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❐ Part 1 – Relativistic Quantum Mechanics (Lecture 1)

◆ The basic principles of Quantum Mechanics and Special Relativity

◆ Klein-Gordon and Dirac equations

◆ Gamma matrices and spinors

◆ Covariance

◆ Solutions for the free particle

◆ Minimal coupling

◆ Non relativistic limit and the Pauli equation

◆ Charge conjugation and antiparticles

◆ Massless spin 1/2 particles
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❐ Part 2 – Quantum Field Theory (Two Lectures)

◆ QED as an example (Lecture 2)

■ QED as a gauge theory

■ Propagators and Green functions

■ Feynman rules for QED

■ Example 1: Compton scattering

■ Example 2: e− + e+ → µ− + µ+ in QED

◆ Non Abelian Gauge Theories (NAGT) (Lecture 3)

■ Radiative corrections and renormalization

■ Non Abelian gauge theories: Classical theory

■ Non Abelian gauge theories: Quantization

■ Feynman rules for a NAGT

■ Example: Vacuum polarization in QCD
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❐ Part 3 – The Standard Model (Lecture 4)

◆ Gauge group and particle content of the massless SM

◆ Spontaneous Symmetry Breaking and the Higgs mechanism

◆ The SM with masses after Spontaneous Symmetry Breaking

◆ Interactions dictated by the gauge symmetry group

◆ Example 1: The decay Z → ff in the SM

◆ Example 2: e+e− → µ+µ− in the SM

◆ Example 3: Muon decay

◆ How the gauge symmetry corrects for the bad high energy behaviour in
νeνe →W+

L W
−
L

◆ The need for the Higgs to correct the bad high energy behaviour in
W+

L W
−
L →W+

L W
−
L
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❐ In this lecture we will put together the ideas of Quantum Mechanics and
Special Relativity

❐ This will lead to the substitution of Schrödinger equation by the
Klein-Gordon (spin 0) and Dirac equations (spin 1/2)

❐ The idea of describing Quantum Physics by an equation will be abandoned
in favour of a description in terms of a variable number of particles allowing
for the creation and annihilation of particles

❐ However, the formalism that we will develop in this first lecture will be very
useful for the Quantum Field Theory that we will address in the following
lectures
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We list the basic principles of Quantum Mechanics:

❐ For a given physical state there is a state function |Φ〉 that contains all the
possible information about the system

◆ In many cases we will deal with the representation of state |Φ〉 in terms
of the coordinates, the so-called wave function Ψ(qi, si, t).

◆ |Ψ(qi, si, t)|2 ≥ 0 has the interpretation of a density of probability of
finding the system in a state with coordinates qi, internal quantum
numbers si at time t

❐ Physical observables are represented by hermitian linear operators, as

pi → −ih̄ ∂

∂qi
, E → ih̄

∂

∂t

❐ A state |Φn〉 is an eigenstate of the operator Ω if

Ω |Φn〉 = ωn |Φn〉

where |Φn〉 is the eigenstate that corresponds to the eigenvalue ωn. If Ω is
hermitian then ωn are real numbers.
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❐ For a complete set of commuting operators {Ω1,Ω2, . . .}, there exists a
complete set of orthonormal eigenfunctions, Ψn. An arbitrary state (wave
function) can expanded in this set

Ψ =
∑

n

anΨn

❐ The result of the measurement of the observable Ω is any of the eigenvalues
ωn with probability |an|2. The average value of the observable is

< Ω >Ψ=
∑

s

∫

dq1...Ψ
∗(qi, si, t)ΩΨ(qi, si, t) =

∑

n

|an|2ωn

❐ The time evolution of a system is given by

ih̄
∂Ψ

∂t
= HΨ (The Hamiltonian H is a linear and hermitian operator)

❐ Linearity implies the superposition principle and hermiticity leads to the
conservation of probability

d

dt

∑

s

∫

dq1 · · ·Ψ∗Ψ =
i

h̄

∑

s

∫

dq1 · · · [(HΨ)∗Ψ−Ψ∗(HΨ)] = 0
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Special relativity is based on the principles of relativity and of the constancy of the
speed of light in all reference frames. For our purposes it is enough to recall:

❐ The coordinates of two reference frames are related by

x′µ = aµν x
ν , µ, ν = 0, 1, 2, 3

❐ The invariance of the interval

ds2 = gµνdx
µdxν = dxµdxµ

where the metric is diagonal and given by gµν = diag(+−−−), restricts the
coefficients aµν to obey

gµνa
µ
αa

ν
βdx

αdxβ = gαβdx
αdxβ

which implies

aµαgµνa
ν
β = gαβ or in matrix form aT g a = g
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❐ The matrices that obey aT g a = g constitute the Lorentz group, designated
by O(3, 1)

❐ We can easily verify that

det a = ±1

❐ Transformations with det a = +1 constitute the proper Lorentz group a
subgroup of the Lorentz group. They can be built from infinitesimal
transformations. Examples are rotations and Lorentz transformations

a =









1 0 0 0
0 cos θ sin θ 0
0 − sin θ cos θ 0
0 0 0 1









, a =









γ −γβ 0 0
−γβ γ 0 0
0 0 1 0
0 0 0 1









where

γ =
1

√

1− β2
; β =

V

c

and V is the relative velocity of reference frame S′ with respect to S
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❐ Examples of transformations with det a = −1 are the space (Parity) and
time (Time Reversal) inversions. For instance

a =









1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1









a =









−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









Parity Time Reversal

❐ The transformations with det a = −1 do not form a subgroup of the full
Lorentz group (they do not contain the identity)
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We start with the free particle:

❐ In non-relativistic quantum mechanics we get Schrödinger equation from the
fundamental equation

ih̄
∂

∂t
ψ = Hψ

using the non-relativistic free particle Hamiltonian

H =
p2

2m

and making the substitution ~p→ −ih̄~∇. We get

ih̄
∂ψ

∂t
= − h̄2

2m
∇2ψ

❐ The idea is to use the relativistic form of H = E, the energy of the free
particle.
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❐ In special relativity the energy and momentum are related through

pµp
µ = m2c2, pµ ≡

(

E

c
, ~p

)

giving

E2 = p2c2 +m2c4 → E = ±
√

p2c2 +m2c4

❐ Classically we require energies to be positive, so we could choose

H =
√

p2c2 +m2c4

❐ We are lead to interpret the square root of an operator. To avoid this
problem we can find an equation for H2. Iterating the original equation and
noticing that

[

ih̄ ∂
∂t
, H

]

= 0, we get

−h̄2 ∂
2

∂t2
ψ = (−h̄2c2 ~∇2 +m2c4)ψ →

[

⊔⊓+
(mc

h̄

)2
]

ψ = 0, ⊔⊓ = ∂µ∂
µ
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❐ Now we have no problem with the operators but we reintroduce the negative
energy solutions. We will see that the negative energy solutions can not be
avoided and its interpretation will be related to the antiparticles.

❐ It was not because of the negative energy solutions that the Klein-Gordon
equation was abandoned, but because of the density of probability. Using the
Klein-Gordon equation and its hermitian conjugate we get

ψ∗
[

⊔⊓+
(mc

h̄

)2
]

ψ − ψ

[

⊔⊓+
(mc

h̄

)2
]

ψ∗ = 0

or

0 = ψ∗⊔⊓ψ − ψ⊔⊓ψ∗ = ∂µ(ψ
∗∂
↔µ

ψ) → ∂µJ
µ = 0 ; Jµ = ψ∗∂

↔µ

ψ

❐ In the usual identification Jµ = (ρc, ~J) gives

ρ =
1

c2

(

ψ∗
∂ψ

∂t
− ψ

∂ψ∗

∂t

)

→ Not positive defined

❐ The Klein-Gordon equation was abandoned by the wrong reasons: Spin 0



IST Dirac Equation

Summary

Introduction

Klein-Gordon Eq.

Dirac Equation

Covariance Dirac Eq.

Free Particle Solutions

Minimal Coupling

NR Limit Dirac Eq.

E < 0 Solutions

Charge Conjugation

Massless Spin 1/2

Jorge C. Romão IDPASC School Udine – 14

❐ Dirac approach was to treat time and space on the same footing, in the
spirit of relativity. As in the fundamental equation the time derivative
appears linearly, Dirac postulated the same behaviour for the space
derivatives, writing,

ih̄
∂ψ

∂t
=

(

−ih̄c~α · ~∇+ βmc2
)

ψ ≡ Hψ

❐ The dimensionless constants αi and β can not be numbers as we will see in
a moment. So, Dirac postulated that ~α and β are N ×N hermitian matrices
(for H to be hermitian) acting on a column vector with N entries,

ψ =







ψ1

...
ψN







❐ This matrix equation must obey the conditions:

◆ Give the correct relation E2 = p2c2 +m2c4 for the free particle

◆ Give a probability that is positive defined

◆ Must be covariant under Lorentz transformations
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❐ For the energy-momentum relation, it is enough that each component
satisfies the Klein-Gordon equation. We iterate the equation to get

−h̄2 ∂
2ψ

∂t2
=
(

−ih̄cαi∇i + βmc2
)

ih̄
∂ψ

∂t

=

[

−h̄2c2α
iαj + αjαi

2
∇i∇j − ih̄mc2(αiβ + βαi)∇i + β2m2c4

]

ψ

❐ This gives the relations























αiαj + αjαi = 2δij

αiβ + βαi = 0

(αi)2 = β2 = 1 → Eigenvalues = ±1

❐ We have to construct 4 anti-commuting matrices with square equal to unity.
This is not possible for N = 2 (only 3 Pauli matrices). It is not possible for
N odd, because

αi = −βαiβ → Tr(αi) = Tr(−βαiβ) = −Tr(αi) → Tr(αi) = 0
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❐ The smallest is N = 4. An explicit representation (not unique) is

αi =

[

0 σi
σi 0

]

; β =

[

1 0
0 −1

]

Blocks 2× 2

where σi are the Pauli matrices:

σ1 =

[

0 1
1 0

]

; σ2 =

[

0 −i
i 0

]

; σ3 =

[

1 0
0 −1

]

❐ Let us now look at the probability current. As αi and β are hermitian we get

−ih̄∂ψ
†

∂t
= ψ†(ih̄cαi∂

←

i + βmc2)

❐ Doing the usual trick of multiplying and subtracting we get

ih̄
∂

∂t
(ψ†ψ) = −ih̄c∇i(ψ

†αiψ) → ∂

∂t
(ψ†ψ) + ~∇ · (ψ†c~αψ) = 0
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❐ Using

ρ = ψ†ψ, ~j = ψ†c~αψ → ∂ρ

∂t
+ ~∇ ·~j = 0

❐ Integrating in all the space we get

d

dt

∫

d3x ψ†ψ = 0

which allow us to identify ψ†ψ with a positive density of probability

❐ The notation anticipates the fact that ~j is a vector in 3-dimensional space.
Actually, we will show in the following that jµ = (cρ,~j) is a conserved
4-vector, ∂µj

µ = 0, and that Dirac equation is covariant, that is it,
maintains its form in all inertial reference frames
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❐ We start by introduction a convenient notation due to Dirac. We multiply
the Dirac equation on the left by 1

c
β and introduce the matrices,

γ0 ≡ β ; γi ≡ βαi i = 1, 2, 3

❐ The Dirac equation reads

(ih̄γµ∂µ −mc)ψ = 0 or (ih̄∂/−mc)ψ = 0

where we introduced Feynman slash notation, ∂/ ≡ γµ∂µ

❐ In the Dirac representation we have

γ0 =

[

1 0
0 −1

]

; γi =

[

0 σi
−σi 0

]

❐ The normalization and anti-commuting relations can be written as

γµγν + γνγµ = 2gµν

❐ We should note that, despite the suggestive form of the above equation, we
have not yet proved its covariance
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❐ Let us consider two representations, γµ and γ̃µ. Both satisfy Dirac equation,

(ih̄γµ∂µ −mc)ψ = 0, (ih̄γ̃µ∂µ −mc)ψ̃ = 0

❐ Both describe the same Physics, so must exist a relation between ψ and ψ̃.
Let it be

ψ = Uψ̃

where U is a constant matrix that admits inverse. Substituting in the above
equation and multiplying on the left by U−1 we get

γ̃µ = U−1γµU

❐ This kind of transformations are called equivalence transformations and they
should not change the observable physical quantities despite the fact that
the wave function is changed. For future use, we also note that

Tr
[

γ̃µγ̃ν · · · γ̃σ
]

= Tr
[

γµγν · · · γσ
]
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❐ Let us consider the Dirac equation in two inertial frames O and O′

(ih̄γµ∂µ −mc)ψ(x) = 0, (ih̄γ′µ∂′µ −mc)ψ′(x′) = 0

❐ γ′µ satisfies the same anti-commuting relations as γµ, as well as the

relations, γ′0
†
= γ′0 and γ′i

†
= −γ′i. We can then show that γ′µ and γµ

are related by an equivalence transformation,

γ′µ = U−1γµU

where U is an unitary matrix.

❐ We can therefore transfer all the changes into the wave function and keep
the same representation in all inertial frames. The wave functions ψ′(x′) and
ψ(x) must then be related through

ψ′(x′) = ψ′(ax) = S(a)ψ(x) = S(a)ψ(a−1x′), x′µ = aµνx
ν

and the matrix S(a) must depend on the relative velocity and/or the
rotation between the two frames (for proper Lorentz transformations)
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❐ Substituting ψ′(x′) = S(a)ψ(x) we get

(ih̄γµ
∂

∂x′µ
−mc)S(a)ψ(x) = 0

❐ Now we use

∂

∂x′µ
=

∂xν

∂x′µ
∂

∂xν
= (a−1)νµ∂ν

to get

[

ih̄S−1(a)γµS(a)(a−1)νµ ∂ν −mc
]

ψ(x) = 0

❐ Comparing with the equation in frame O, we have the same equation if

S−1(a)γµS(a)(a−1)νµ = γν → S(a)γµS−1(a)aνµ = γν

These are the fundamental relations that will allow to find S(a). If we
succeed we have proved the covariance
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❐ To obtain S(a) we start by considering infinitesimal transformations,

aνµ = gνµ + ων
µ + · · · with ωµν = −ωνµ

❐ The last equation means that there are only six independent parameters. We
will see that they will be identified with the three degrees of freedom of a
rotation plus the three degrees of freedom of a Lorentz transformation
(boost) in an arbitrary direction

❐ For infinitesimal transformations we define then

S = 1− i

4
σµνω

µν + · · · , S−1 = 1 +
i

4
σµνω

µν + · · ·

where the matrices σµν = −σνµ are anti-symmetric.

❐ Substituting in the original equation and keeping terms only linear in ωµν we
get

[γµ, σαβ ] = 2i(gµαγβ − gµβγα)
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❐ Using the anti-commutation relations for the γ’s we can verify that the
solution is

σµν =
i

2
[γµ, γν ]

❐ This determines S and S−1 for infinitesimal transformations. However, for
these continuous transformations (Lie groups) the solution exponentiates,
giving the final result

S = e−
i
4
σµνω

µν

❐ To find an explicit form we distinguish the case of Lorentz boosts from the
rotations. For rotations we define the vectors,

(θ1, θ2, θ3) ≡ (ω2
3, ω

3
1, ω

1
2), (Σ1,Σ2,Σ3) ≡ (σ23, σ31, σ12)

❐ Then

SR = e
i
2
~θ·~Σ, ~Σ ≡

(

~σ 0
0 ~σ

)

(Dirac representation)

a generalization of the way 2-spinors transform under rotations.
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❐ Using

(~θ · ~Σ)(~θ · ~Σ) = ~θ · ~θ

we can get another useful form

SR = cos
θ

2
+ iθ̂ · ~Σsin

θ

2

where θ̂ is an unit vector in the direction of the rotation

❐ For the Lorentz boosts we define the 3-vector ~ω such that (ωi ≡ ω0i)







ω̂ ≡ V̂

tanhω = V
c

❐ Using now

σ0i =
i

2

[

γ0, γi
]

= iγ0γi = iαi
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❐ We obtain for the case of the Lorentz transformations (boosts)

SL = e−
1

2
~ω·~α, SL = cosh

ω

2
− ω̂ · ~α sinh

ω

2

where we have used (~ω · ~α)2 = ~ω · ~ω

❐ We can easily convince ourselves that while SR is an unitary matrix but the
same is not true for SL. However, we can show (using [γ0, ~Σ] = 0 and
{γ0, ~α} = 0) that

S−1 = γ0S†γ0

both for SR and SL

❐ This is important to show that the current,

jµ(x) = cψ†(x)γ0γµψ(x)

is a 4-vector as we will prove now
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❐ The current in frame O′ is

j′µ =cψ′†(x′)γ0γµψ′(x′)

=cψ†(x)S†γ0γµSψ(x)

=cψ†(x)γ0γ0S†γ0γµSψ(x)

=cψ†(x)γ0S−1γµSψ(x)

and using S−1γµS = aµνγ
ν we get

j′µ = aµνj
ν

as it should for a 4-vector

❐ The combination ψ†γ0 appears so frequently that it is convenient to define a
symbol for it,

ψ ≡ ψ†γ0

the so-called Dirac adjoint
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Let us consider one case of discrete symmetries, the space inversion or parity, P .

❐ Parity corresponds to the Lorentz transformation with det a = −1,

aµν ≡









1
−1

−1
−1









❐ We want to find a matrix SP that satisfies

S−1P γµSP = aµνγ
ν →

[

γ0, SP

]

= 0,
{

γi, SP

}

= 0

❐ We can easily verify that the relation is satisfied by,

P ≡ SP = eiϕγ0

where eiϕ is an arbitrary phase
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❐ Any 4× 4 matrix can be expanded in terms of a basis of 16 linearly
independent, 4× 4 matrices.

❐ To define this basis it is convenient to introduce the matrix

γ5 ≡ iγ0γ1γ2γ3, γ5 =









0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0









(In the Dirac representation)

❐ From the definition we have the properties,

{γ5, γµ} = 0, (γ5)
2 = 1

❐ Now we define the 16 matrices of the basis

ΓS = 1 ΓP = γ5

ΓV
µ = γµ ΓA

µ ≡ γ5γµ

ΓT
µν = σµν =

i

2
[γµ, γν ]
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❐ The labels S, V , T , A and P have the meaning of Scalar, Vector, Tensor,
Axial-Vector and Pseudo-Scalar and have to do with the transformations
properties, under Lorentz transformations, of the bilinears

ψ Γaψ a = S, V, T,A and P

❐ As an example

ψ′(x′) ΓAψ′(x′) =ψ′(x′)γ5γ
µψ′(x′)

=ψ(x)S−1γ5γ
µSψ(x)

=det a aµνψ(x)γ5γ
νψ(x)

where we have used [S, γ5] = 0 for proper Lorentz transformations (rotations
and boosts) and {P, γ5} = 0 for the space inversion (parity). This shows
that ψ(x)γ5γµψ(x) is an axial-vector
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❐ From now on we take a system of units where h̄ = c = 1. The Dirac
equation then reads

(i∂/−m)ψ(x) = 0

❐ This equation has plane wave solutions

ψ(x) = w(~p)e−ipµx
µ

if pµp
µ = m2.

❐ This implies (p0)2 = E2 = ~p · ~p+m2 showing that we have negative energy
solutions

❐ We always take p0 = E =
√

|~p|2 +m2 > 0

ψr(x) = wr(~p)e−iεrpµx
µ

where εr = ±1 for the positive and negative energy solutions, respectively
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❐ We start by finding wr(~p) in the rest frame of the particle. Dirac equation
reduces then to

(

iγ0
∂

∂t
−m

)

ψ = 0

❐ Using

ψr = wr(0)e−iεrmt

we have

m
(

εrγ
0 − 1

)

ψr = 0, εr =

{

+1 r = 1, 2
−1 r = 3, 4

, γ0 =

(

+1 0
0 −1

)

❐ With the solutions (N =
√
2m)

w(1)(0) = N







1
0
0
0






, w2(0) = N







0
1
0
0






, w3(0) = N







0
0
1
0






, w4(0) = N







0
0
0
1
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❐ To get wr(~p) we perform a Lorentz boost to the instantaneous frame that
moves with velocity −~v, that is

tanhω = |~v| = β → coshω = γ, sinhω = γβ

❐ We get then

wr(~p) =e−
1

2
~ω·~αwr(0)

=
[

cosh
ω

2
1− ω̂ · ~α sinh

ω

2

]

wr(0)

=
1√

2m
√
E +m

(εrp/+m)wr(0)

and

wr†(~p) =wr†(0)(p/γ0 +m)
1√

2m
√
E +m

wr(~p) =wr(0)(εrp/+m)
1√

2m
√
E +m
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Using these expressions we can derive the following relations:

(p/− εrm)wr(~p) = 0

wr(~p)(p/− εrm) = 0

wr(~p)wr′(~p) = 2m δrr′εr

4
∑

r=1

εrw
r
α(~p)w

r
β(~p) = 2m δαβ

wr†(εr~p)w
r′(εr′~p) = 2E δrr′

❐ wr(~p)wr(~p) and ψψ are scalars

❐ wr†(εr~p)w
r(εr~p) and ψ

†ψ are the time component of a 4-vector.
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❐ The Poincaré group, translations, Pµ, plus Lorentz transformations, Jµν ,
has two invariants P 2 = PµP

µ and W 2 =WµW
µ where Wµ is the

Pauli-Lubanski 4-vector,

Wµ = −1

2
εµνρσJ

νρP σ

❐ One can show that their eigenvalues are

P 2 = m2, W 2 = −m2s(s+ 1)

where m is the mass and s the spin (integer or half-integer)

❐ For the Dirac equation and for infinitesimal transformations

ψ′(x) ≡
(

1− i

2
Jµνω

µν

)

ψ(x), ψ′(x′) =

(

1− i

4
σµνω

µν

)

ψ(x)

leading to

Jµν =
1

2
σµν + i(xµ∂ν − xν∂µ)
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❐ Using this Jµν into Wµ we get

Wµ = − i

4
εµνρσσ

νρ∂σ

❐ We can easily show that for the Dirac equation we have,

W 2 = −3

4
m2

which confirms that the Dirac equation describes spin s = 1
2 .

❐ For the plane wave solutions we obtain

Wµ = −1

4
εr εµνρσσ

νρpσ = −1

4
γ5[γµ, p/] εr

❐ In the rest frame

W 0 = 0 ,
~W

m
=

1

2
~Σ εr with ~Σ =

(

~σ 0
0 ~σ

)
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❐ The spin operator in an arbitrary direction is

−W · s
m

=
1

2m
γ5 s/ p/ εr, sµsµ = −1, pµs

µ = 0

❐ Using this operator and choosing sµ = (0, 0, 0, 1) in the rest frame we get

1

2m
γ5s/p/εr =− 1

2
γ5γ

3 = −1

2

[

0 1

1 0

][

0 σ3

−σ3 0

]

=

[

1
2σ3 0

0 − 1
2σ3

]

=















1
2

− 1
2

− 1
2

1
2















❐ This shows that wr(0) are the eigenstates with eigenvalues ±1/2 along the z
axis: +1/2 for r = 1, 4 and −1/2 for r = 2, 3
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❐ Instead of using the spinors wr(p) it is conventional to use different names
for the positive energy solutions, u(p, s) and for the negative energy, v(p, s)

❐ The u spinors satisfy

(p/−m)u(p, s) = 0 and in rest frame ~Σ · ~s u(p, s) = u(p, s)

❐ The v spinors satisfy

(p/+m)v(p, s) = 0 and in rest frame ~Σ · ~s v(p, s) = −v(p, s)

showing that it has spin −~s in the rest frame.

❐ With these definitions we have the identification

w1(~p) =u(p, sz)

w2(~p) =u(p,−sz)
w3(~p) =v(p,−sz)
w4(~p) =v(p, sz)



IST Spinors u and v . . .

Summary

Introduction

Klein-Gordon Eq.

Dirac Equation

Covariance Dirac Eq.

Free Particle Solutions

•Plane Waves

•Rest Frame

•Arbitrary Frame

• Spin

•Wave Packets

Minimal Coupling

NR Limit Dirac Eq.

E < 0 Solutions

Charge Conjugation

Massless Spin 1/2

Jorge C. Romão IDPASC School Udine – 38

❐ The explicit expressions for u and v are (Dirac representation)

u(p, s) =
√
E +m





χ(s)

~σ·~p
E+m

χ(s)



 v(p, s) =
√
E +m





~σ·~p
E+m

χ(−s)
χ(−s)





where χ(s) is a Pauli two component spinor.

❐ As an example

v(p, ↑) =
√
E +m





~σ·~ρ
E+m

χ(↓)
χ(↓)



 =
√
E +m















p−

E+m

− pz

E+m

0

1















= w4(~p)

where p− = px − ipy.
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❐ Dirac equation is linear so we can form superpositions of plane wave
solutions, the so-called wave-packets

❐ Consider one formed only by positive energy solutions

ψ(+)(x) =

∫

d3p

(2π)3
1

2E

∑

±s

b(p, s)u(p, s)e−ip·x

❐ We can show that

∫

d3xψ†(x)ψ(x) =

∫

d3p

(2π)3
1

2E

∑

s

|b(p, s)|2 = 1

and

~J (+) =

∫

d3p

(2π)3
1

2E

~p

E

∑

s

|b(p, s)|2 =<
~p

E
>

❐ < ~p
E
> is the group velocity, so we recover a familiar result from wave

packets in non-relativistic quantum mechanics



IST Wave Packets . . .

Summary

Introduction

Klein-Gordon Eq.

Dirac Equation

Covariance Dirac Eq.

Free Particle Solutions

•Plane Waves

•Rest Frame

•Arbitrary Frame

• Spin

•Wave Packets

Minimal Coupling

NR Limit Dirac Eq.

E < 0 Solutions

Charge Conjugation

Massless Spin 1/2

Jorge C. Romão IDPASC School Udine – 40

❐ However the complete set of solutions must include also the negative energy
solutions. Therefore

ψ(x) =

∫

d3p

(2π)3
1

2E

∑

s

[

b(p, s)u(p, s)e−ip·x + d∗(p, s)v(p, s)eipx
]

❐ The probability gives

∫

d3xψ†ψ =

∫

d3p

(2π)3
1

2E

∑

s

[

|b(p, s)|2 + |d(p, s)|2
]

= 1

and the current, (p̃ ≡ (p0,−~p))

Jk =

∫

d3xψγkψ =

∫

d3p

(2π)3
1

2E

{

∑

s

[

|b(p, s)|2 + |d(p, s)|2
]pk

E

+ i
∑

s,s′

b∗(p̃, s′)d∗(p, s)e2iEtu(p̃, s′)σk0v(p, s)

− i
∑

s,s′

b(p̃, s′)d(p, s)e−2iEtv(p, s)σk0u(p̃, s)
}

The cross terms oscillate very rapidly
with frequencies ω = 2E > 2m ≃
1 MeV > 1.5 × 1021 s−1. They be-
come important if we try to localize
the electron at distances of order of its
λc =

1
m

≃ 4× 10−11 cm



IST Minimal Coupling

Summary

Introduction

Klein-Gordon Eq.

Dirac Equation

Covariance Dirac Eq.

Free Particle Solutions

Minimal Coupling

•Minimal Coupling

NR Limit Dirac Eq.

E < 0 Solutions

Charge Conjugation

Massless Spin 1/2

Jorge C. Romão IDPASC School Udine – 41

❐ The interaction of charged particles with the electromagnetic field is given by
the minimal coupling prescription,

pµ −→ pµ − eAµ, or ∂µ −→ ∂µ + ieAµ, e = −|e|

❐ Therefore we get for the Dirac equation

(iγµ∂µ − eγµAµ −m)ψ(x) = 0

❐ In the original form

i
∂ψ

∂t
=

[

−i~α · (~∇− ie ~A) + βm+ eA0
]

ψ ≡ (H0 +H ′)ψ

where

H0 = −i~α · ~∇+ βm, H ′ = −e~α · ~A+ eA0

❐ Notice the analogy

H ′
classic

= −e~v
c
· ~A+ eA0 → ~vop = c~α
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❐ We start by the free particle, defining

ψ =

(

ϕ̂
χ̂

)

where χ̂ and ϕ̂ are two component Pauli spinors.

❐ Using ~α and β in the Dirac representation we get











i
∂ϕ̂
∂t = −i~σ · ~∇χ̂+mϕ̂

i
∂χ̂
∂t = −i~σ · ~∇ϕ̂−mχ̂

❐ In the non-relativistic limit E −m≪ m and therefore we make the
redefinition

(

ϕ̂
χ̂

)

= e−imt

(

ϕ
χ

)
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❐ Substituting back we get for the redefined spinors







i
∂ϕ
∂t

= −i~σ · ~∇χ

i∂χ
∂t

= −i~σ · ~∇ϕ− 2mχ

❐ As χ changes slowly we solve approximately the second equation, getting

χ ≃ −i~σ · ~∇
2 m

ϕ =
~σ · ~p
2 m

ϕ≪ ϕ

❐ Substituting in the first

i
∂ϕ

∂t
= − ∇2

2 m
ϕ

which is the Schrödinger equation for the free particle.

Therefore in the non-relativistic limit the big components, ϕ, obey the Schrödinger
equation and the small components, χ, are neglected. So the negative energy
solutions, the small components, disappear in the non-relativistic limit.
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❐ We start now from

i
∂ψ

∂t
=

[

−i~α · ~π + βm+ eA0
]

ψ, ~π ≡ ~∇− ie ~A

❐ With the previous decomposition we get







i
∂ϕ
∂t

= ~σ · ~πχ+ eA0ϕ

i∂χ
∂t

= ~σ · ~πϕ+ eA0χ− 2 mχ

❐ Assuming eA0 ≪ 2 m, and slow time variation

χ =
~σ · ~π
2 m

ϕ

❐ And for the big components

i
∂ϕ

∂t
=

[

(~σ · ~π)(~σ · ~π)
2 m

+ eA0

]

ϕ
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❐ To understand the meaning of this equation we notice that

(~σ · ~π)(~σ · ~π) = ~π · ~π − e~σ · ~B

❐ Then we get Pauli equation for the electron

i
∂ϕ

∂t
=

[

(~p− e ~A)2

2 m
− e

2 m
~σ · ~B + eA0

]

ϕ

❐ Putting back h̄ and c we get

Hmag = − eh̄

2mc
~σ · ~B ≡ −~µ · ~B, with ~µ =

eh̄

2mc
~σ = 2

( e

2mc

) h̄~σ

2

which shows that gyromagnetic ratio is g = 2

❐ Being able to predict the correct value for g was one of the biggest successes
of the Dirac equation

❐ Higher order corrections (in QED and in the SM) deviate g from 2.
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❐ We define

a ≡ g − 2

2

❐ The present situation for the electron is very precise (QED only)

athe = aexpe = (115965218073± 28)× 10−14

and we use it to determine the fine structure constant.

❐ For the muon there is a 2σ difference

athµ =(116591841± 81)× 10−11

aexpµ =(116592080± 58)× 10−11
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❐ Despite all the successes of the Dirac equation the interpretation of the
negative energy solutions still remains to be addressed

❐ This is not an academic problem. We have to explain why the electrons do
not make transitions to the negative energy states. A simple calculation
gives a rate of 108 s−1 to decay into the energy interval [−mc2,−2mc2]

❐ Dirac hole theory makes use of the Pauli exclusion principle and defines the
vacuum as the state with all the negative energy states filled. So, no
transitions are allowed from states with E > 0 and atoms are stable

❐ Of course the vacuum has infinite energy and charge but as we only measure
differences with respect to the vacuum this is not a problem

❐ The second quantization allows for a better understanding of this question
and allows for the extension also to bosons

❐ The main consequence is the prediction of anti-particles. Consider that the
vacuum has a hole. This means the absence of an electron with negative
energy −E and charge −|e|. But this can be interpreted as the presence of a
particle with positive energy +E and charge +|e|, the positron
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E e−

γ0

mc2

−mc2

hole

E e−

γ0

mc2

−mc2

hole

❐ Pair creation: An electron is excited from a negative energy state into a
positive energy state. It leaves behind a hole interpreted as the positron.
Therefore it was created a pair e+e−

❐ Pair annihilation: An electron with E > 0 makes a transition to a
non-occupied E < 0 state, the hole corresponding to the positron. In the
end both electron and positron disappear with the emission of radiation

❐ With Dirac hole theory we abandon the wave function interpretation as we
can vary the number of particles. Only the second quantized creation and
annihilation operators can provide a consistent description

❐ However, Dirac interpretation was a great success confirmed by the discovery
of the anti-particles in the following years
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❐ From Dirac hole theory emerges a new symmetry of Nature: for each particle
there exists an anti-particle. We call this symmetry Charge Conjugation. We
now will define it more precisely.

❐ We should have a correspondence between the negative energy solutions of
Dirac equation for electrons,

(i∂/− eA/−m)ψ = 0

and the positive energy solutions of Dirac equation for positrons

(i∂/+ eA/−m)ψc = 0

where ψc is the wave function for the positron.

❐ We take the complex conjugate of the first equation

(−iγµ∗

∂µ − eγµ
∗

Aµ −m)ψ∗ = 0
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❐ Using the relations γ0Tψ∗ = ψ
T
and γ0T γµ

∗

γ0T = γµT we get

[

−γµT (+i∂µ + eAµ)−m
]

ψ
T
= 0

❐ If we find a matrix C such that

CγµTC−1 = −γµ

we can identify

ψc ≡ Cψ
T

❐ This can be shown by explicit construction. In the Dirac representation

C = iγ2γ0 = −C−1 = −C† = −CT

or

C =

(

0 −iσ2

−iσ2 0

)

=









0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0
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❐ As an example, let us consider a negative energy electron with spin down

ψ = N









0
0
0
1









eimt

❐ Then ψc corresponds to a positive energy positron with spin up

ψc = Cψ
T
= Cγ0ψ∗ =









0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0









N









0
0
0
1









e−imt = N









1
0
0
0









e−imt

❐ For an arbitrary wave function we can show

ψ =

(

εp/+m

2m

)(

1 + γ5s/

2

)

ψ → ψc =

(−εp/+m

2m

)(

1 + γ5s/

2

)

ψc

that is, inverts the sign of energy and the direction of the spin
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❐ We always considered the Dirac equation for a massive electron. However,
we could put the question, is there in Nature any massless spin 1/2 particle?

❐ For many years the Standard Model of particle physics assumed that this
was the case for neutrinos. Today we know that they have a very small mass
(less than an eV), but they are not massless

❐ Despite this, massless spin 1/2 particles can be very useful. For instance, in
many situations we can neglect the electron mass compared with the
energies in the center of mass of the process. For more reason the same is
true for neutrinos

❐ Also, gauge theories are formulated in terms of massless particles, before the
spontaneous breaking of the gauge theory

❐ All these are good reasons to look at massless spin 1/2 particles and we will
see that some surprises appear
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❐ For the massless case Dirac equation reads

i
∂ψ

∂t
= −i~α · ~∇ψ

❐ We see that the β matrix disappears. This has the consequence that the
relations

αiαj + αjαi = 2δij

can be verified for 2× 2 matrices, for instance the Pauli matrices. There are
two possible choices

~α = ±~σ

❐ Let us consider plane wave solutions

ψ = χ(p, s)e−ip·x → ±~σ · ~pχ(p, s) = Eχ(p, s)
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❐ Consider first the case α = +~σ. We take ~p along the positive z direction.

χ(p,+) =

[

1
0

]

→ ~σ.~p

| ~p |χ(p,+) = +χ(p,+)

where we used (| ~p |= E). This solution corresponds to positive helicity

❐ If we consider the case ~α = −~σ we get

χ(p,−) =

[

0
1

]

→ ~σ.~p

| ~p |χ(p,−) = −χ(p,−)

corresponding to negative helicity
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❐ Although it is enough to use 2-component spinors for massless spin 1/2
particles in many applications it is convenient to use 4-component spinors

❐ For this it is convenient to choose the Weyl representation for the γ matrices

~α =

(

~σ 0
0 −~σ

)

; β = γ0 =

(

0 −1
−1 0

)

; γ5 =

(

1 0
0 −1

)

❐ If we write

ψ =

[

χ(+)
χ(−)

]

we get

i
∂

∂t
χ(+) =− i~σ · ~∇χ(+)−mχ(−)

i
∂

∂t
χ(−) =i~σ · ~∇χ(−)−mχ(+)

showing that the equations are coupled by the mass term
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❐ In the limit m→ 0 the two equations become independent and they are just
the two Weyl equations for the cases ~α = ±~σ

❐ We notice also that

γ5ψ(±) = ±ψ(±) ψ(+) =

[

χ(+)
0

]

; ψ(−) =

[

0
χ(−)

]

and therefore

1 + γ5
2

ψ =

[

χ(+)
0

]

,
1− γ5

2
ψ =

[

0
χ(−)

]

❐ This shows that chirality and helicity are the same thing in the limit of
massless particles
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