ϕα

∂qi
ϕα(p, q) = 0 α = 1, . . . ,m

❐ One can show that this GHS is equivalent to a normal HS defined in a space
Γ∗2(n−m), that is, to a system with n−m degrees of freedom. This is
constructed as follows. Let be m conditions

χα(p, q) = 0, α = 1, . . . ,m, satisfying
{
χα, χβ

}
= 0

and

det
∣
∣{ϕα, χβ}

∣
∣ 6= 0
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❐ Then the subspace Γ2n defined by the conditions

χα(p, q) = 0, ϕα(p, q) = 0, α = 1, . . . ,m

is the subspace Γ∗2(n−m) that we want.

❐ The canonical variables p∗ and q∗ in Γ∗2(n−m) can be found as follows:

◆ As
{
χα, χβ

}
= 0 we can reorder the variables qi to make χα to

coincide with the first m coordinate variables

q
︸︷︷︸

n

≡ ( χα
︸︷︷︸

m

, q∗
︸︷︷︸

n−m

)

◆ p = (pα, p∗) are the corresponding conjugated momenta. Then

det
∣
∣{ϕα, χβ}

∣
∣ 6= 0, → det

∣
∣
∣
∣

∂ϕα

∂pβ

∣
∣
∣
∣
6= 0

◆ The conditions ϕα(p, q) = 0 can then be solved for

pα = pα(p∗, q∗)



IST Equivalence between the GHS Γ
2n and the HS Γ

∗2(n−m)

Summary

Renormalization QED

Non Abelian Classical

Quantization GHS

•Dirac & SHG

•Equivalence Γ & Γ
∗

•QM Quantization

•FT Quantization

•The Example of QED

Quantization NAGT

Vacuum Pol in QCD

Jorge C. Romão IDPASC School Udine – 29

❐ The subspace Γ∗ is given by the conditions

{

χα ≡ qα = 0

pα = pα(p∗, q∗)

❐ The variables p∗ and q∗ are canonical and the Hamiltonian is

h∗(p∗, q∗) = h(p, q)
∣
∣
(χ=0 ; ϕ=0)

❐ With equations of motion

q̇∗ =
∂h∗

∂p∗
, ṗ∗ = −

∂h∗

∂q∗
, 2(n−m) equations

❐ The fundamental result can be formulated in the form of theorem

The two representations, Γ and Γ∗, are equivalent as they lead to
the same equations of motion.
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❐ For Γ∗ we have to equivalent ways to quantize:

◆ Canonical quantization, with
[
p∗i , q

∗
j

]
= −i δij

◆ Path integral quantization, where the evolution operator is

U(q∗f , q
∗
i ) =

∫
∏

t

dp∗dq∗

(2π)
ei

∫
[p∗q̇∗−h(p∗,q∗)]dt

❐ In practice this is not very useful because it is not possible to invert the
relations ϕα = 0 to get pα = pα(p∗, q∗). It is more convenient to use
variables (p, q) with restrictions. This can only be done in the path integral

∏

t

dp∗dq∗

(2π)
→
∏

t

dpdq

2π

∏

t

δ(qα)δ(pα − pα(p∗, q∗))

leading to

U(qf , qi) =

∫
∏

t

dpdq

2π

∏

t

δ(qα)δ(pα − pα(p∗, q∗))ei
∫
dt(pq̇−h(p,q))
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❐ We can rewrite this expression in terms of the constraints. We have

δ(qα) = δ(χα), δ(pα − pα(p∗, q∗)) = δ(ϕα) det

∣
∣
∣
∣

∂ϕα
∂pβ

∣
∣
∣
∣

and therefore

∏

t

δ(qα)δ(pα − pα(p∗, q∗)) =
∏

t

δ(ϕα)δ(χα) det |{ϕα, χβ}|

❐ Finally using

δ(ϕα) =

∫
dλ

2π
e−i

∫
dtλαϕα

we get

U(qf , qi) =

∫
∏

t

dpdq

2π

dλ

2π

∏

t,x

δ(χα) det |{ϕα, χβ}| e
iS(p,q,λ)

where we recover the original action

S(p, q, λ) =

∫

[pq̇ − h(p, q)− λϕ]dt
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Systems finite # degrees of freedom Field Theory

t xµ

q φ(x)

q̇ ∂µφ(x)

S =

∫

dtL(q, q̇) S =

∫

d4xL(φ, ∂µφ)

d

dt

∂L

∂q̇
−
∂L

∂q
= 0 ∂µ

∂L

∂(∂µφ)
−
∂L

∂φ
= 0

[pi, qj ] = −i δij [π(~x, t), ϕ(~x′, t)] = −iδ(~x− ~x′)

U(qf , qi)=

∫
∏

t

dpdq

(2π)
ei

∫
[pq̇−h(p,q)]dt Z[J ]=

∫

D(φ)ei
∫
d4x[L(φ,∂µφ)+J(x)φ(x)]

C
la
ss
ic
al

Q
u
an
tu
m

❐ It is the correspondence in the last line that we are going to explore in the
case of gauge theories.
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❐ Consider the electromagnetic field coupled to a conserved current
Jµ = (p, ~J), ∂µJ

µ = 0. The Lagrangian is

L = −
1

4
FµνF

µν − JµAµ

❐ The action in the first order formalism is

S =

∫

d4x

[

− ~E · (~∇A0 + ~̇A)− ~B · ~∇× ~A+
~B2 − ~E2

2
− ρA0 + ~J · ~A

]

❐ Varying with respect to ~E, ~B, A0 and ~A, we get the usual Maxwell

equations ( ~E = −(~∇A0 + ~̇A) and ~B = ~∇× ~A)

~∇ · ~E = ρ ~∇ · ~B = 0

~∇× ~B −
∂E

∂t
= ~J ~∇× ~E = −

∂ ~B

∂t
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❐ Substituting back in the action

S =

∫

d4x

{

− ~E · ~̇A−

(
~E2 + (~∇×A)2

2
− ~J · ~A

)

+A0(~∇ · ~E − ρ)

}

❐ It is clear that we have a GHS with A0 playing the role of a Lagrange
multiplier for one constraint ~∇ · ~E = ρ (Gauss’ Law)

❐ The constraint is linear in the fields. This is the great simplification of QED.
In fact if we choose a condition χ = 0 (choice of gauge) that is linear in the

fields, then det{ϕ, χ} does not depend on ~E and ~A and can be absorbed in
the normalization

❐ This is obtained, for instance, in the class of Lorentz gauges

χ = ∂µA
µ − c(~x, t)

where c(~x, t) is an arbitrary function that does not depend on the fields
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❐ The generating functional for the Green functions is then

Z[Jµ] =

∫

D( ~E, ~A,A0)
∏

x

δ(∂µA
µ − c(x))eiS

where

S =

∫

d4x

{

− ~E · ~̇A−

[

E2 + (~∇×A)2

2
+ ( ~J · ~A)

]

+A0(~∇ · ~E − ρ)

}

=

∫

d4x

{

−
E2

2
− ~E · (~∇A0 + ~̇A)−

(~∇×A)2

2
− JµA

µ

}

❐ The integration in ~E is Gaussian and can be done

Z[Jµ] =

∫

D(Aµ)
∏

x

δ(∂µA
µ − c(x))eiS

where we are neglecting normalization factors everywhere
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❐ After integration in ~E the action is

S =

∫

d4x

[

−
1

4
(∂µAν − ∂νAµ)(∂

µAν − ∂νAµ)− JµA
µ

]

=

∫

d4x

[

−
1

4
FµνF

µν − JµA
µ

]

❐ As the functions c(x) are arbitrary we can average over them with the weight

exp

(

−
1

2ξ

∫

d4xc2(x)

)

getting the familiar result

Z[Jµ] =

∫

D(Aµ)e
i
∫
d4x[− 1

4
F 2− 1

2ξ
(∂·A)2−J·A]

❐ If we had chosen a non-linear gauge condition then det |{q, χ}| would depend

on ~E and ~A and we could not absorb it in the irrelevant normalization (we
choose in the end Z[0] = 1). This is the case of NAGT to which we now turn
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❐ We have seen that the classical action of NAGT is

S =2

∫

d4x Tr

[

~E · ∂0~A+
1

2
(~E

2
+ ~B

2
)−A0(~∇ · ~E + g[~A, ~E])

]

=

∫

d4x
[
−Eak∂

0Aak −H(Ek, Ak) +Aa0Ca
]

where A0a are the Lagrange multipliers for the constraints

Ca = ~∇ · ~Ea − gfabc ~Ab · ~Ec

❐ We introduce the equal time Poisson brackets

{

−Eia(x), A
j
b(y)

}

x0=y0
= δijδabδ

3(~x− ~y)

we can show that we have a GHS

{
Ca(x), Cb(y)

}

x0=y0
= −gfabcCc(x)δ3(~x− ~y)

{H,Ca(x)} = 0, H =

∫

d3xH(Ek, Ak) =
1

2

∫

d3x
[
(Eka)2 + (Bka)2

]
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We summarize:

❐ NAGT are example of generalized Hamilton systems. The coordinates are
Aak, the conjugate momenta −Eak and A0a are Lagrange multipliers for the
constraints (Gauss’s Law)

Ca(x) = ~∇ · ~Ea − gfabc ~Ab · ~Ec = 0, a = 1, . . . , r

❐ To quantize these GHS, we have to impose an equal number (r) of auxiliary
conditions that we call gauge choice, or gauge fixing (what we called before
χα = 0)

❐ This choice is arbitrary and the physical results (S matrix elements) should
not depend on it

❐ We notice that Ca(x) already is quadratic in the fields and momenta. So,
even a linear gauge fixing condition will in general lead to a non trivial
determinant that can not be absorbed in the normalization constant
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❐ We choose the gauge fixing condition to be

F a[Aµ] = 0 a = 1, . . . , r

❐ Now we have to calculate the Poisson bracket of the gauge fixing F a[Aµ]
with the constraint Cb. This is a non trivial calculation with the result

{
F a[Aµ](x), C

b(y)
}
∝ Mab

F (x, y)

where

Mab
F (x, y) = −g

δF a[δAµ(x)]

δαb(y)
=

δF a

δAcµ(x)
Dcb
µ δ

4(x− y)

and

δAcµ = −f bdc αb Adµ −
1

g
∂µα

c = −
1

g
(Dµα)

c
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❐ We finally arrive at the generating functional for the Green functions

ZF [J
a
µ ] ≡

∫

D(Aµ)∆F [Aµ]
∏

x,a

δ(F a[Abµ(x)])e
i(S[Aµ]+

∫
d4xJa

µA
µa)

where we have introduced the usual notation

∆F [Aµ] ≡ detMF

❐ For the applications we still have to solve two problems. In fact to be able to
formulate the Feynman rules we should exponentiate ∆F [Aµ] and δ(F

a[Aµ])

❐ We will address the second problem in first place. Like in QED we start by
defining a more general gauge condition

F a[Abµ]− ca(x) = 0

where ca(x) are arbitrary functions that do not depend on the fields
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❐ Now we take the average with the weight

exp

{

−
i

2

∫

d4x c2a(x)

}

❐ We get then

ZF [J
a
µ ] =N

∫

D(Aµ)∆F [Aµ]e
i(S[Aµ]+

∫
d4x(− 1

2
F 2

a+J
µaAa

µ))

=N

∫

D(Aµ)∆F [Aµ]e
i
∫
d4x[L(x)− 1

2
F 2

a+J
µaAa

α]

❐ To be able to formulate the Feynman rules we still have to deal with the
determinant ∆F [Aµ]. This will lead to the so-called Fadeev-Popov ghosts to
which we now turn



IST A Mathematical Detour: Grassmann variables

Summary

Renormalization QED

Non Abelian Classical

Quantization GHS

Quantization NAGT

•Method

•Gauge Fixing

•Functional ZF
•Grassmann variables

•Ghosts

•Feynman rules

•Matter

•Group Factors

Vacuum Pol in QCD

Jorge C. Romão IDPASC School Udine – 42

❐ Consider anticommuting classical variables, ω, ω (Grassmann variables),
defined by

ωω+ωω = 0, ω2 = ω2 = 0,

∫

dω ω =

∫

dω ω = 1,

∫

dω ω =

∫

dω ω = 0

❐ Now we have

∫

dω dω e−ωω =

∫

dω dω (1− ωω) =

∫

dω dω (1 + ωω) = 1

❐ Next we take two pairs of variables

∫

dω1 dω1 dω2 dω2 e
−ωiAijωj =

∫

dω1 dω1 dω2 dω2 (1 + · · ·

+ω1ω1ω2ω2A11A22 + ω1ω2ω1ω2A12A21)

= (A11A22 −A12A21) = detA

❐ In general (here zi and zi are complex commuting variables)
∫ n∏

i=1

dωi dωi e
−ωiAijωj = detA

∫ n∏

i=1

dzi dzi e
−ziAijzj ∝ (detA)−1
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❐ Now we go to the final step in quantizing our NAGT. The starting point is
the generating functional for the Green Functions

ZF [J
a
µ ] = N

∫

D(Aµ)∆F [A]e
i
∫
d4x[L(x)− 1

2ξ
(Fa)2+Ja

µA
µa]

where

∆F [A] = detMF , Mab
F (x, y) =

δF a[A(x)]

δAcµ(y)
Dcb
µ

❐ In this form the Feynman rules would be complicated as the term detMF

would lead to non-local interactions.

❐ But we have just seen that we can exponentiate the determinant using
anticommuting fields. We take

∫

D(ω, ω)e−
∫
d4x ωMFω = detMF

where the only requirement is that ω and ω are anticommuting fields
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❐ Using this result and changing for convenience MF → iMF (an irrelevant
normalization change) we get

ZF [J
a
µ ] = N

∫

D(Aµ, ω, ω)e
i
∫
d4x[Leff+J

a
µA

µa]

❐ The NAGT is now described by and effective Lagrangian Leff given by

Leff = L+ LGF + LG

where

L = −
1

4
F aµνF

aµν , LGF = −
1

2ξ
(F a)2, LG = −ωaMab

F ω
b

❐ The first term is the classical Lagrangian for the pure NAGT, and the second
term, LGF is the gauge fixing Lagrangian. The third term, LG, that resulted
from the exponentiation of the determinant, is new and needs some further
explanation
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❐ The fields ω and ω are, by construction, auxiliary fields. As we will see they
are scalars but also anti-commuting. There is no problem with the
spin-statistics theorem in QFT as they are not physical fields. They are
called Fadeev-Popov ghosts

❐ Let us look in more detail at their action

SG = −

∫

d4xd4yωa(x)Mab
F (x, y)ωb(y) = −

∫

d4x

∫

d4y ωa(x)
δF a(x)

δAcµ(y)
Dcb
µ ωb(y)

or

LG(x) = −

∫

d4y ωa(x)
δF a(x)

δAbµ(y)
Dbc
µ ωc(y)

❐ As the ghost Lagrangian depends on the gauge fixing, to proceed we have to
be more specific. We choose the Lorentz gauge

F a = ∂µA
aµ
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❐ We therefore get

LG(x) =−

∫

d4y ωa(x)∂µx
[
δ4(x− y)

]
Dab
µ ω

b(y)

= ∂µωa(x)Dab
µ ω

b(x)

= ∂µωa(x)∂µω
b(x)− gfabcAcµ(x)∂

µωa(x)ωb(x)

where we have used the covariant derivative in the adjoint representation

Dab
µ = ∂µδ

ab − gfabcAcµ

❐ We summarize

◆ The ghosts are scalar fields but they are also anticommuting by
construction

◆ The ghosts, like the gauge fields are in the adjoint representation of the
gauge group

◆ The specific form of the LG depends on the gauge fixing chosen
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❐ We are now in position to write the Feynman rules in the Lorentz gauge,
F a[A] = ∂µA

µa(x). The effective Lagrangian is

Leff = −
1

4
F aµνF

µνa −
1

2ξ
(∂µA

aµ)2 + ∂µωaDab
µ ω

b

where

Dab
µ ω

b = (∂µδ
ab − gfabcAcµ)ω

b

❐ The group constants fabc are defined with the conventions

[ta, tb] = ifabctc, Tr(tatb) =
1

2
δab

❐ We can therefore separate the free (kinetic) and interaction parts

Leff = Lkin + Lint
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❐ The kinetic Lagrangian is

Lkin =−
1

4
(∂µA

a
ν − ∂νA

a
µ)

2 −
1

2ξ
(∂µA

µa)2 + ∂µω
a∂µωa

=
1

2
Aµa

[

⊔⊓gµν −

(

1−
1

ξ

)

∂µ∂ν

]

δabAνb − ωa⊔⊓ δabωb

❐ We get the Feynman rules for the propagators

i) Gauge fields

−iδab

[
gµν

k2 + iǫ
− (1− ξ)

kµkν

(k2 + iǫ)2

]

a b
µ ν

k

ii) Ghosts

i

k2 + iǫ
δaba b

k
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❐ For the interaction Lagrangian we get

Lint = −gfabc∂µA
a
νA

µbAνc −
1

4
g2fabcfadeAbµA

c
νA

µdAνe + gfabc∂µωaAbµω
c

❐ Triple gauge interaction

−gfabc
[

gµν(p1 − p2)
ρ + gνρ(p2 − p3)

µ

+gρµ(p3 − p1)
ν
]

p1 + p2 + p3 = 0

µ, a ν, b

ρ, c

p1

p2

p3

❐ Quartic gauge interaction

−ig2
[

feabfecd(gµρgνσ − gµσgνρ)

+feacfedb(gµσgρν − gµνgρσ)

+feadfebc(gµνgρσ − gµρgνσ)
]

p1 + p2 + p3 + p4 = 0
µ, a ν, b

ρ, cσ, d

p1 p2

p3p4
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❐ Interaction Ghosts–Gauge fields

g fabcpµ1

p1 + p2 + p3 = 0

µ, c

a b
p1

p2

p3

❐ Comments

◆ Ghost lines are oriented, they carry ghost number

◆ The dot refers to the leg that has the derivative, the outgoing leg

◆ Other rules are as usual, not forgetting the minus sign for each loop of
ghosts
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❐ The interaction with matter is derived from the covariant derivatives

❐ We take scalar fields φi, i = 1, ...M , and spinor fields ψj , j = 1, ...N in
representations of dimension M and N . The Lagrangian is

LMatter =(Dµφ)
†Dµφ−m2

φφ
†φ− V (φ) + iψDµγµψ −mψψψ

≡ Lkin + Lint .

❐ The free kinetic part is the usual one. The interaction Lagrangian can be
obtained from the covariant derivative

Dµ
ij = ∂µδij − igAaµT

a
ij

where T aij are the generators in the representations of φ and ψ, satisfying

[T a, T b] = ifabcT c, Tr(T aT b) = δabT (R)

❐ The interaction Lagrangian is

Lint = igφ∗i (∂
→

− ∂
←

)µφjT
a
ijAµa + g2φ∗i T

a
ijT

b
jkφkA

a
µA

µb + gψiγ
µψjT

a
ijA

a
µ
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❐ Scalars

ig(p1 − p2)
µT aij

µ, a

i j
p1

p2

p3

ig2gµν{T
a, T b}ij

µ, a ν, b

i j

❐ Fermions

ig(γµ)βαT
a
ij

µ, a

α, jβ, i
p1

p2

p3
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❐ The generators satisfy

[T a, T b] = ifabcT c, Tr(T aT b) = δabT (R), T (R)r = d(R)C2(R)

where T (R) characterizes the representation and C2 is the Casimir

∑

a,k

T aikT
a
kj = δijC2(R)

❐ For SU(N)

r = N2 − 1 ; d(N) = N ; d(adj) ≡ d(G) = r

T (N) =
1

2
; C2(N) =

N2 − 1

2N
; T (G) = C2(G) = N

❐ Symmetry Factors

Each diagram has to be multiplied by its Symmetry Factor. This
is the # of different ways the external lines can be connected to
the vertices divided by the permutation factor of each vertex and
a permutation factor for equal vertices.
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❐ As an example we outline the calculation of the renormalization gauge boson
self-energy, the so-called vacuum polarization. In the pure gauge theory we
have the diagrams

a, α b, β

c, ν

d, µ

p p

k
1
2

a, α b, β

c, ν

p p

k

1
2

a, α b, β

p p

k

c

d

❐ The amplitude for the first diagram in the ξ = 1 gauge is,

MI
AA = −

1

2

∫
d4k

(2π)4
Γναµcad (k,−p, p− k)Γβνµbcd (p,−k,−p+ k)

[k2][(k − p)2]

❐ As we just want to evaluate the renormalization constant δZA (the analog of
δZ3 for the photon) we just keep the divergent part. We use the MS
scheme, where we look for the terms proportional to

∆ǫ =
2

ǫ
− γ + ln 4π, γ is the Euler constant (1)
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❐ The result for this diagram is (as usual we define the tensor iΠαβ as the
result of the diagram),

ΠIαβ(ξ = 1) = −
g2

96π2
CAδab

(
22pαpβ − 19p2gαβ

)
∆ǫ (2)

where CA is the Casimir of the adjoint representation

❐ The amplitude for the second diagram is

MII
AA = −

1

2
i

∫
d4k

(2π)4
Γαβρσabcc gρσ

k2
= 0

a well known result for dimensional regularization with massless fields

❐ Finally the amplitude for the third diagram, the ghost loop, is

MIII
AA = (−1)i2

∫
d4k

(2π)4
ΓαcdaΓ

β
dcb

[k2][(k − p)2]
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❐ This gives

ΠIIIαβ (ξ = 1) =
g2

96π2
CAδab

(
2pαpβ + p2gαβ

)
∆ǫ

❐ Adding everything we get (ξ = 1)

Παβ(ξ = 1) =
5g2CA
24π2

δab
(
p2gαβ − pαpβ

)
∆ǫ

showing the transversality property of the vacuum polarization. This is a well
known consequence of the gauge invariance and can be shown to hold to all
orders in perturbation theory (Ward Identities)

❐ From this, using the usual definitions, we get

δZA =
5g2CA
24π2

1

ǫ
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