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iy 1sT Summary for Lecture 3: Non Abelian Gauge Theories

0 Radiative corrections and renormalization
Renormalization QED

Mo Aladen Gt 0 Non Abelian gauge theories: Classical theory
Quantization GHS

Quantization NAGT 0 Non Abelian gauge theories: Quantization

Vacuum Pol in QCD

0 Feynman rules for a NAGT

0 Example: Vacuum polarization in QCD
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IST One-loop correction to the photon propagator

2ummary 0 We consider the theory described by the Lagrangian
Renormalization QED
1 1

e Full Propagator EQED — _ZFMVF’LLV . i(a . A)2 _1_ @(Z@ —1_ GA_ m)”(ﬂ

® Renormalization
e Charge definition
e Counter-term

® Counter-term O In first order the contribution to the photon propagator is
e Power counting
e JED

p

Quantization GHS k k

Non Abelian Classical

Quantization NAGT

Vacuum Pol in QCD

o p+k
that we write in the form

D1y — ~0 -yu’v 7100
Gl(k) =G, ilI"" (k)GY,, (k)

where

e [ (i m) i(p+F+m)
i = ~(ie) /(27r)4T (7“p2—m2+is%(p+k)2—m2+i5>
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IST One-loop correction to the photon propagator ...

0 Evaluating the trace we get

Summary

R iTL,, = —4é / d'p 2pupy + pukv + poky — g (p* +p -k —m?)
" 2m)* (= m? +ie)((p+ k)? —m? +ie)

e Full Propagator

® Renormalization

e Charge definition

® Counter-term O Simple power counting indicates that this integral is quadratically divergent.

e Counter-term

e Power counting

® QED 0 The integral being divergent we have first to regularize it and then to define
Mon Abefian Classical a renormalization procedure to cancel the infinities.

Quantization GHS
Quantization NAGT O We will use the method of dimensional regularization. For a value of d small
Vacuum Pol in QCD . . .

E— enough the integral converges. We define ¢ = 4 — d, and we will have a
divergent result in the limit ¢ — 0.

. [ d% [2p.pu + puky + 0ok — g (P + Dk —m?))
zHW(k,e):—éleQ,u/ y & 2_“ 5 s NQ_ SR
- (2m) (p? —m2 +ie)((p + k)? — m? + ic)
[[e]—2—§] o / i N, (p, k)
) = — 4€
e — ey B ) @m)d (2 = mE e ie) ((p + k)2 — m? + de)
where

N, (p, k) = 2pupy + puky + Dok — 9 (p* + 0 - k —m?)
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iy I1ST

One-loop correction to the photon propagator ...

Summary

Renormalization QED

® Vacuum Polarization

e Full Propagator

® Renormalization
e Charge definition
e Counter-term

e Counter-term

e Power counting
e JED

Non Abelian Classical

Quantization GHS

Quantization NAGT

Vacuum Pol in QCD

0 Now we use the Feynman parameterization to rewrite the denominator as a
single term

1 1 dx
ab _/0 laz 4+ b(1 — z))?

to get

1 d
. ] d®p

0 For dimension d sufficiently small this integral converges and we can change
variables, p — p — kx, to get

dip N, kx, k
i1l (k,€) = —de* / dx/ p v (P — ki, F)
— C + i€’

N/“/(pa k)
(p+ kx)? + k?x(1 — x)

—m? +ie]’

where

C=m?—-k=z(1—2x)
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IST One-loop correction to the photon propagator ...

0 N, is a polynomial of second degree in the loop momenta. As the
denominator in only depends on p? we can show

Summary

Renormalization QED

® Vacuum Polarization

e Full Propagator ddp p,Ll/

e Renormalization ad 5 = O

:Ehargte <_j:finition (27‘(‘) [p2 —C+ ZE]

o o / 2L / b P

® QED (27T)d [pQ —C + iE]Q d (27T)d [p2 —C+ iE]Q

Non Abelian Classical

Quantization GHS

0 This means that we only have to calculate integrals of the form

[ d (p?)"
Lrm _/ (2m)d [p2 — C +i€e]™

Quantization NAGT

Vacuum Pol in QCD

g (G T+ ) Tom—r—
(477)% F(%) I'(m)

_Z'(—l)r—m Ar\ 2 24+r—m L2+r— %) T(m—r—2+ %)

o ( C> . r2-3) T (m)

that has poles for m — r — 2 < 0 due to the properties of the I' function.

Jorge C. Romao IDPASC School Udine — 6



iy 1sT One-loop correction to the photon propagator . ..

0 For the relevant terms we have to expand in powers if €. For instance

Summary

Renormalization QED . 2 £ €

1T = t (47W )2 I'(3)

e Full Propagator 0,2 — 9

e Renormalization ]‘67T C F(Z)

e Charge definition Z C

e Counter-term . L T

e Counter-term o ].67T2 (Ae 1n ,LL2> + O(E)

e Power counting

e JED

Non Abelian Classical where we have used the expansion of the I' function

Quantization GHS

Quantization NAGT € 2 2
'\(=)=-—79+0(), and A.=- —~+1Indr

Vacuum Pol in QCD 2 € €

and 7 is the Euler constant

0 Putting everything together we finally get
L. = — (guk® — kuk,) II(K*, €)

where

2 _ VB2
(2, ) = m® —x(1 — x)k

112

2c

s

/Old:c:c(l—az) [Ae—ln
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iy I1ST

Summing all 1-Particle Irreducible diagrams

Summary

Renormalization QED

® Vacuum Polarization
® Renormalization

e Charge definition

e Counter-term

e Counter-term

e Power counting

e JED

Non Abelian Classical

Quantization GHS

Quantization NAGT

Vacuum Pol in QCD

0 Consider the sum of all 1-PI contributions to photon propagator

@O -

i11,,,(k) = sum of all one-particle irreducible
(proper) diagrams to all orders

0 Now we separate the propagator in transverse and longitudinal parts

k., k 1 k., k 1 k. k
N0 % ulv T phv
ZG/W_(QW/_ L2 >k2 + L4 _PMVkQ + LA

where

O

which we just calculated in lowest order

— 0T | - ~OL
=1iG,, +1G

k. k
T _ phvy T _ TvpT _ pT
P, = (gW T ) , k*P,, =0, P,YP,, =P,

Jorge C. Romao
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ST

Summing all 1-Particle Irreducible diagrams

Summary

Renormalization QED

® Vacuum Polarization
® Renormalization

e Charge definition

e Counter-term

e Counter-term

e Power counting

e JED

Non Abelian Classical

Quantization GHS

Quantization NAGT

Vacuum Pol in QCD

0 The same is true for the full propagator

Guw = GT, + GF

T _ pT
pvo G.LW — PMVG/“/

0 We have obtained, in first order, that the vacuum polarization tensor is
transversal, that is

i 11, (k) = —ik* P, T1(k)

0 This can be shown to be true to all orders ( Ward-Takahashi identities). So

, 1 1, > , 1
iGy =P 5 + Pl 5 (DR PH VTR (=) Py 1
r, . , 1, | . ‘ 1
+ Py (DR PP TI(k) (=) P o5 (=K P77 TL(k) (=) Py, 5 +

:PMTV% [1—TI(k) + 1% (k%) + -+ |

0 Summing the geometric series,

1
-~T T
ZG'LLV_PMVI{?2[1+H(]€)]
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iy I1ST

Renormalization

Summary

Renormalization QED

® Vacuum Polarization
e Full Propagator

e Charge definition

e Counter-term

e Counter-term

e Power counting

e JED

Non Abelian Classical

Quantization GHS

Quantization NAGT

Vacuum Pol in QCD

0 All that we have done up to this point is formal because the function TI(k)
diverges.

0 The most satisfying way to solve this problem is the following. The correct
Lagrangian is obtained by adding corrections to the classical Lagrangian,
order by order in perturbation theory, so that we keep the definitions of
charge and mass as well as the normalization of the wave functions. The
terms that we add to the Lagrangian are called counter-terms

Etotal — [,(e, m, ) + AL

0 Counter-terms are defined from the normalization conditions that we impose
on the fields and other parameters of the theory. We define the normalization
of the photon field as (G/% is the renormalized photon propagator)

o 1.2:~RT _ T
llli%k G, =1-P,,

0 The justification for this definition comes from the definition of electric
charge as we will now show

Jorge C. Romao
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iy 1sT Corrections to Coulomb Scattering: Definition of electric charge

0 Consider the corrections to Coulomb scattering

Summary

Renormalization QED

® Vacuum Polarization

e Full Propagator

® Renormalization =
e Counter-term

e Counter-term

e Power counting

4 N\
® QED Ward-Takahashi
Non Abelian Classical
Quantization GHS él_l;r(l) — O
Quantization NAGT
\_ J

Vacuum Pol in QCD

O Then the normalization condition, limg_,g /c%fof =1- PMTV, means that the

experimental value of the electric charge is determined in the limit ¢ — 0 of
the Coulomb scattering by the lowest order

lim \EDAAI = >NW
qg—0
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iy I1ST

Counter-term Lagrangian

Summary

Renormalization QED

® Vacuum Polarization
e Full Propagator

® Renormalization

e Charge definition

e Counter-term

e Power counting

e JED

Non Abelian Classical

Quantization GHS

Quantization NAGT

Vacuum Pol in QCD

0 The counter-term Lagrangian has to have the same form as the classical
Lagrangian to respect the symmetries of the theory. For the photon field it is
traditional to write

1 1
AL = (75 = V)Eu F"™ = 2073 F F"

corresponding to the following Feynman rule

k k
[ NNANNRNNN v
0 We have then

ko k,

iHul/ — iHIILfSp — 2523]{‘2 (g’uy — ?> = —1 [H(k, 6) + (SZB] l{?2 PE’/

Therefore we should make the substitution in the photon propagator

TI(k, €) — TI(k, ) + 675

Jorge C. Romao
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¥ IST

Renormalized photon propagator

Summary

Renormalization QED

® Vacuum Polarization
e Full Propagator

® Renormalization

e Charge definition

e Counter-term

e Power counting

e JED

Non Abelian Classical

Quantization GHS

Quantization NAGT

Vacuum Pol in QCD

0 We obtain for the full photon propagator

ZGW =

PT

1 1

PV R2 14 T (k,e) + 6 Z3

0 The normalization condition implies

H(k, 6) + 5Z3 =0

from which one determines the constant 0 Z3. We get

2 1
575 = —T1(0,€) = — 2
T Jo
2
I PN
3m (>

dza(1-a) | A~y _2]

m

112

0 The renormalized photon propagator can then be written as

iG (k) =

T
P,

R2[1 4 ILE(R2)]

+:G

L
pv)

IT%(k?) = T1(k?, €) — T1(0, ¢)

Jorge C. Romao

IDPASC School Udine — 13



iy I1ST

Counter-terms and power counting

Summary

Renormalization QED

® Vacuum Polarization
e Full Propagator

® Renormalization

e Charge definition

e Counter-term

e Counter-term

e Power counting

e QED

Non Abelian Classical

Quantization GHS

Quantization NAGT

Vacuum Pol in QCD

0 All that we have shown in the previous sections can be interpreted as follows.
The initial Lagrangian L(e, m,---) has to be modified by quantum
corrections

Liotal = L(e,m, -+ )+ AL, AL = A L Apl2l 4l

where AL is the i*" — Joops correction.

O Up to first order

1
E(ejfrn7 . ) — ZF,UJI/F/“/ _

AL = 2(Zy VB FP + (Zy — 1) — mip)

+ Zadmapp — e(Zy — 1) A

S0 AV 40P — mi — D

0 This Lagrangian will give finite Green functions up to first order.

0 The question arises, how do we know that there are no other divergent
diagrams, or how can we tell if a theory is renormalizable?

Jorge C. Romao

IDPASC School Udine — 14



iy I1ST

Counter-terms and power counting ...

Summary

Renormalization QED

® Vacuum Polarization
e Full Propagator

® Renormalization

e Charge definition

e Counter-term

e Counter-term

e Power counting

e QED

Non Abelian Classical

Quantization GHS

Quantization NAGT

Vacuum Pol in QCD

0 Let us consider a Feynman diagram G, with L loops, Ig bosonic and Ir
fermionic internal lines. If there are vertices with derivatives, d, is the

number of derivatives in that vertex.

0 We define then the superficial degree of divergence of the diagram (note

thatL:IB+IF—|—1—V) by,

W(G) =AL+ b, — Iy — 2] < B

4 d4 )

q4 — 4L

27)
Sk = 0
: — =1
—4) | 4—m !

——— — —2Ip
¢ —m J

O For large values of the momenta the diagram will be divergent as

AY(G) if w(G)>0, or InA if w(G)=0

0 The expression is more useful in terms of the external lines. We define w,, to
be the dimension, in terms of mass, of the vertex v. One can shown

ZUWU:ZUCSU+3[F+ZIB+ %EF—FEB

w(G)=4—3Er — Eg+)_, (w, — 4)

Jorge C. Romao
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iy I1ST

Counter-terms and power counting .. |w(G)=4-5Er—Ep+}_, (w,—4)

Summary

Renormalization QED

® Vacuum Polarization
e Full Propagator

® Renormalization

e Charge definition

e Counter-term

e Counter-term

e Power counting

e QED

Non Abelian Classical

Quantization GHS

Quantization NAGT

Vacuum Pol in QCD

0 We can then classify theories in three classes,

[1 Non-renormalizable Theories

They have at least one vertex with w, > 4. The superficial degree of
divergence increases with the number of vertices, that is, with the order
of perturbation theory. For an order high enough all the Green
functions will diverge

Renormalizable Theories

All the vertices have w, < 4 and at least one has w, = 4. If all vertices
have w, = 4 then

CU(G) =4 — gEF_EB

and all the diagrams contributing to a given Green function have the
same degree of divergence. Only a finite number of Green functions are
divergent.

Super-Renormalizable Theories

All the vertices have w, < 4. Only a finite number of diagrams are
divergent

Jorge C. Romao
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iy I1ST

Divergent diagrams in QED w(G)=4—3Er—Ep

Summary

Renormalization QED

® Vacuum Polarization
e Full Propagator

® Renormalization

e Charge definition

e Counter-term

e Counter-term

e Power counting

Non Abelian Classical

Quantization GHS

Quantization NAGT

Vacuum Pol in QCD

0 Coming back to our question of knowing which are the divergent diagram in
QED, we can now summarize the situation

Er | Ep | w(G) Effective degree
of divergence

0 2 2 0 (Current Conservation (CC))
0 3 0 (Furry’'s Theorem)

0 4 0 Convergent (CC)

2 0 1 0 (Current Conservation)

2 1 0 0

O All the other diagrams are superficially convergent. We have therefore a
situation where there are only a finite number of divergent diagrams, exactly
the ones that we considered before.

O Successes of the renormalization program in QED

[0 Calculation of the anomalous magnetic moment of the electron to 1
part in 10'1. Needing 8* order in perturbation theory

[0 Cancellation of infrared divergences in all processes in QED

Jorge C. Romao
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iy I1ST

Non Abelian Classical Theory

Summary

Renormalization QED

Non Abelian Classical

® Transformations

e Lagrangian

e Energy-momentum
e Hamiltonian
e GHS

Quantization GHS

Quantization NAGT

Vacuum Pol in QCD

O This is a generalization of what we have done in QED. We start with the
Lagrangian

/zl\
LT —m)¥, U=

)

0 W is a vector in a space of dimension n where acts a representation of a
Non-Abelian group G. Under infinitesimal local transformations

oV =ic(x)Q*V, a=1,...m

where Q% are m (dimension of (G) hermitian n X n matrices that obey the
commutation relations of GG

[Qa, Qb] _ Z-fachc

and f2%¢ are the structure constants of GG

Jorge C. Romao
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iy I1ST

Non Abelian Classical Theory

Summary

Renormalization QED

Non Abelian Classical

® Transformations

e Lagrangian

e Energy-momentum
e Hamiltonian
e GHS

Quantization GHS

Quantization NAGT

Vacuum Pol in QCD

0 To make the Lagrangian invariant under local gauge transformations, like in
QED, we introduce the covariant derivative

Oy — D,V = (8, +igA® Q")

where the vector fields Af (a = 1,2,...,m), the analog of the photon, are
called gauge fields

0 The transformation law for A7 is obtained requiring that D, W transforms as
W. It is convenient to introduce the compact matrix notation,

OV =43eW

e=e"Q", A, = A0

L

0 The variation of D,V is

5(D, V) =0, (3V) + ig §(A, D)

:i§5’M\IJ+i8M§\IJ—gAM§\IJ+i95AM 1\
but

1
6(D,¥) =igeDyV=ig0,YV-—gecd, ¥ — 5AM:i[§,A/J — =0,
g

Jorge C. Romao
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iy I1ST

Non Abelian Classical Theory

Summary

Renormalization QED

Non Abelian Classical

® Transformations

e Lagrangian

e Energy-momentum
e Hamiltonian
e GHS

Quantization GHS

Quantization NAGT

Vacuum Pol in QCD

0 In component form we have

a ca C ]‘ a
JAL = — fhea &b A= Oue

0 The commutator of two covariant derivatives is

(DuD, — DyD,)¥ =(9, +ig A,)(@, +ig A,) ¥~ (5 v)
:,I’g (a,LLAy o 8I/A,u =+ Zg [Auaéy]) V= Zg EMV\IJ

where

F :8,u Ay_81/ AM“"ZQ [A,L“Ay]

F EFSV Q, o =

0 F,, is the generalization to the non abelian case of the Maxwell tensor. It

transforms as
beca _b e
—f"%e Fl,

0E,,)=1ilgF,], O0F;, =

Jorge C. Romao

IDPASC School Udine — 20



iy I1ST

Non Abelian Classical Theory: The Lagrangian

Summary

Renormalization QED

Non Abelian Classical

® Transformations

e Energy-momentum
e Hamiltonian
e GHS

Quantization GHS

Quantization NAGT

Vacuum Pol in QCD

0 The generalization of the Maxwell Lagrangian (called Yang-Mills theory)

1 a auv a a a bca 4b Ac
[EYM = _ZF/«WF H . F,uu = auAV — 8’/‘4/«0 — g f AMAV
Is invariant
1 a auv 1 b rha cuv pbeca
5£YM = _iFMV(SF = 58 F/u/F f =0

0 Therefore the Lagrangian

1

[c = W(ip— m)¥ — L Fp,

is invariant under local gauge transformations

0 If G = SU(3) this is the theory for the strong interactions, the so-called
Quantum Chromodynamics (QCD), a part of the Standard Model, as we will

See

O A mass term, Lass = —% mQAZA““, would not be gauge invariant, so

photons and gluons are massless

Jorge C. Romao
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iy I1ST

Energy—-momentum tensor

Summary

Renormalization QED

Non Abelian Classical

® Transformations

e Lagrangian

® Energy-momentum

@ Hamiltonian
e GHS

Quantization GHS

Quantization NAGT

Vacuum Pol in QCD

0 The energy-momentum tensor is the analog of the electromagnetic case,

v a av 1 v oa a
g = FUPFE™, — 2 g" FPFp,

0 Its conservation follows from the equation of motion, 0, F'*? = 0, and the
Bianchi ldentity

1
0ub" =0, FPF™ , + FUWPQ,F ) — 20" F"Fy,

1 a Vo a a a
:§ng (OuFg, — OpFy, + 051,

1 a Vo a a a 1 ' 1
:§ng <8MFap + 8UFW + @,Fw) = 0| Bianchi ldentity

O Introducing the analog of electric and magnetic fields

v __ 10 k __ . 1]
Fi=Fi%;, pk= _—¢,  Fi

, 7. k=1,2,3
2 Z)J) ) <

Ho0i — (Ea % éa)z

Jorge C. Romao
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ST

Hamiltonian formalism

Summary

Renormalization QED

Non Abelian Classical

® Transformations
e Lagrangian
e Energy-momentum

e GHS

Quantization GHS

Quantization NAGT

Vacuum Pol in QCD

0 From the expression for #°° we get the Hamiltonian
H= /d3 .E*+ B*. B%) = /d%%

where H is the Hamiltonian density

0 The main point we want to emphasize is that the relation between
Hamiltonian and Lagrangian is not the usual one. For this we start with the
action in the form (1st order formalism)

1 1
S = /d4at {—5(5’MAZ — 0, A}, + gfabcAZA,C/)FW“ + 4F§VFW“}
where Aj; and Fj, independent variables. The equation of motion for Fj,
gives its definition.

0 Using the definitions of E® and B® we get

—

S:/délx_(@OEa_'_ﬁAOa_gfabcAObfYC).E_v’ (Ea Ea_'_éa.ga)

NJI}—\

:/dllx{_aoga.ﬁa_%(E’Q_'_B’Q)_'_AOa(ﬁ a_gfabcAb EC)}

Jorge C. Romao
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iy I1ST

Hamiltonian formalism

Summary

Renormalization QED

Non Abelian Classical

® Transformations
e Lagrangian
e Energy-momentum

e GHS

Quantization GHS

Quantization NAGT

Vacuum Pol in QCD

0 The Lagrangian density can then be written as

[ — _Eak:aOAak: L H(Eak,Aak) 4+ AaOCa

where
4 — — — —
H=3(E“-E“+ B*. B%)
ak — 1 _kmn mramn
Bk = L kmn
a _ a abc Ab e
| C*=V . -EY—gf®" A" E°

0 A¢ are the coordinates and —E{ the conjugated momenta, H(E}, A}) is
the Hamiltonian density. The variables A%® are Lagrange multipliers for the

conditions

Cazﬁ.E_’a_gfabcgb.E_'c:O

which are the equations of motion for v = 0 (Gauss’s Law)

Jorge C. Romao
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iy 1sT Hamilton and Generalized Hamilton Systems

Summary 0 Consider a system with canonical variables (p;, g;) that generate the phase
Renormalization QED Space F2n (7/ — ]_7 ... ”]’L)_

Non Abelian Classical

e Transformations . . . .
N 0 Then the action for a (canonical) Hamilton System is
e Energy-momentum

@ Hamiltonian

S = / dtL(t)

Quantization GHS
Quantization NAGT where

Vacuum Pol in QCD

L(t) = szdz‘ — h(p,q)

0 We can also consider Generalized Hamilton Systems (GHS) where

L(t) = Zpi% —h(p,q) = Y A*pa(p, q)

0 The quantization of Generalized Hamilton Systems was studied by Dirac
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iy I1ST

Generalized Hamilton Systems

Summary

Renormalization QED

Non Abelian Classical

® Transformations
e Lagrangian
e Energy-momentum

@ Hamiltonian

Quantization GHS

Quantization NAGT

Vacuum Pol in QCD

0 The variables A*(a =1, ...m) are Lagrange multipliers and ¢ are
constraints. For the system to be a generalized Hamilton system the

following conditions should be verified

{e%, 0"} ZZCO‘57(p, q)¢” { , } is the Poisson Bracket

{h, 0*} =C*"(p, q)¢”

0 Gauge theories

{C%(@), CP(Y) bngmyo = —gF O (2)0%(F
\{7—[, Cx)} =0

)

N\

are a particular case with C*% = 0.

0 We have therefore to learn how to quantize generalized Hamilton systems

Jorge C. Romao
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ST

Quantization: Systems with n degrees of freedom

Summary

Renormalization QED

Non Abelian Classical

Quantization GHS

e Equivalence I & I'’*
® QM Quantization

e FT Quantization

® The Example of QED

Quantization NAGT

Vacuum Pol in QCD

0 Consider the GHS described by

L(t) = pigi — h(p,q) — A*¢“(p, q)

0 This leads to the equations of motion

(. _ Oh o 0
qz_ﬁpi+)\ opi

S . Oh  \aOp“©
Pi= "9y A 0g;

L ©*(p,q) =0 a=1,...,m

0 One can show that this GHS is equivalent to a normal HS defined in a space
[*2(n=m) that is to a system with n — m degrees of freedom. This is
constructed as follows. Let be m conditions

x“(p,q) =0, a=1,...,m, satisfying {XO‘,XB}:()

and
det | {©®, x"} # 0

Jorge C. Romao

IDPASC School Udine — 27



ST

Quantization: Systems with n degrees of freedom

Summary

Renormalization QED

Non Abelian Classical

Quantization GHS

e Equivalence I & I'’*
® QM Quantization

e FT Quantization

® The Example of QED

Quantization NAGT

Vacuum Pol in QCD

0 Then the subspace I'?" defined by the conditions

x*(p,q) =0, ¢%*(p,q) =0, a=1,....,m

is the subspace I'*2("=) that we want.

0 The canonical variables p* and ¢* in T'*2("="™) can be found as follows:

0 As {Xo‘,xﬁ} = 0 we can reorder the variables ¢; to make y to
coincide with the first m coordinate variables

g =( x%, ¢ )
—~— N~
n m n—m

0 p=(p“,p*) are the corresponding conjugated momenta. Then

0p“

—  det 97

det | {o™, x"}| # 0,

£0

0 The conditions ¢*(p, q) = 0 can then be solved for

p® =p*(p*, ¢")

Jorge C. Romao
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Summary
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® QM Quantization

e FT Quantization

® The Example of QED

Quantization NAGT

Vacuum Pol in QCD

0 The subspace I'* is given by the conditions

(87

X @ =0
p* = p*(p*,q")

O The variables p* and ¢* are canonical and the Hamiltonian is
h*(p*,¢") = h(p,q) |(x=0 ; p=0)

O With equations of motion

. on B
q - ap* ) p _ 6q* )

2(n — m) equations

0 The fundamental result can be formulated in the form of theorem

The two representations, I' and 1'*, are equivalent as they lead to
the same equations of motion.
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Quantization NAGT
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0 For I'* we have to equivalent ways to quantize:

[0 Canonical quantization, with

P}, ;] = —i 0y

[0 Path integral quantization, where the evolution operator is

dp*dq o
quqz /H [lp*q*—h(p*,q*)]dt

O In practice this is not very useful because it is not possible to invert the

relations p® = 0 to get p® = p®(p*,q*). It is more convenient to use
variables (p, q) with restrictions. This can only be done in the path integral

176~ I3 Tl s0r -6

t t

leading to

dpdq « o o * * 1 y—
Ul(qy,qi) /H q*)8(p® — p(p*, q*))e’ ) Wpi=hpa))
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Quantization NAGT
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0 We can rewrite this expression in terms of the constraints. We have

0Qq
apg

—p“(p*,q")) = d(¢”) det

and therefore
0 Finally using

s = [ 2

27

p*(p", %)) = [ [ 5(¢™)5(x*) det [{a, x5}

i

—i [ dtAYpq

dpdq d)\
Ular ) / H 2T 27‘(‘ (

where we recover the original action

S(p,q,\) = /[pq' — h(p,q) — Apldt

) et [{io*, xg} 'SP 4
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e FT Quantization
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Quantization NAGT
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Classical

Quantum

Systems finite # degrees of freedom Field Theory
t xt
q ¢(x)
09 ()
s [ diz(a.q s = [ dtoc(o.0,0
doL oL _ o L 0L
dt 0§  9dq Y0(0u0) 09

D, q5] = —1 dij

qf g) /H dpdgq ot J[pd—h(p,q)]dt

(%, 1), p(&,t)] = —id(& — &)

_ /p(¢)eifd4w[£<¢,8m>+J(o:>¢<x>]

0 It is the correspondence in the last line that we are going to explore in the

case of gauge theories.
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QED as a simple example
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Quantization GHS
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e FT Quantization

® The Example of QED

Quantization NAGT

Vacuum Pol in QCD

O Consider the electromagnetic field coupled to a conserved current

—

JH = (p,J), 0,J" = 0. The Lagrangian is

L=—-

1
4

F ., F' — JFrA,

0 The action in the first order formalism is

0 Varying with respect to E, B, A° and 4, we get the usual Maxwell

equations (E = —(VA? + 4

wufl

and

N—"

v

—

X

)

x B —

OF

i

=J

<

. B

<
X
ey

0
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QED as a simple example ...
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® QM Quantization

e FT Quantization

® The Example of QED

Quantization NAGT

Vacuum Pol in QCD

Substituting back in the action

SR E2 vV x A2 - o S o
S:/d4x —E-A- +<ZX ) —J-A|+ A"V -E—)p)

It is clear that we have a GHS with AP playing the role of a Lagrange
multiplier for one constraint V - E = p (Gauss’ Law)

The constraint is linear in the fields. This is the great simplification of QED.
In fact if we choose a condition y = 0 (ch0|ce of gauge) that is linear in the

fields, then det{¢, x} does not depend on E and A and can be absorbed in
the normalization

This is obtained, for instance, in the class of Lorentz gauges
x = 0, A" — c(Z,1)

where ¢(Z,t) is an arbitrary function that does not depend on the fields
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e Equivalence I & I'’*
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e FT Quantization
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Quantization NAGT
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0 The generating functional for the Green functions is then

—

Z|J") = /D(E,Z, AY) H(S(@MAM — c(z))e's

where

S:/d4x<—E-Z—

\

E? 4+ (V x A)? -

5 —I—(j-A) +AO(V-E—p)

—

2 : 2
:/d4x< —E——E_’-(ﬁA()%—fY)— (VZA) JMAM}

2

\

0 The integration in E is Gaussian and can be done

Z[JH] = / D(Au) | [6(0,.A4" - c(x))eis]

where we are neglecting normalization factors everywhere

|
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e FT Quantization

® The Example of QED

Quantization NAGT

Vacuum Pol in QCD

O After integration in E the action is

S:/d% —i((‘)ﬂAy

T 1
= [ d'z |—-=
/x4

— 0, A,) (0" A — 0¥ AM) — J, AW

P = A

0 As the functions c(x) are arbitrary we can average over them with the weight

exp (—% d*xc? (az))

getting the familiar result

Z[J*] = / D(A,)et S ¢'2[-5F?—5¢ (0:-4)* 4]

0 If we had chosen a non-linear gauge condition then det |{q, x}| would depend

on E and A and we could not absorb it in the irrelevant normalization (we
choose in the end Z[0] = 1). This is the case of NAGT to which we now turn
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0 We have seen that the classical action of NAGT is

-

\_

.
S:2/d493 Tr[ L4 + ;(E2+B2) A’V - E + g[4, E))
= / d*z [—Ef° AY — H(Ey, Ax) + A°C°]
J

where

A% are the Lagrange multipliers for the constraints

Cazﬁ.ﬁa_gfabcgb.ﬁc

0 We introduce the equal time Poisson brackets

{~Ei@) 4]

we can show that we have a GHS

{C2),C*(W)},, _,, = —9f*°C(x)5*(Z — 7))

{H,C*(x)} =0, H = /d%H(Ek,Ak) = %/d% [(E"*)? + (B**)?]
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We summarize:

O NAGT are example of generalized Hamilton systems. The coordinates are
A¢, the conjugate momenta —FE¢ and A%* are Lagrange multipliers for the
constraints (Gauss's Law)

—

C%(x) =V -E%—gf® A’ E°=0, a=1,...,r
0 To quantize these GHS, we have to impose an equal number () of auxiliary
conditions that we call gauge choice, or gauge fixing (what we called before

x* = 0)

0 This choice is arbitrary and the physical results (S matrix elements) should
not depend on it

0 We notice that C'®(x) already is quadratic in the fields and momenta. So,
even a linear gauge fixing condition will in general lead to a non trivial
determinant that can not be absorbed in the normalization constant
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ST 0 We choose the gauge fixing condition to be

Renormalization QED

Non Abelian Classical

F*A,] =0 a=1,...,r

Quantization GHS

Quantization NAGT
e Method

0 Now we have to calculate the Poisson bracket of the gauge fixing F'*[A,,]
 Functional Z - with the constraint C°®. This is a non trivial calculation with the result

® Grassmann variables
® Ghosts

o Feynman rles [FA)(2),CP(y)} x MP(z,y)

e Matter

e Group Factors

Vacuum Pol in QCD Where

SFO[5A,(z)]  OF©

ab — —
ME (x,y) = —g Sab(y) 6 AS (z)

cb ¢4
Do (x —y)

and
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In rriv nerating function r reen function
2ummary 0 We finally arrive at the generating functional for the Green functions
Renormalization QED
Non Abelian Classical

o . 4 a Apa
Quantization GHS ZplJl = /D<AM)AF[A,M] H(S(F“[AZ(:E)])GZ(S[A“HId zJ, ARY)
Quantization NAGT o
e Method ’
e Gauge Fixing
: :
Grasmann e where we have introduced the usual notation

® Ghosts

® Feynman rules
e Matter AF [A’u] = det MF

e Group Factors

Vacuum Pol in QCD

0 For the applications we still have to solve two problems. In fact to be able to
formulate the Feynman rules we should exponentiate Ar|A,] and 6(F“[A,])

0 We will address the second problem in first place. Like in QED we start by
defining a more general gauge condition

F“[AZ] —c*(z)=0

where ¢*(x) are arbitrary functions that do not depend on the fields
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0 Now we take the average with the weight

exp {—% /d% cg(:p)}

0 We get then

Zrp|Jy] :N/DMM)AF A Jel (S dta(= im0 A7)

_N / D(A,)Ap[A,]et | L) =3 it A7)

0 To be able to formulate the Feynman rules we still have to deal with the
determinant Ap|A,]. This will lead to the so-called Fadeev-Popov ghosts to
which we now turn
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0 Consider anticommuting classical variables, w, w (Grassmann variables),

defined by

wiw+ww = 0, w2:w2:0,/dww:/dww:1,/dww:/dww:0

0 Now we have

/d@dw e Y = /dwdw (1 —Ww) = /d@dw (14+ww)=1

0 Next we take two pairs of variables

/dwl dwl dwg dCL)Q G_EiAijwj = /dwl dwl dwg dCUQ (1 + .-

+Twrwaws A1 Agg + Wiwalotwe A12 A1)

= <A11A22 — A12A21) = detA

0 In general (here z; and Z; are complex commuting variables)

/H dw; dw; e 4% = det A
i=1

/H dz; dz; e %% o (det A)~1
i=1
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0 Now we go to the final step in quantizing our NAGT. The starting point is
the generating functional for the Green Functions

Summary

Renormalization QED

Non Abelian Classical

Quantization GHS

Quantization NAGT
e Method
e Gauge Fixing

ZelJg) = N [ DU AplA ] 22 i

where

e Functional Z

® Grassmann variables
3 ab _ 0F[A(x)]
:ll\::;/:cr:ran rules AF [A] = det MF, MF (x, y) = 514’2 (y)

e Group Factors

cb
D,

Vacuum Pol in QCD

0 In this form the Feynman rules would be complicated as the term det Mg
would lead to non-local interactions.

0 But we have just seen that we can exponentiate the determinant using
anticommuting fields. We take

[/D(w,w)efd% WMPY — det Mg

where the only requirement is that w and w are anticommuting fields
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0 Using this result and changing for convenience Mpr — i Mg (an irrelevant
normalization change) we get

Zp|J]] —N/D(Au,w,w)eifd%[ﬁeff“%““]]

0 The NAGT is now described by and effective Lagrangian L.g given by

Leg =L+ Lor + Lg

where

1 1
[c = P F, Lon— —2—§(F“)2, Fo = w“/\/l%bwb]

O The first term is the classical Lagrangian for the pure NAGT, and the second
term, Lqr is the gauge fixing Lagrangian. The third term, Lq, that resulted
from the exponentiation of the determinant, is new and needs some further
explanation
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0 The fields w and @ are, by construction, auxiliary fields. As we will see they
are scalars but also anti-commuting. There is no problem with the
spin-statistics theorem in QFT as they are not physical fields. They are
called Fadeev-Popov ghosts

0 Let us look in more detail at their action

o[ vz ot

- [ty m @) S D)

Sg = —/ d*rd*yo® (£) M (z, y)w

or

La(x) =

0 As the ghost Lagrangian depends on the gauge fixing, to proceed we have to
be more specific. We choose the Lorentz gauge

Fo =0, A%
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0 We therefore get

Lolw) == [ d'y & (@)% [5*(x - y)] D’ ()
= 8“wa(x)ijbwb(:c)
= 0w (2)0,w" (z) — gfabCAZ(x)é’“wa(x)wb(x)
where we have used the covariant derivative in the adjoint representation
DZb _ aluéab _ gfabcA/i
0 We summarize

0 The ghosts are scalar fields but they are also anticommuting by
construction

[0 The ghosts, like the gauge fields are in the adjoint representation of the
gauge group
0 The specific form of the L& depends on the gauge fixing chosen
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0 We are now in position to write the Feynman rules in the Lorentz gauge,
F*A] = 0,A"*(x). The effective Lagrangian is

1 a rva 1 a —Qa a
£eff = _ZF/JVFM — 2—5(8,“14 M)Q -+ 8”6&) D’ubwb

where
Dzbwb _ (aué*ab . gfabcAZ)wb
0 The group constants f%°¢ are defined with the conventions

1
[ta, tb] _ Z-fabctc, Tr(tatb) _ §5ab

0 We can therefore separate the free (kinetic) and interaction parts

Eeff — £kin + Eint
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0 The kinetic Lagrangian is

1
28

:%Aﬂa [Dgw/ . (1 . g) aﬂay] 5abAub e 5ab b

1 a a a —a a
Lin = — 70,45 = 0, A5)° = o2 (8,4%)° + 8,0° 9w

0 We get the Feynman rules for the propagators

i) Gauge fields

[ : v gtv kM kY
a/\/V\N\/VV\]/CVVVVVVVV‘b —304p 12 : —( —f) 5 :
+ i€ (k? + ie€)
i) Ghosts
)
................................. Og
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0 For the interaction Lagrangian we get

Summary
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vc 1 aoc raae C ve aoc —Q C
[cim = —gf P OAT AR AT — 27 NN A AGARCAY + gfPOrT" A ]

Quantization GHS ] . .
b NAET O Triple gauge interaction

e Method c
e Gauge Fixing 107
e Functional Z

—gfabc[ g"¥ (p1 — p2)? + g""(p2 — p3)*

® Grassmann variables T
b3 +g°* (p3 — pl)”}
o i \p? p1+p2+p3=0
Vacuum Pol in QCD 4

Ly Q v, b

0 Quartic gauge interaction

g, d P, C . 9
b\ P —tg [ feabfecd<g,upgyg o g,LLO'gl/p)
P4 P3 _'_feacfedb(guagpz/ - g,qu/gpg)
p‘l/ p2 +feadfebc (gll,l/,gpa - glu,pgl/o-)i|
p1+p2+p3s+ps=0
My @ UV, b
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Summary O Interaction Ghosts—Gauge fields
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i, c

Quantization GHS

Quantization NAGT

@ Method Tpg

e Gauge Fixing

e Functional Z

fabc %
g P
® Grassmann variables

N2
® Ghosts ,"% k pl+p2+p3:0
. 1 .

-
e Matter a b

e Group Factors

, 0 Comments
Vacuum Pol in QCD

[0 Ghost lines are oriented, they carry ghost number
[0 The dot refers to the leg that has the derivative, the outgoing leg

0 Other rules are as usual, not forgetting the minus sign for each loop of
ghosts
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The interaction with matter is derived from the covariant derivatives

We take scalar fields ¢;, ¢ = 1,...M, and spinor fields v;, j =1,...N in
representations of dimension M and N. The Lagrangian is

Ltatter =(Dp) D' —mZe'¢ — V(§) + i) D' ,1p — myii)
= ﬁkin =+ ﬁint .

The free kinetic part is the usual one. The interaction Lagrangian can be
obtained from the covariant derivative

D,/;; = a,u&'j — igAZTZa
where T are the generators in the representations of ¢ and 1, satisfying
[T, T =if*°T, Tr(T*T") =§*T(R)

The interaction Lagrangian is

—
Ling = ig; (0 — 0 )T Aua + 9Oy T T AL AR + gipy*ap; T A

Jorge C. Romao

IDPASC School Udine — 51



iy I1ST

Feynman rules for the interaction with matter: Vertices

Summary

Renormalization QED

Non Abelian Classical

Quantization GHS

Quantization NAGT
e Method
e Gauge Fixing

e Functional Z
® Grassmann variables
® Ghosts

® Feynman rules

e Group Factors

Vacuum Pol in QCD

0 Scalars

{1, a

szs

o Y\p}

RE Ul
1

0 Fermions

N

N

J

ig(p1 — p2)"' T3

'9(’7 )BaTa

i, a
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0 The generators satisfy

(7%, T = ifeteTe, Tr(T*T?) = 6*°T(R), T(R)r = d(R)Ca(R)

where T'(R) characterizes the representation and C is the Casimir

Z TiOILch?j = 0;;C2(R)
a,k

0 For SU(N)

r=N?—-1;dN)=N; dadj) =dG)=r

0 Symmetry Factors

(

.

Each diagram has to be multiplied by its Symmetry Factor. This)
is the # of different ways the external lines can be connected to
the vertices divided by the permutation factor of each vertex and
a permutation factor for equal vertices.

J
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0 As an example we outline the calculation of the renormalization gauge boson
self-energy, the so-called vacuum polarization. In the pure gauge theory we

have the diagrams C, V
C
1 CL,OC b,/B a/7a . k b?/B
= A\VAVAVAVA I VAVAVAYA
2 — — — «—>
p p p - p
d, d

0 The amplitude for the first diagram in the £ = 1 gauge is,

o ) k= )]

2
0 As we just want to evaluate the renormalization constant §Z 4 (the analog of
0Z3 for the photon) we just keep the divergent part. We use the MS
scheme, where we look for the terms proportional to

2
A= ——~v+1Indm, ~isthe Euler constant (1)
€
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0 The result for this diagram is (as usual we define the tensor :Il,z as the
result of the diagram),
g2

— C A6 (220405 — 1992 g0s) A, y)
9672 A b( PaPs PQB) (2)

Mg =1)=
where C'4 is the Casimir of the adjoint representation

0 The amplitude for the second diagram is

1 d4k TPre g
7 . abce pPo
[MAA =3 / err T B 0]

a well known result for dimensional regularization with massless fields

O Finally the amplitude for the third diagram, the ghost loop, is

IIT _ (_1)42 Lk ngargd)
[MAA = (=1) / (2m)* [k2][(k p)Q]]
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2ummary O This gives

Renormalization QED

Non Abelian Classical II7 g2 5

Quantization GHS Haﬁ (f == 1) — —QCAéab <2papﬁ —1—]? gO‘IB) Ae

967

Quantization NAGT

Vacuum Pol in QCD

0 Adding everything we get (£ = 1)

5g°C

Sab (P°gas — Pabp) Ae

showing the transversality property of the vacuum polarization. This is a well
known consequence of the gauge invariance and can be shown to hold to all
orders in perturbation theory (Ward Identities)

0 From this, using the usual definitions, we get

5g°C4 1
2412 €

e
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