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❐ QED as a gauge theory

❐ Propagators and Green functions

❐ Feynman rules for QED

◆ Electrons and positrons in external lines

◆ Photons in internal lines

◆ Photons in external lines

◆ Higher orders

❐ Example 1: Compton scattering

❐ Example 2: e− + e+ → µ− + µ+ in QED
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❐ We start with Dirac Lagrangian

L = ψ(i∂/−m)ψ

❐ It is invariant under global phase transformations

ψ′ = eiαψ, α infinitesimal → δψ = iαψ, δψ = −iαψ

❐ What happens if the transformations are local, α = α(x)?

δψ = iα(x)ψ ; δψ = −iα(x)ψ

❐ We have then

δL = −ψγµψ ∂µα(x)

and the Lagrangian is no longer invariant
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❐ We see that the problem is connected with the fact that ∂µψ do not
transform as ψ. We are then led to the concept of covariant derivative Dµ

that transforms as the fields,

δDµψ = iα(x)Dµψ

❐ For the Dirac field we define, in analogy with minimal prescription,

Dµ = ∂µ + ieAµ

❐ The vector field Aµ is a field that ensures that we can choose the phase
locally. Its transformation is chosen to compensate the term proportional to
∂µα

δAµ = −1

e
∂µα(x)

❐ We are then led to the introduction of the electromagnetic field Aµ

satisfying the usual gauge invariance.
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❐ This new vector field Aµ needs a kinetic term. The only term quadratic that
is invariant under the local gauge transformations is

Fµν = ∂µAµ − ∂νAµ, δFµν = 0

❐ A mass term of the form AµAµ is not gauge invariant, so the field Aµ

(photon) is massless

❐ The final Lagrangian is

LQED = −1

4
FµνF

µν + ψ(iD/−m)ψ ≡ Lfree + Linteraction

where

Lfree = −1

4
FµνF

µν + ψ(i∂/−m)ψ, Linteraction = −eψγµψAµ

❐ This Lagrangian is invariant under local gauge transformations and describes
the interactions of electrons (and positrons) with photons. The theory is
called Quantum Electrodynamics (QED)
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❐ We will follow the method of Richard Feynman to arrive at the rules for
calculations in QED.

❐ As a warm up exercise we start with the non-relativistic Schrödinger equation

(

i
∂

∂t
−H

)

ψ(~x, t) = 0, H = H0 + V

where H0 is the free particle Hamiltonian

H0 = −∇2

2m

❐ We can rewrite the equation in the form

(

i
∂

∂t
−H0

)

ψ = V ψ

❐ For arbitrary V this equation can normally only be solved in perturbation
theory
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❐ For the scattering problems we are interested we will develop a perturbative
expansion using the technique of the Green’s Functions (GF). We introduce
the GF for the free Schrödinger equation with retarded boundary condition

(

i
∂

∂t′
−H0(~x

′)

)

G0(x
′, x) = δ4(x′ − x), G0(x

′, x) = 0 for t′ < t

❐ If φi(~x, t) is a solution of the free Schrödinger equation,

(

i
∂

∂t
−H0

)

φi(~x, t) = 0

the most general solution of the original equation

(

i
∂

∂t
−H0

)

ψ = V ψ

is
ψ(~x′, t′) = φi(~x

′, t′) +

∫

d4x G0(x
′, x)V (x)ψ(x)
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❐ We can use this integral equation to establish a perturbative series. Consider
that the interaction is localized, that is V (~x, t) → 0 as t→ −∞. Then due
to the retarded GF properties we have

lim
t′→−∞

ψ(~x′, t′) = φi(~x
′, t′)

that is in the remote past we have a plane wave.

❐ Now if V is small (in some sense) we can solve the integral equation
perturbatively

ψ(~x′, t′) =φi(~x
′, t′) +

∫

d4x1 G0(x
′, x1)V (x1)φi(x1)

+

∫

d4x1d
4x2 G0(x

′, x1)V (x1)G0(x1, x2)V (x2)φi(x2)

+

∫

d4x1d
4x2d

4x3 G0(x
′, x1)V (x1)G0(x1, x2)V (x2)G0(x2, x3)V (x3)φi(x3)

+ · · ·



IST The non-relativistic propagator . . .

Summary

QED as a gauge theory

Propagators & GF

•Non-relativistic Prop.

•GF as propagators

•S Matrix

•Relativistic Prop.

•New processes

•Green Function

•S Matrix elements

• In & Out states

How to find QED F.R.?

Coulomb scattering e−

Coulomb scattering e+

γ in internal lines

Higher Orders

γ in external lines

QED Feynman Rules

Simple Processes

Compton Scattering

e−e+ → µ−µ+

QFT Computations

Jorge C. Romão IDPASC School Udine – 9

❐ We can look at the perturbative series in another way, in terms of the full

GF of the theory with interactions, G(x′, x)

(

i
∂

∂t
−H0(x

′)− V (x′)

)

G(x′, x) ≡ δ4(x′ − x)

❐ It satisfies

G(x′, x) = G0(x
′, x) +

∫

d4y G0(x
′, y)V (y)G(y, x)

❐ This leads to the perturbative series (small V )

G(x′, x) =G0(x
′, x) +

∫

d4x1 G0(x
′, x1)V (x1)G0(x1, x)

+

∫

d4x1d
4x2 G0(x

′, x2)V (x2)G0(x2, x1)V (x1)G0(x1, x)

+ · · ·
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❐ The last equation allows for suggestive graphical interpretation. We notice
that the retarded character of G0 implies x′0 > · · ·x03 > x02 > x01 > x0.

❐ So we have the situation of the following diagrams for the first 3 terms

G(x′, x) =G0(x
′, x) +

∫

d4x1 G0(x
′, x1)V (x1)G0(x1, x)

+

∫

d4x1d
4x2 G0(x

′, x2)V (x2)G0(x2, x1)V (x1)G0(x1, x)

+ · · ·

x

t

(~x, t)

(~x′, t′)

G0(x
′, x)

x

t

(~x, t)

(~x′, t′)

V (~x1, t1)

x

t

(~x, t)

(~x′, t′)

V (~x1, t1)

V (~x2, t2)
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❐ We are interested in scattering processes. This means that in the past we
have a solution of the free equation, a plane wave with momentum ~ki

φi(~x, t) =
1

(2π)3/2
ei

~ki·~x−iωit

❐ In the future (detector) we have another plane wave with momentum ~kf

φf (~x
′, t′) =

1

(2π)3/2
ei

~kf ·~x
′−iωf t

′

❐ The relevant quantity is S matrix element (transition amplitude)

Sfi = lim
t′→∞

∫

d3x′ φ∗f (~x
′, t′)ψ(~x′, t′)

= lim
t′→∞

∫

d3x′ φ∗f (~x
′, t′)

[

φi(~x
′, t′) +

∫

d4x1 G0(x
′, x1)V (x1)φi(x1) + · · ·

]

=δ3(~kf − ~ki) + lim
t′→∞

∫

d3x′d4x1 φ
∗
f (~x

′, t′)G0(x
′, x1)V (x1)φi(x1) + · · ·
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❐ The starting point is the interpretation of G(x′, x) as the probability
amplitude to propagate the particle from x to x′

G(x′, x) =G0(x
′, x) +

∫

d4x1 G0(x
′, x1)V (x1)G0(x1, x)

+

∫

d4x1d
4x2 G0(x

′, x2)V (x2)G0(x2, x1)V (x1)G0(x1, x)

· · ·
❐ The contribution of order n corresponds to the diagram

x

x

t

x1

x2
x3

xn

x′ ◆ A particle is created at x, propagates to
x1, interacts with the potential V (x1),
propagates to x2 and so on.

◆ This interpretation is suited to the rela-
tivistic theory because of the space-time
emphasis instead of the Hamiltonian evo-
lution.
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e− e+

x

x

t

x1

x′

e−

e−
e−

e+

x

x

t

x′

1

2

3 e− e+

x

x

t
x′

❐ The existence of a positron is associated with the absence of an electron of
negative energy

❐ Therefore we can interpret the destruction of an positron at 3 as being the
creation of an electron of negative energy at that point

❐ This suggests (Feynman) the possibility that the amplitude to create a
positron at 1 and destroy it at 3 be related to the amplitude to create an
electron of negative energy at 3 and destroy it at 1

❐ Then electrons of positive energy propagate to the future and electrons of
negative energy (positrons) propagate back in time
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❐ Let us then look for the GF of the Dirac equation in interaction with the
electromagnetic field

(i∂/− eA/−m)ψ(x) = 0

❐ It is the solution of the equation

(i∂/′ − eA/−m)S′
F (x

′, x) = iδ4(x′ − x)

❐ The full GF can only be obtained in perturbation theory. For the free theory
we have

(i∂/′ −m)SF (x
′, x) = iδ4(x′ − x)

❐ Noticing that SF (x
′, x) = SF (x

′ − x) and applying the Fourier transform

SF (x
′ − x) =

∫

d4p

(2π)4
e−ip·(x′−x)SF (p)
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❐ Substituting in the equation we get for SF (p)

(p/−m)SF (p) = i → SF (p) =
i(p/+m)

p2 −m2
, p2 6= m2

❐ To complete the definition we need a prescription on how to deal with the
singularity. This is related with the boundary conditions we want to impose
on the GF, positive energies propagate into the future and negative energies
back in time.

❐ The inverse Fourier transform is calculated using the residue theorem

SF (x
′−x) =

∫

dp0

2π

∫

d3p

(2π)3
e−ip0(x′−x)0ei~p·(~x

′−~x) i

(p0)2 − (|~p|2 +m2)

×
×

−
√

|~p|2 +m2

√

|~p|2 +m2

Re(p0)

Im(p0)

t′ > t lower semi-plane
t′ < t upper semi-plane
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❐ The localization of the poles is obtained giving a negative infinitesimal part
to m2

m2 → m2 − iε

❐ With this prescription (due to Feynman) the propagator is

SF (p) = i
(p/+m)

p2 −m2 + iε
, → p0 = ±

(

√

|~p|2 +m2 − iε
)

❐ We can do now the integration in p0 to obtain

SF (x
′ − x) =

∫

d3p

(2π)3
1

2E

[

(p/+m) e−ip·(x′−x) θ(t′ − t)

+(−p/+m) eip·(x
′−x) θ(t− t′)

]
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❐ We define the normalized plane waves

ψr
p(x) =

1√
2E

(2π)−3/2 wr(~p) e−iεrp·x

❐ Then we obtain

SF (x
′ − x) =θ(t′ − t)

∫

d3p

2
∑

r=1

ψr
p(x

′)ψ
r

p(x)

− θ(t− t′)

∫

d3p

4
∑

r=3

ψr
p(x

′)ψ
r

p(x)

❐ This expresses SF (x
′ − x) as a sum of eigenfunctions of the free Dirac

operator. From this expression is clear that the negative energy solutions
(r = 3, 4) are propagated back in time (t′ < t), while the positive energy
solutions are propagated in the future (t′ > t)
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❐ As we will be interested in scattering problems, we will be focusing in the
elements of the S matrix. To find these we start by noticing the solution of
the Dirac equation with interactions,

(i∂/−m)Ψ = eA/Ψ

can be written, in analogy with the non-relativistic case,

Ψ(x) = ψ(x)− ie

∫

d4y SF (x− y)A/(y)Ψ(y)

❐ Using the expression for SF (x− y) we get

lim
t→+∞

Ψ(x)− ψ(x) =

∫

d3p

2
∑

r=1

ψr
p(x)

[

−ie
∫

d4y ψ
r

p(y)A/(y)Ψ(y)

]

lim
t→−∞

Ψ(x)− ψ(x) =

∫

d3p
4
∑

r=3

ψr
p(x)

[

+ie

∫

d4y ψ
r

p(y)A/(y)Ψ(y)

]
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❐ This again shows that positive energies are scattered into the future and
negative energy solutions in the past.

❐ Using now the S matrix definition

Sfi = lim
t→εf∞

∫

d3x ψ†
f (x)Ψi(x)

we get

Sfi = δfi − ieεf

∫

d4y ψf (y)A/(y)Ψi(y)

where εf = +1 for positive energies in the future (final state) and εf = −1
for negative energies into the past (initial state). ψf is a plane wave with the
appropriate quantum numbers for the final state.

❐ This is the main result the we use in the following
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❐ The description of initial and final states is as follows

◆ Initial state

electron → ψi =
1√
2E

1√
V
u(pi, si) e

−ipi·x

positron → ψi =
1√
2E

1√
V
v(pf , sf ) e

ipf ·x

◆ Final state

electron → ψf =
1√
2E

1√
V
u(pf , sf ) e

−ipf ·x

positron → ψf =
1√
2E

1√
V
v(pi, si) e

ipi·x
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❐ The conventions are spelled out in the following figure

e−

e− e+

e+

(pi, si)

(pf , sf )

(pi, si)

(pf , sf )

❐ We have chosen the normalization in a box of volume V

∫

V

d3x ψ†
iψi =

1

V

1

2Ei
u†(pi, si)u(pi, si)

∫

V

d3x =
1

V

∫

V

d3x = 1



IST How to find Feynman Rules for QED

Summary

QED as a gauge theory

Propagators & GF

How to find QED F.R.?

Coulomb scattering e−

Coulomb scattering e+

γ in internal lines

Higher Orders

γ in external lines

QED Feynman Rules

Simple Processes

Compton Scattering

e−e+ → µ−µ+

QFT Computations

Jorge C. Romão IDPASC School Udine – 22

❐ We are going here to start from the central result

Sfi = −ieεf
∫

d4yψf (y)A/ (y)Ψi(y) (i 6= f)

and derive a set of rules (Feynman Rules) that will show us how to calculate
in QED

❐ For that we will consider:

◆ Electrons in external legs: Coulomb scattering for e−:
e−+ Nuclei(Z) → e−+ Nuclei(Z)

◆ Positrons in external legs: Coulomb scattering for e+:
e++ Nuclei(Z) → e++ Nuclei(Z)

◆ Photons in internal lines: e−µ− → e−µ−

◆ Higher order processes: e−µ− → e−µ−

◆ Photons in external legs: Compton scattering: γ + e− → γ + e−
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❐ We consider Coulomb scattering by a fixed Nuclei(Z), that is, by a classical
electromagnetic Coulomb potential (not quantized)

A0(x) =
−Ze
4π|~x| ,

~A(x) = 0, e < 0

❐ In lowest order we approximate Ψi(x) by a plane wave

Ψi(x) =
1√
2Ei

1√
V
u(pi, si)e

−ipi·x

❐ For the final state we take

ψf (x) =
1

√

2Ef

1√
V
u(pf , sf )e

ipf ·x
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❐ The S matrix amplitude between the initial and final state is

Sfi =
ie2Z

4π

1

V

1
√

2Ei2Ef

u(pf , sf )γ
0u(pi, si)

∫

d4x
ei(pf−pi)·x

| ~x |

❐ The integration can done (~q = ~pf − ~pi is the transferred momentum) and we
get the final result

Sfi = iZe2
1

V

1
√

4EiEf

u(pf , sf )γ
0u(pi, si)

| ~q |2 2πδ(Ef − Ei)

❐ We notice that we are assuming the nuclei fixed, so we have only energy
conservation

❐ The number of final states in the interval d3pf is V
d3pf

(2π)3 , and therefore the

probability for the particle to go into one of these states is

Pfi =| Sfi |2 V
d3pf
(2π)3
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❐ Putting everything together we have

Pfi =
Z2(4πα)2

2EiV

| u(pf , sf )γ0u(pi, si) |2
| ~q |4

d3pf
(2π)32Ef

[2πδ(Ef − Ei)]
2

❐ The square of the delta function needs some clarification. We define a
transition time T and then

(2π)δ(Ef − Ei) = lim
T→∞

∫ T/2

−T/2

dtei(Ef−Ei)t

❐ Then

2πδ(0) = lim
T→∞

∫ T/2

T/2

dt = lim
T→∞

T

❐ Therefore

[2πδ(Ef − Ei)]
2 = 2πδ(0)2πδ(Ef − Ei) = 2πTδ(Ef − Ei)
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❐ Dividing by T we obtain the transition rate

Rfi =
4Z2α2

2EiV

| u(pfsf )γ0u(pisi) |2
| ~q |4

d3pf
2Ef

δ(Ef − Ei)

❐ To get the cross section we have to divide by the incident flux. Using

~Jinc = ψi(x)~γψi(x), with ψi =
1√
V

√
Ei +m√
2Ei





χ(s)

~σ·~p
Ei+mχ(s)



 e−ipi·x

we get

| ~Jinc |=
1

V

1

2Ei
2 | ~pi |=

1

V

|~pi|
Ei

with the usual interpretation: density, 1/V , times velocity, ~pi/Ei
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❐ The differential cross section is then

dσ

dΩ
=

∫

Z2α2

| ~pi |
| u(pf )γ0u(pi) |2

| ~q |4
p2fdpf

Ef
δ(Ef − Ei)

❐ Finally using pfdpf = EfdEf we get

dσ

dΩ
=
Z2α2

| ~q |4 | u(pf , sf )γ0u(pi, si) |2

❐ In practice we normally do not have polarized beams and do not measure the
polarization of the final state. So we want the unpolarized cross section
given by

dσ

dΩ
=

1

2

∑

si,sf

dσ

dΩ
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❐ The spin sums can be transformed into traces, the Casimir’s trick. We have
for any matrix Γ

∑

si,sf

| u(pf , sf )Γu(pi, si) |2=

=
∑

sf

uσ(pf , sf )uα(pf , sf )Γαβ

∑

si

uβ(pi, si)uδ(pi, si)Γδσ

= Tr
[

(p/f +m)Γ(p/i +m)Γ
]

, with Γ ≡ γ0Γ†γ0

where we used

∑

±s

uα(p, s)uβ(p, s) = (p/+m)αβ

❐ So the final result is

dσ

dΩ
=

Z2α2

2 | ~q |4Tr
[

(p/f +m)γ0(p/i +m)γ0
]
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❐ Due to equivalence relation γ′µ = U−1γµU and the cyclic property, traces
are independent of the representation of the γ matrices

❐ The trace of an odd number of γ matrices vanishes

❐ For 0 and 2 matrices we have

Tr1 = 4
Tr[a/b/] = Tr[(b/a/)] = 1

2Tr[(a/b/+ b/a/)] = a · b Tr1 = 4a · b

❐ We have the recurrence form (n even)

Tr [a/1 · · · a/n] =a1 · a2 Tr [a/3 · · · a/n]− a1 · a3 Tr [a/2a/4 · · · a/n]
+ a1 · an Tr

[

a/2 · · · a/n−1

]

❐ An important corollary is

Tr [a/1a/2a/3a/4] =a1 · a2 Tr [a/3a/4]− a1 · a3 Tr [a/2a/4] + a1 · a4 Tr [a/2a/3]

=4 [a1 · a2 a3 · a4 − a1 · a3 a2 · a4 + a1 · a4 a2 · a3]
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❐ For traces with γ5 (needed for the SM)

Tr [γ5] = 0, Tr [γ5a/b/] = 0, Tr [γ5a/b/c/d/] = −4iεµνρσa
µbνcρdσ

❐ Sometimes it is useful to reduce he number of γ matrices before taking the
trace. Useful results are

γµγ
µ = 4

γµa/γ
µ = −2a/

γµa/b/γ
µ = 4a.b

γµa/b/c/γ
µ = −2c/b/a/

γµa/b/c/d/γ
µ = 2 [d/a/b/c/+ c/b/a/d/]

❐ In practice when the number of γ matrices is bigger than 4 we use specific
software to evaluate the traces.
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❐ Finally we calculate the differential cross section for Coulomb scattering

dσ

dΩ
=

Z2α2

2 | ~q |4Tr
[

(p/f +m)γ0(p/i +m)γ0
]

❐ The trace gives

Tr
[

(p/f +m)γ0(p/i +m)γ0
]

=Tr
[

p/fγ
0p/iγ

0
]

+m2Tr
[

γ0γ0
]

=8EiEf − 4pi · pf + 4m2

❐ Using (recall that E = Ei = Ej , and θ is the scattering angle)

pi ·pf = E2− | ~p |2 cos θ = m2+2β2E2 sin2 (θ/2) , | ~q |2= 4 | ~p |2 sin2 (θ/2)

❐ We get the final result, the Mott cross section

dσ

dΩ
=

Z2α2

4 | ~p |2 β2 sin4 (θ/2)

[

1− β2 sin2 (θ/2)
]

in the limit β → 0 it reduces to Rutherford non-relativistic formula
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❐ We start now from

Sfi = ie

∫

d4xψf (x)A/(x)ψi(x)

where

ψi(x) =
1

√

2Ef

1√
V
v(pf , sf )e

ipf ·x

ψf (x) =
1√
2Ei

1√
V
v(pisi)e

ipi·x

e+

e+

(pi, si)

(pf , sf )

❐ Then the S matrix element is

Sfi = −iZe
2

4π

1

V

1
√

2Ei 2Ef

v(pi, si)γ
0v(pf , sf )

∫

d4x

| ~x |e
i(pf−pi)·x



IST Coulomb Scattering for Positrons . . .

Summary

QED as a gauge theory

Propagators & GF

How to find QED F.R.?

Coulomb scattering e−

Coulomb scattering e+

γ in internal lines

Higher Orders

γ in external lines

QED Feynman Rules

Simple Processes

Compton Scattering

e−e+ → µ−µ+

QFT Computations

Jorge C. Romão IDPASC School Udine – 33

❐ We get now

(

dσ

dΩ

)

e+
=

Z2α2

2 | ~q |4
∑

sf ,si

| v(pi, si)γ0v(pf , sf ) |2

❐ Using the relation for v spinors

∑

s

v(p, s)v(p, s) = (p/−m)

we finally get

(

dσ

dΩ

)

e+
=

Z2α2

2 | ~q |4 Tr
[

(p/f −m)γ0(p/i −m)γ0
]

❐ This is the same result as for electrons with m→ −m. As, in lowest order in
α, the Mott cross section only depends in m2, the cross section is the same
for electrons and positrons
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❐ We want now to consider the situation when the electromagnetic field is not
static but is also quantized. As the process e− + e− → e− + e− would bring
an unnecessary complication due to identical particles we choose the process
with the µ−, a kind of heavy electron interacting in the same way as the e−

❐ We start from the fundamental relation

Sfi = −ie
∫

d4xψf (x)γ
µψi(x)Aµ(x)

where ψi and ψf refer to the electron

❐ We have to calculate Aµ(x). This is the field created by the muon. It is
given by the solution of the equation (in the Lorentz gauge)

⊔⊓Aµ(x) = Jµ(x)

❐ Jµ(x) is the current due to the muon, given by

Jµ(x) = eψ
µ−

f (x)γµψµ−

i (x), e < 0
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❐ The solution of the equation for Aµ(x) is obtained with the GF technique
leading to the photon propagator. We have

⊔⊓Dµν
F (x− y) = igµνδ4(x− y)

❐ We get for the Fourier transform

Dµν
F (k) = i

−gµν
k2

❐ We have to decide what to do at the pole k2 = 0. A similar study, as done
for the electrons, shows that the correct choice is

DFµν(k) = −i gµν
k2 + iε

❐ The solution for Aµ(x) is then (we neglect the solution of the free equation)

Aµ(x) = −i
∫

d4yDµν
F (x− y)Jν(y)



IST Scattering e− + µ− → e− + µ−: S Matrix

Summary

QED as a gauge theory

Propagators & GF

How to find QED F.R.?

Coulomb scattering e−

Coulomb scattering e+

γ in internal lines

•Photon propagator

•S Matrix

•Feynman Diagram

•Road to xs

•The Cross Section

Higher Orders

γ in external lines

QED Feynman Rules

Simple Processes

Compton Scattering

e−e+ → µ−µ+

QFT Computations

Jorge C. Romão IDPASC School Udine – 36

❐ Substituting we get the amplitude for the S matrix

Sfi = (−ie)2
∫

d4xd4y ψf (x)γµψi(x)D
µν
F (x− y)ψ

µ−

f (y)γνψ
µ−

i (y)

❐ After introducing the plane waves for initial and final states we get

Sfi =
−ie2
V 2

(2π)4δ4(p1 + p2 − p3 − p4)
1

√

2Ee−
i 2Ee−

f

1
√

2Eµ−

f 2Eµ−

f
[

u(p4, s
′
e)γµu(p2, se)

] 1

(p3 − p1)2 + iε

[

u(p3, s
′
µ−)γµu(p1, sµ−)

]

=
1

V 2

1
√

2Ee−
i 2Ee−

f

1
√

2Eµ−

i 2Eµ−

f

(2π)4δ4(p1 + p2 − p3 − p4) Mfi

❐ Where Mfi is given by

Mfi =
[

u(p4, s
′
e)(−ieγµ)u(p2, se)

] −igµν
(p3 − p1)2 + iε

[

u(p3, s
′
µ−)(−ieγν)u(p1, sµ−)

]
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❐ At this point Feynman had a genius idea that completely changed the way of
making calculations in QFT. He made a one-to-one correspondence between
the matrix element

Mfi =
[

u(p4, s
′
e)(−ieγµ)u(p2, se)

] −igµν
(p3 − p1)2 + iε

[

u(p3, s
′
µ−)(−ieγν)u(p1, sµ−)

]

and a diagram describing the process.

p1p2

p3p4
e−

e−

µ−

µ−

γ

p3 − p1
e−

e−
γ

(−ie γµ)ti
m
e

❐ To each fermion line entering the diagram we have a spinor u

❐ To each fermion line leaving the diagram we have a spinor u

❐ The internal line corresponds to the virtual (k2 6= 0) photon propagator

❐ Each vertex corresponds to the quantity (−ieγµ), as indicated on the right
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❐ Like in the case of Coulomb scattering we have to deal with the square of
the delta function. A generalization of

[2πδ(Ef − Ei)]
2 ⇒ 2πTδ(Ef − Ei)

gives

[

(2π)4δ4
(

∑

pf −
∑

pi

)]2

⇒ V T (2π)4δ4
(

∑

pf −
∑

pi

)

where, as before, T is the interaction time and V is the volume of the box
where we normalize the wave functions.

❐ To evaluate the cross section we have to sum over all the momenta states
available. The number of states between ~p3 and ~p3 + d~p3 and between ~p4
and ~p4 + d~p4 is

V
d3p3
(2π)3

V
d3p4
(2π)3
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❐ The incident flux is

| ~Jinc |=
1

V

∣

∣

∣

∣

~p1
p01

− ~p2
p02

∣

∣

∣

∣

=
1

V
| ~vrelative |

❐ For future use we note that the combination V | ~Jinc | multiplied by the
energy of the incoming particles is

V | ~Jinc | 2Ee−

i 2Eµ−

i =4 | p01~p2 − p02~p1 |

=4
√

(p1 · p2)2 −m2
em

2
µ

where the last expression shows that it is a Lorentz invariant. To derive this
expression we have to assume that ~p1 and ~p2 are collinear, as is the situation
in normal scattering experiments
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❐ We have now all the ingredients to evaluate the cross section. First we
determine the transition rate by unit time and unit volume

lim
V,T→∞

1

V T
| Sfi |2= wfi

❐ Using the previous results we get

wfi = (2π)4δ4(p1 + p2 − p3 − p4)
1

V 4

1

2p01 2p
0
2 2p

0
3 2p

0
4

|Mfi |2

❐ Finally we divide by the incident flux and by the number density of particles
in the target (just 1/V with our normalization) and sum over the final states
to get

σ =

∫

d3p3
(2π)3

d3p4
(2π)3

V 2 V

| ~Jinc |
wfi

=

∫

d3p3
(2π)3

d3p4
(2π)3

1

2p01 2p
0
2 2p

0
3 2p

0
4

1

V | ~Jinc |
(2π)4δ4(p1 + p2 − p3 − p4) |Mfi |2
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σ =

∫

1

4
√

(p1 · p2)2−m2
1m

2
2

|Mfi|2(2π)4δ4(p1+q2−p3−p4)
d3p3

(2π)32p03

d3p4
(2π)32p04

❐ Initial State: The factor

1

4
√

(p1 · p2)2 −m2
1m

2
2

❐ Final State: The factor

(2π)4δ4(p1 + p2 − p3 − p4)
d3p3

(2π)32p03

d3p4
(2π)32p04

This factor is also Lorentz invariant because

∫

d3p

2E
=

∫

d4p δ(p2 −m2)θ(p0)

❐ Matrix Element: |Mfi |2

The Physics is in Mfi and this is evaluated through the Feynman diagrams
and Feynman Rules.
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❐ To have the full Feynman rules we need to know how to evaluate higher
orders in perturbation theory. We go back to the master equation

Sfi = −ie
∫

d4yψf (y)A/(y)Ψi(y)

❐ Instead of the plane wave we use now the next order to Ψi, that is

Ψi(y) = −ie
∫

d4xSF (y − x)A/(x)ψi(x)

and

S
(2)
fi =

∫

d4yd4xψf (y)(−ieγµ)SF (y − x)(−ieγν)ψi(x)Aµ(y)Aν(x)

(−ie γµ) Aµ(y)

(−ie γν) Aν(x)
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❐ The origin of the terms Aµ and Aν is the current of the muon. So we should
have

Aµ(y)Aν(x)=

∫

d4zd4w
[

DFµµ′(y−z)DFνν′(x−w)+DFµν′(y−w)DFνµ′(x−z)
]

ψ
µ−

f (z)(−ieγµ′

)SF (z − w)(−ieγν′

)ψµ−

i (w)

❐ This corresponds to the diagrams

y (−ie γµ′

) y (−ie γµ′

)

x (−ie γν′

) x (−ie γν′

)
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❐ Putting all together

S
(2)
fi =

∫

d4yd4xd4zd4w ψf (y)(−ieγµ)SF (y − x)(−ieγν)ψi(x)

[

DFµµ′(y − z)DFνν′(x− w) +DFµν′(y − w)DFνµ′(x− z)
]

ψ
µ−

f (z)(−ieγµ′

)SF (z − w)(−ieγν′

)ψµ−

i (w)

❐ Introducing ψi, ψf · · · and the Fourier transforms of the propagators we are
lead to the final expression

S
(2)
fi =

1
√

2Ee−
i 2Ee−

f

1
√

2Eµ−

i 2Eµ−

f

1

V 2
(2π)4δ4(p1+ p2− p3− p4) Mfi

❐ With

Mfi =Ma
fi +M b

fi
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Ma
fi =

∫

d4k

(2π)4

[

u(p4)(−ieγµ)
i(p/4 − k/+me)

(p4 − k)2 −m2
e + iε

(−ieγν)u(p2)

u(p3)(−ieγu
′

)
i(p/3 + k/+mµ)

(p3 + k)2 −m2
µ + iε

(−ieγν′

)u(p1)

(−igµµ′

)
1

k2 + iε
(−igνν′)

1

(p2 − p4 + k)2 + iε

]

M b
fi =

∫

d4k

(2π)4

[

u(p4)(−ieγµ)
i(p/4 − k/+me)

(p4 − k)2 −m2
e + iε

(−ieγν)u(p2)

u(p3)(−ieγµ
′

)
i(p/1 − k/+mµ)

(p1 − k)2 −m2
µ + iε

(−ieγν′

)u(p1)

(−igµν′)
1

k2 + iε
(−igνµ′)

1

(p2 − p4 + k)2 + iε

]

~p1~p2

~p3~p4 ~k

~p1~p2

~p3~p4

~k
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❐ To complete our Feynman rules we have to consider photons in external
lines. The idea is to represent the photon in external lines by a plane wave.
We have

Aµ(x) =
1√
V

1√
2k0

[

εµ(k) e−ik·x + ε∗µ(k) eik·x
]

where the first term corresponds to the initial state and the second to the
final state

❐ The polarization vectors satisfy

kµk
µ = 0, εµk

µ = 0, ε∗µε
µ = −1

❐ Compton scattering

e− + γ → e− + γ

We should have the diagrams:

p p

p′p′

ǫ, kǫ, k

ǫ′∗, k′ǫ′∗, k′
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❐ The rules for the diagrams follow from the second order S
(2)
fi

S
(2)
fi =

∫

d4yd4xψf (y)(−ieQeγ
µ)SF (y−x)(−ieQeγ

ν)ψi(x)Aµ(y)Aν(x)

substituting Aµ(x) and Aν(y) by plane waves. For instance for diagram a)

Aµ(y) =
1√
V

1√
2k′0

ε′∗µ e
ik′·y, Aν(x) =

1√
V

1√
2k0

ενe
−ik·x

❐ The amplitudes are then

Ma
fi = u(p′)(ieγµ)

i(p/+ k/+me)

(p+ k)2 −m2
e

(ieγν)u(p) ε′∗µ (k
′)εν(k)

M b
fi = u(p′)(ieγν)

i(p/− k/+me)

(p′ − k)2 −m2
e

(ieγµ)u(p) ε′∗µ (k
′)εν(k)

p

p′

ǫ, k

ǫ′∗, k′

p

p′

ǫ, k

ǫ′∗, k′
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1. For a given process draw all topologically distinct diagrams

2. For each electron entering the diagram a factor u(p, s). If it leaves the
diagram a factor u(p, s)

3. For each positron leaving the diagram a factor v(p, s). If it enters the
diagram a factor v(p, s)

4. For each photon in the initial state a polarization vector εµ(k). In the final
state ε∗µ(k)

5. For each electron internal line the propagator

SFαβ(p) = i
(p/+m)αβ
p2 −m2 + iε

αβ
p

6. For each internal photon line the propagator (in the Feynman gauge)

DFµν(k) = −i gµν
k2 + iε

µ ν
k
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7. For each vertex the factor

(−ieQeγ
µ)αβ

e−

e−
γ

8. For each internal momentum not fixed by energy-momentum conservation
(in loops) a factor

∫

d4q

(2π)4

9. For each loop of fermions a minus sign

10. A factor of -1 between diagrams that differ but odd permutations of
fermions lines
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❐ If we restrict the processes to two particles in final state the number of
processes is very small.

Process Comment

γ + e− → γ + e− Compton Scattering

e− + e+ → µ− + µ+ in QED

µ− + e− → µ− + e− in QED

e− + e+ → e− + e+ Bhabha Scattering

e−+ Nuclei(Z) → e−+ Nuclei(Z) +γ Bremsstrahlung

e− + e+ → γ + γ Pair Annihilation

e− + e− → e− + e− Möller Scattering

γ + γ → e− + e+ Pair Creation

γ+ Nuclei(Z) → Nuclei(Z) +e− + e+ Pair Creation

❐ We will discuss γ + e− → γ + e− and µ− + e− → µ− + e− in QED
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❐ Diagrams and kinematics

pp p′p′

ε, kε, k ε′, k′ε′, k′

p = (m,~0) k = (k, 0, 0, k)

p′ = (E′, ~p′) k′ = (k′, k′ sin θ, 0, k′ cos θ)

time
❐ The amplitude is M =M1 +M2

M1 =(ie)2
i

(p+ k)2 −m2
u(p′)γν(p/+ k/+m)γµu(p)ε

µ(k)ε′ν∗(k′)

M2 =(ie)2
i

(p− k′)2 −m2
u(p′)γµ(p/− k/′ +m)γνu(p)ε

µ(k)ε′ν∗(k′)

❐ We write Mi ≡ −iu(p′, s′)Γiu(p, s)

Γ1 =
e2

2p · kγν(p/+ k/+m)γµε
µ(k, λ)ε′ν∗(k′, λ′)

Γ2 =
−e2
2p · k′ γµ(p/− k/′ +m)γνε

µ(k, λ)ε′ν∗(k′, λ′)
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❐ We want to calculate

1

4

∑

s,s′

∑

λ,λ′

|M |2 =
1

4

∑

s,s′

∑

λ,λ′

[

|M1|2 + |M2|2 +M†
1M2 +M1M

†
2

]

❐ We have (i = 1, 2)

Γi ≡ γ0Γ†
iγ

0

∑

s,s′

|Mi|2 =
∑

s,s′

u(p′, s′)Γiu(p, s)u
†(p, s)Γ†

iγ
0u(p′, s′)

=
∑

s,s′

u(p′, s′)Γiu(p, s)u(p, s)Γiu(p
′, s′)

=Tr
[

(p/′ +m)Γi(p/+m)Γi

]

❐ Where we have used

∑

s

uα(p, s)uβ(p, s) = (p/+m)αβ
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❐ For the interference terms

∑

s,s′

(M1M
†
2+M

†
1M2) = Tr

[

(p/′ +m)Γ1(p/+m)Γ2

]

+Tr
[

(p/′ +m)Γ2(p/+m)Γ1

]

❐ The sum over photon polarizations is

∑

λ

εµ(k, λ)ε∗ν(k, λ) = −gµν + terms proportional to k

❐ Terms proportional to k do not contribute to the amplitude due to gauge
invariance and therefore we will use the simplified form

∑

λ

εµ(k, λ)ε∗ν(k, λ) = −gµν
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❐ In the rest frame of the electron the cross section is

dσ =
1

4mk
(2π)4δ4(p+ k − p′ − k′)|M |2 d3p′

(2π)32p′0
d3k′

(2π)32k′0

❐ Using the delta function we integrate over d3p′. We get

dσ

dΩk′

=
1

4mk

1

(2π)2

∫

dk′
k′2

2k′2E′
δ(m+ k − E′ − k′)|M |2

❐ To use the last delta function we note that E′ is related to k′. In fact from
δ3(~p+ ~k − ~p ′ − ~k′) we have ~p ′ = ~k − ~k′, and therefore

E′ =
√

~p ′2 +m2 =
√

k2 + k′2 − 2kk′ cos θ +m2

❐ This implies

δ(m+k−E′−k′) =
δ
(

k′ − k
1+ k

m
(1−cos θ)

)

∣

∣1 + dE′

dk′

∣

∣

with
dE′

dk′
=
k′ − k cos θ

E′
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❐ And therefore
∣

∣

∣

∣

1 +
dE′

dk′

∣

∣

∣

∣

=
|E′ + k′ − k cos θ|

E′
=
m+ k(1− cos θ)

E′
=
m

E′

k

k′

❐ Putting all together

dσ

dΩk′

=
1

64π2

1

m2

(

k′

k

)2

|M |2 where |M |2 =
1

4

∑

s,s′

∑

λ,λ′

|M |2

❐ Calculating the traces

|M1|2 = 8
[

2 m4 +m2(−p · p′ − p′ · k + 2p · k) + (p · k)(p′ · k)
] e4

(2p · k)2

|M2|2 = 8
[

2m4 +m2(−p · p′ + p′ · k′ − 2p · k′) + (p · k′)(p′ · k′)
] e4

(2p · k′)2

[M1M
†
2 +M†

1M2] =
8e4

4(k · p)(k′ · p) [2(k · p)(p · p
′)− 2(k · k′)(p · p′)− 2(p · p′)(p · k′)

+m2(−2k · p− k · p′ + k · k′ − p · p′ + 2p · k′ + p′ · k′)−m4
]
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❐ Now we use the kinematics of the rest frame of the electron

p′ = p+ k − k′ p · k = mk

p · k′ = mk′ k · k′ = kk′(1− cos θ) = m(k − k′)

to obtain

1

4

∑

s,s′

∑

λ,λ′

{|M1|2+|M2|2+M1M
†
2+M

†
1M2} = 2e4

[(

k

k′

)

+

(

k′

k

)

− sin2 θ

]

❐ Finally we put everything together to get the Klein-Nishina formula for the
differential cross section of the Compton scattering.

dσ

dΩ
=

α2

2 m2

(

k′

k

)2 [(
k′

k

)

+

(

k

k′

)

− sin2 θ

]
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❐ Diagram and kinematics

 µ−

µ+e−

e+

p1

p2 q1

q2

p1 =
√
s/2 (1, 0, 0, 1)

p2 =
√
s/2 (1, 0, 0,−1)

q1 =
√
s/2 (1, β sin θ, 0, β cos θ)

q2 =
√
s/2 (1,−β sin θ, 0,−β cos θ)

β =

√

1− 4m2
µ

s

❐ Amplitude

M =v(p2)(−ieγµ)u(p1)
−i gµν

(p1 + p2)2 + iε
u(q1)(−ieγν)v(q2)

=ie2
1

(p1 + p2)2 + iε
v(p2)γ

µu(p1) u(q1)γµv(q2)

❐ Spin averaged amplitude squared

1

4

∑

spins

|M |2= e4

4(p1 + p2)4
Tr [(p/2 −me)γ

µ(p/1 +me)γ
ν ]Tr [(q/1 +mµ)γµ(q/2 −mµ)γν ]

=
8e4

(p1 + p2)4

(

p1 · p2m2
µ + p1 · q1p2 · q2 + p1 · q2p2 · q1 + q1 · q2m2

e + 2m2
em

2
µ

)
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❐ The general formula for the cross section is

σ =

∫

1

4
√

(p1 · p2)2 −m4
e

|M |2(2π)4δ4(p1+ p2 − q1 − q2)

2
∏

i=1

d3qi
(2π)32q0i

❐ We get the differential cross section

dσ

dΩ
=

1

32π2s

|~q1|√
s
|M |2

=
α2

4s
β

(

β2 cos2 θ + 1 +
4m2

µ

s

)

=
α2

4s
β
[

1 + cos2 θ + (1− β2) sin2 θ
]

❐ And finally the total cross section

σ =
2πα2

3s
β(3− β2)

100

101

102

103

 0  50  100  150  200

σ 
(p

b)
 

ECM (GeV)
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❐ Mathematica

◆ FeynArts

Program to draw Feynman diagrams. Can be obtained from
http://www.feynarts.de

◆ FeynCalc

Lorentz and Dirac algebra and calculations at one–loop. Can have as
input FeynArts. Can be obtained from http://www.feyncalc.org

❐ QGRAF

Very efficient program to generate Feynman diagrams for any theory to any
loop order done by Paulo Nogueira. Can be downloaded from
http://cfif.ist.utl.pt/~paulo/qgraf.html

❐ Numerics: C/C++ or Fortran

To do efficient numerics one has to use the power of C/C++ or Fortran. A
special useful package is CUBA with routines for numerical integration can be
obtained from http://www.feynarts.de/cuba/

❐ My CTQFT Home Page: http://porthos.ist.utl.pt/CTQFT/

Here you can find all the links and many programs for standard processes in
QED and in the SM.

http://www.feynarts.de
http://www.feyncalc.org
http://cfif.ist.utl.pt/~paulo/qgraf.html
http://www.feynarts.de/cuba/
http://porthos.ist.utl.pt/CTQFT/
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