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❐ In this chapter we are going to develop a method to evaluate the Green
functions of a given theory. As we have seen in the two previous chapters,
we only know how to calculate for free fields, like the in an out fields.

❐ However, the Green functions we are interested in, are given in terms of the
physical interacting fields, and we do not know how to operate with these.
We are going to see how to express the physical fields as perturbative series
in terms of free in fields.

❐ We start by defining the U matrix. We will be considering, for the moment,
only scalar fields, later we will see the other cases. The physical interacting
fields ϕ(~x, t) and their conjugate momenta π(~x, t), satisfy the same equal
time commutation relations than the in fields, ϕin(~x, t) and πin(~x, t).

❐ Also, both ϕ and ϕin form a complete set of operators, in the sense that any
state, free or interacting, can be obtained by application of ϕin or ϕ in the
vacuum. This implies that there should be an unitary transformation U(t)
that relates ϕ with ϕin, that is,

ϕ(~x, t) =U−1(t)ϕin(~x, t)U(t)

π(~x, t) =U−1(t)πin(~x, t)U(t)
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❐ The dynamics of U can be obtained from the equations of motion for ϕ(x)
and ϕin(x). These are,

∂ϕin

∂t
(x) =i[Hin(ϕin, πin), ϕin] ,

∂πin
∂t

(x) = i[Hin(ϕin, πin), πin]

and

∂ϕ

∂t
(x) =i[H(ϕ, π), ϕ] ,

∂π

∂t
(x) = i[H(ϕ, π), π]

❐ Then we get,

ϕ̇in(x) =
∂

∂t

[

U(t)ϕ(x)U−1(t)
]

=
[

U̇(t)U−1(t), ϕin

]

+ i [H(ϕin, πin), ϕin(x)]

=ϕ̇in(x) +
[

U̇U−1 + iHI(ϕin, πin), ϕin

]
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❐ Where we defined

HI(ϕin, πin) = H(ϕin, πin)−Hin(ϕin, πin) ≡ HI(t)

❐ In a similar way

π̇in(x) = π̇in +
[

U̇U−1 + iHI(ϕin, πin), πin

]

❐ From these equations we obtain,

iU̇U−1 = HI(t) + E0(t)

where E0(t) commutes with ϕin and πin and is therefore a time dependent
c-number, not an operator.

❐ Defining

H ′I(t) = HI(t) + E0(t)

we get a differential equation for U(t), that reads,

i
∂U(t)

∂t
= H ′I(t)U(t)
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❐ The solution of this equation in terms of the in fields, is the basis of the
covariant perturbation theory. To integrate the equation for U we need an
initial condition. For that we introduce the operator

U(t, t′) ≡ U(t)U−1(t′)

where t ≥ t′, and that obviously satisfies

U(t, t) = 1

❐ It is easy to see that U(t, t′) also satisfies the differential equation, that is,

i
∂U(t, t′)

∂t
= H ′I(t)U(t, t′)

and has the correct initial condition.

❐ To proceed we start by transforming the differential equation in an
equivalent integral equation, that is,

U(t, t′) = 1− i

∫ t

t′
dt1H

′
I(t1)U(t1, t

′)
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❐ Notice that we have not solved the problem because U(t, t′) appears on both
sides of the equation. However, we can iterate the equation to get the
expansion,

U(t, t′) =1− i

∫ t

t′
dt1H

′
I(t1) + (−i)2

∫ t

t′
dt1H

′
I(t1)

∫ t1

t′
dt2H

′
I(t2)

+ · · ·+ (−i)n
∫ t

t′
dt1

∫ t1

t′
dt2 · · ·

∫ tn−1

t′
dtnH

′
I(t1) · · ·H ′I(tn)

+ · · ·

❐ Of course this expansion can only be useful if HI contains a small parameter
and, because of that, we can truncate the expansion at certain order in that
parameter.

❐ Coming back, as t1 ≥ t2 ≥, · · · tn, the product is time-ordered and we can
therefore write

U(t, t′) = 1+
∞
∑

n=1

(−i)n
∫ t

t′
dt1

∫ t1

t′
dt2 · · ·

∫ tn−1

t′
dtnT (H

′
I(t1) · · ·H ′I(tn))
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❐ Using the symmetry t1, t2 we can write,

∫ t

t′
dt1

∫ t1

t′
dt2T (H

′
I(t1)H

′
I(t2)) =

∫ t

t′
dt2

∫ t2

t′
dt1T (H

′
I(t1)H

′
I(t2))

=
1

2

∫ t

t′
dt1

∫ t

t′
dt2T (H

′
I(t1)H

′
2(t2))

❐ This follows from the following figure

t

t
t′
t′ t1

t2

∫ t

t′
dt1
∫ t1
t′
dt2

∫ t

t′
dt2
∫ t2
t′
dt1
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❐ In general, for n integrations, instead of 1
2 we will have 1

n! , and we get,

U(t, t′) =1 +

∞
∑

n=1

(−i)n
n!

∫ t

t′
dt1 · · ·

∫ t

t′
dtnT (H

′
I(t1) · · ·H ′I(tn))

≡T
(

exp[−i
∫ t

t′
dtH ′I(t)]

)

=T

(

exp[−i
∫ t

t′
d4xHI(ϕin)]

)

where the time-ordered product is to be interpreted expanding the
exponential.

❐ The operators U satisfy the following multiplication rule

U(t, t′) = U(t, t′′)U(t′′, t′)

which can be seen using the definition, or from the explicit expression.

❐ From this property, we can obtain,

U(t, t′) = U−1(t′, t)
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❐ As we saw in the previous chapter, the LSZ technique reduces the
evaluation of the elements of the S matrix to a basic ingredient, the
so-called Green functions of the theory.

❐ These are expectation values of time-ordered products of the Heisenberg
fields, ϕ(x),

G(x1, · · · , xn) ≡ 〈0|Tϕ(x1)ϕ(x2) · · ·ϕ(xn) |0〉

❐ The basic idea for the evaluation of the Green functions consists in expressing
the fields ϕ(x) in terms of the fields ϕin(x), using the operator U . We get

G(x1, · · · , xn) = 〈0|T (U−1(t1)ϕin(x1)U(t1, t2)ϕin(x2)U(t2, t3) · · ·
· · ·U(tn−1, tn)ϕin(xn)U(tn)) |0〉

= 〈0|T (U−1(t)U(t, t1)ϕin(x1)U(t1, t2) · · ·
· · ·U(tn−1, tn)ϕin(xn)U(tn,−t)U(−t)) |0〉

where t is a time that we will let go to ∞. When t→ ∞, t is later than all
the ti and −t is earlier than all the times ti.
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❐ Therefore we can take U−1(t) e U(−t) out of the time-ordered product.
Using the multiplicative property of the operator U we can then write,

G(x1, · · · , xn)=〈0|U−1(t)T
(

ϕin(x1) · · ·ϕin(xn) exp[−i
∫ t

−t

H ′I(t
′)dt′]

)

U(−t) |0〉

where the T is meant to be applied after expanding the exponential.

❐ If it were not for the presence of the operators U−1(t) and U(−t), we would
have expressed G(x1 · · ·xn) completely in terms of the in fields.

❐ Now we are going to show that the vacuum is an eigenstate of the operator
U(t). We consider an arbitrary state |αp; in〉 that contains one particle of
momentum p, all the other quantum numbers being denoted by α. To
simplify, we continue considering the case of the scalar field. We have then,

〈αp; in|U(−t)|0〉 = 〈α; in|ain(p)U(−t)|0〉

=− i

∫

d3xf∗p (~x,−t′)
(

∂
→

∂t′
− ∂
←

∂t′

)

〈α; in|ϕin(~x,−t′)U(−t) |0〉

where fp(~x, t) = e−ip·x.
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❐ We use now express ϕin(~x,−t) in terms of ϕ(~x,−t). We get,

〈αp; in|U(−t)|0〉 =

= −i
∫

d3xf∗p (~x,−t′)∂
↔′

0

〈

α; in|U(−t′)ϕ(~x,−t′)U−1(−t′)U(−t)|0
〉

= −i
∫

d3xf∗p (~x,−t′)
[

− ∂
←

0′ 〈α; in|U(−t′)ϕ(~x,−t′)U−1(−t′)U(−t) |0〉

+ 〈α; in|U(−t′)ϕ̇(~x,−t′)U−1(−t′)U(−t) |0〉
]

+ i

∫ ′

d3xf∗p (~x,−t′) 〈α; in| U̇(−t′)ϕ(~x,−t′)U−1(−t′)U(−t) |0〉

+ i

∫

d3xf∗p (~x,−t′) 〈α; in|U(−t′)ϕ(~x,−t′)U̇−1(−t′)U(−t) |0〉

❐ We take now the t = t′ → ∞ limit.
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❐ Then

〈αp; in|U(−t) |0〉 =
√
Z 〈α; in|U(−t)ain(p) |0〉

+ 〈α; in| U̇(−t)ϕ(~x,−t) + U(−t)ϕ(~x,−t)U̇−1(−t)U(−t) |0〉

❐ Now the first term vanishes because ain(p) |0〉 = 0. The second term also
vanishes because we have (we omit the arguments to simplify the notation),

U̇ϕ+ UϕU̇−1U =U̇U−1ϕinU + ϕinUU̇
−1U

=U̇U−1ϕinU − ϕinU̇U
−1U

=[U̇U−1, ϕin]U = −i[HI , ϕin]U = 0

where we have assumed that the interactions have no derivative.

❐ We conclude then that,

lim
t→∞

〈αp; in|U(−t)|0〉 = 0

for all states in that contain at least one particle.
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❐ This means that,

lim
t→∞

U(−t) |0〉 = λ− |0〉

❐ In a similar way we could show that,

lim
t→∞

U(t) |0〉 = λ+ |0〉

❐ Returning now to the expression for the Green function, we can write,

G(x1, · · ·xn) = λ−λ
∗
+ 〈0|T

(

ϕin(x1) · · ·ϕin(xn) exp

[

−i
∫ t

−t

H ′I(t
′)dt′

])

|0〉

The dependence in the operator U disappeared from the expectation value.

❐ To proceed, let us evaluate the constants λ±, or more to the point, the
combination λ−λ

∗
+ that appears. We get (in the limit → ∞),

λ−λ
∗
+ = 〈0|U(−t) |0〉 〈0|U−1(t) |0〉 = 〈0|U(−t)U−1(t) |0〉 = 〈0|U(−t, t) |0〉

= 〈0|T
(

exp

[

+i

∫ t

−t

dt′H ′I(t
′)

])

|0〉 = 〈0|T
(

exp

[

−i
∫ t

−t

dt′H ′I(t
′)

])

|0〉−1
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❐ Using this result we can write the Green function in the form (when t→ ∞)

G(x1, · · · , xn) =
〈0|T (ϕin(x1) · · ·ϕin(xn) exp[−i

∫ t

−t
dt′H ′I(t

′)]) |0〉
〈0|T (exp[−i

∫ t

−t
dt′H ′I(t

′)) |0〉
❐ Before we write the final expression, we can now introduce the number
E0(t). For that we recall that, H ′I = HI + E0 and noticing that E0 is not

an operator, we get a factor exp[−i
∫ t

−t
dt′E0(t

′)] both in the numerator and
denominator, canceling out in the final result.

❐ The final result can then be obtained substituting H ′I by HI . We get,

G(x1 · · · , xn) =
〈0|T (ϕin(x1) · · ·ϕin(xn) exp[−i

∫ t

−t
dt′HI(t

′)]) |0〉
〈0|T (exp[−i

∫ t

−t
dt′HI(t′)) |0〉

=

∑∞
m=0

(−i)m

m!

∫∞

−∞
d4y1 · · · d4ym 〈0|T (ϕin(x1) · · ·ϕin(xn)HI(y1) · · ·HI(ym) |0〉

∑∞
m=0

(−i)n

n!

∫ +∞

−∞
d4y1 · · · d4ym 〈0|T (HI(y1) · · ·HI(ym)) |0〉

This equation is the fundamental result. The Green functions have been
expressed in terms of the in fields whose algebra we know.
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❐ To evaluate the amplitudes we have to move the annihilation operators to
the right until they act on the vacuum.

❐ The final result from these manipulations can be stated in the form of a
theorem, known as Wick’s theorem, which reads,

T (ϕin(x1) · · ·ϕin(xn)) =

= : ϕin(x1) · · ·ϕin(xn) : +[〈0|T (ϕin(x1)ϕin(x2)) |0〉 : ϕin(x3) · · ·ϕin(xn) : +perm.

+ 〈0|T (ϕin(x1)ϕin(x2)) |0〉 〈0|T (ϕin(x3)ϕin(x4)) |0〉 : ϕin(x5) · · ·ϕin(xn) : +perm.

+ · · ·

+



























〈0|T (ϕin(x1)ϕin(x2)) |0〉 · · · 〈0|T (ϕin(xn−1)ϕin(xn)) |0〉+ perm.

n even

〈0|T (ϕin(x1)ϕin(x2) |0〉 · · · 〈0|T (ϕin(xn−2)ϕin(xn−1)) |0〉ϕin(xn) + perm.

n odd



Wick’s theorem: Proof

Lecture 4

U matrix

Perturbative series

Wick’s theorem

•Proof

•Examples

Vacuum–Vacuum

Feynman rules λϕ4

Lecture 5

Feynman rules QED

General formalism

Jorge C. Romão TCA-2012 – 17

❐ The proof of the theorem is done by induction. For n = 1 it is certainly true
(and trivial).

❐ Also for n = 2 we can shown that

T (ϕin(x1)ϕin(x2)) =: ϕin(x1)ϕin(x2) : +c-number

where the c-number comes from the commutations that are needed to move
the annihilation operators to the right. To find this constant, we do not have
to do any calculation, just to notice that

〈0| : · · · : |0〉 = 0

Then

T (ϕin(x1)ϕin(x2)) =: ϕin(x1)ϕin(x2) : + 〈0|T (ϕin(x1)ϕin(x2)) |0〉

which is in agreement with the theorem.

❐ Continuing with the induction, let us assume that it is valid for a given n.
We have to show that it remains valid for n+ 1. Let us consider then
T (ϕin(x1) · · ·ϕin(xn+1)) and let us assume that tn+1 is the earliest time.
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❐ Then

T (ϕin(x1) · · ·ϕin(xn+1)) =

=T (ϕin(x1) · · ·ϕin(xn))ϕin(xn+1)

= : ϕin(x1) · · ·ϕin(xn) : ϕin(xn+1)

+
∑

perm

〈0|T (ϕin(x1)ϕin(x2)) |0〉 : ϕin(x3) · · ·ϕin(xn) : ϕin(xn+1)

+ · · ·

❐ To write this equation in the form of the theorem it is necessary to find the
rule showing how to introduce ϕin(xn+1) inside the normal product. For
that, we introduce the notation,

ϕin(x) = ϕ
(+)
in (x) + ϕ

(−)
in (x)

where ϕ
(+)
in (x) contains the annihilation operator and ϕ

(−)
in (x) the creation

operator.
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❐ Then we can write,

: ϕin(x1) · · ·ϕin(xn) :=
∑

A,B

∏

i∈A

ϕ
(−)
in (xi)

∏

j∈B

ϕ
(+)
in (xj)

where the sum runs over all the sets A,B that constitute partitions of the n
indices.

❐ Then

: ϕin(x1) · · ·ϕin(xn) : ϕin(xn+1) =

=
∑

A,B

∏

i∈A

ϕ
(−)
in (xi)

∏

j∈B

ϕ
(+)
in (xj)[ϕ

(+)
in (xn+1) + ϕ

(−)
in (xn+1)]

=
∑

A,B

∏

iǫA

ϕ
(−)
in (xi)

∏

j∈B

ϕ
(+)
in (xj)ϕ

(+)
in (xn+1)

+
∑

A,B

∏

i∈A

ϕ
(−)
in (xi)ϕ

(−)
in (xn+1)

∏

j∈B

ϕ
(+)
in (xj)

+
∑

A,B

∏

i∈A

ϕ
(−)
in (xi)

∑

k∈B

∏

j∈Bj 6=k

ϕ
(+)
in (xj) 〈0|ϕ(+)

in (xk)ϕ
(−)
in (xn+1) |0〉



Wick’s theorem: Proof

Lecture 4

U matrix

Perturbative series

Wick’s theorem

•Proof

•Examples

Vacuum–Vacuum

Feynman rules λϕ4

Lecture 5

Feynman rules QED

General formalism

Jorge C. Romão TCA-2012 – 20

❐ We can now write,

〈0|ϕ(+)
in (xk)ϕ

(−)
in (xn+1) |0〉 = 〈0|ϕin(xk)ϕin(xn+1) |0〉

= 〈0|T (ϕin(xk)ϕin(xn+1)) |0〉

where we have used the fact that tn+1 is the earliest time.

❐ Therefore

: ϕin(x1) · · ·ϕin(xn) : ϕin(xn+1) =: ϕin(x1) · · ·ϕin(xn+1) :

+
∑

k

: ϕin(x1) · · ·ϕin(xk−1)ϕin(xk+1) · · ·ϕin(xn) : 〈0|T (ϕin(xk)ϕin(xn+1)) |0〉

❐ With this result we obtain the general form of for the n+ 1 case, ending the
proof of the theorem.

❐ To fully understand the theorem, it is important to do in detail the case
n = 4, to see how things work. The importance of the Wick’s theorem for
the applications comes from the following two corollaries.
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❐ Corollary 1 : If n is odd, then 〈0|T (ϕin(x1) · · ·ϕin(xn)) |0〉 = 0, as results
trivially from

〈0|ϕin(x) |0〉 = 0

❐ Corollary 2: If n is even

〈0|T (ϕin(x1) · · ·ϕin(xn)) |0〉 =
=
∑

perm
δp 〈0|T (ϕin(x1)ϕin(x2)) |0〉 · · · 〈0|T (ϕin(xn−1)ϕin(xn)) |0〉

where δp is the sign of the permutation that is necessary to introduce in case
of fermion fields. This result, is in practice the most important one

❐ Therefore the vacuum expectation value of the time-ordered product of n
operators that appear in the general formula, are obtained considering all the
vacuum expectation values of the fields taken two by two (contractions) in
all possible ways.

❐ Now these contractions are nothing else than the Feynman propagators for
free fields.
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❐ For instance for four fields

〈0|T (ϕin(x1)ϕin(x2)ϕin(x3)ϕin(x4)) |0〉

= 〈0|T (ϕin(x1)ϕin(x2)) |0〉 〈0|T (ϕin(x3)ϕin(x4) |0〉

+ 〈0|T (ϕin(x1)ϕin(x3)) |0〉 〈0|T (ϕin(x2)ϕin(x4)) |0〉

+ 〈0|T (ϕin(x1)ϕin(x4)) |0〉 〈0|T (ϕin(x2)ϕin(x3)) |0〉

=∆F (x1 − x2)∆F (x3 − x4) + ∆F (x1 − x3)∆F (x2 − x4)

+ ∆F (x1 − x4)∆F (x2 − x3)

❐ In this expression

∆F (x− y) =

∫

d4k

(2π)4
i

k2 −m2 + iǫ
e−ik(x−y)

is the Feynman propagator for the free field theory in the case of scalar fields.



Wick’s theorem: Examples

Lecture 4

U matrix

Perturbative series

Wick’s theorem

•Proof

•Examples

Vacuum–Vacuum

Feynman rules λϕ4

Lecture 5

Feynman rules QED

General formalism

Jorge C. Romão TCA-2012 – 23

❐ It is convenient to use a graphical (diagrammatic) representation for these
propagators. We have in configuration space,

∆F (x− y) =

∫

d4k

(2π)4
i

k2 −m2 + iǫ
e−ik·(x−y)

p

SF (x− y)αβ =

∫

d4p

(2π)4
i(p/+m)αβ
p2 −m2 + iǫ

e−ip·(x−y)αβ
p

Dµν
F (x− y) =

∫

d4k

(2π)4
−igµν
k2 + iǫ

e−ik·(x−y)µ ν
p

respectively for scalar, spinor and photon (in the Feynman gauge) fields.
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❐ As the interaction Hamiltonian is normal ordered, there will be no
contractions between the fields that appear in HI . The fields in HI can only
contract with fields outside.

❐ In this way the contractions will connect the points corresponding to HI , the
so-called vertices, to either external points or points in another HI ,
corresponding to another vertex.

❐ To illustrate this point let us consider the λϕ4 theory where,

HI(x) =
1

4!
λ : ϕ4

in(x) :

❐ Then a contribution of order λ2 to G(x1, x2, x3, x4) comes from the term,

λ2

(4!)2
〈0|T (ϕin(x1)ϕin(x2)ϕin(x3)ϕin(x4) : ϕ

4
in(y1) :: ϕ

4
in(y2) : |0〉

and leads to the following diagrams
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x1 x1

x1x1

x2x2

x2 x2

x3

x3

x3

x3x4

x4x4

x4

y1

y1

y1

y1

y2

y2

y2

y2

Figure 1: Some of the diagrams of order λ2 to G(x1, x2, x3, x4)

❐ In these diagrams, the interaction is represented by four lines coming from
one point, y1 or y2. These lines are contractions between one field from one
HI with other field that might belong either to another HI , or be one of the
external fields in G(x1 · · ·x4).
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❐ To obtain the Feynman rules we are left with a combinatorial problem.

❐ We are not going to find them in configuration space, as they are much
easier to express in momentum space, as we will see in the following.

❐ In the previous figure the diagrams a), b) and d) are called connected while
the diagram c) is called disconnected. One diagram is disconnected when
there is a part of the diagram that is not connected in any way to an
external line. We will see in the following that these diagrams do not
contribute to the Green functions.

❐ Diagram d) is connected but is also called reducible because it can be
obtained by multiplication of simpler Green functions. As we will see only
the irreducible diagrams are important.
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❐ We have seen in the previous section examples of the numerator of the
fundamental equation for the Green functions.

❐ Let us now look at the denominator, the so-called vacuum-vacuum
amplitudes. Continuing with the example of λϕ4, some of the diagrams
contributing for these amplitudes are shown below

y1y1

y1

y2y2

y2

y3y3 y4y4
y5

a) b) c)

Figure 2: Some vacuum–vacuum amplitudes of order λ2 in λϕ4
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❐ The diagrams associated with the numerator can be separated into
connected and disconnected parts.

❐ For all diagrams that have as connected part a contribution of order s in the
interaction HI , the numerator of G(x1 · · ·xn) takes the form,

∞
∑

p=0

(−i)p
p!

∫

d4y1 · · · d4yp 〈0|T (ϕin(x1) · · ·ϕin(xn)HI(y1) · · ·HI(ys)) |0〉c

× p!

s!(p− s)!
〈0|T (HI(ys+1) · · ·HI(yp)) |0〉

where the subscript c indicates that only the connected parts are included.

❐ The combinatorial factor




p

s



 =
p!

s!(p− s)!

is the number of ways in which we can extract s terms HI from a set of p
terms.



Vacuum–Vacuum amplitudes

Lecture 4

U matrix

Perturbative series

Wick’s theorem

Vacuum–Vacuum

Feynman rules λϕ4

Lecture 5

Feynman rules QED

General formalism

Jorge C. Romão TCA-2012 – 29

❐ We write then (r = p− s)

(−i)s
s!

∫

d4y1 · · · d4ys 〈0|T (ϕin(x1) · · ·ϕin(xn)HI(y1) · · ·H(ys)) |0〉c

×
∞
∑

r=0

(−i)r
r!

∫

d4z1 · · · d4zr 〈0|T (HI(z1) · · ·HI(zr)) |0〉

❐ This equation has the form of a connected diagram of order s times an
infinite series of vacuum-vacuum amplitudes, that cancels exactly against the
denominator. This is true for all orders, and therefore we can write,

G(x1, · · ·xn) =
∑

iGi(x1 · · ·xn)
∑

kDk
=

(
∑

iG
c
i (x1, · · ·xn))(

∑

kDk)
∑

kDk

=
∑

i

Gc
i (x1 · · ·xn)

where Gc
i are the connected diagrams and Dk the disconnected ones.

❐ This result means that we can simply ignore completely the disconnected
diagrams and consider only the connected ones when evaluating the Green
functions. These are simply the sum of all connected diagrams, simplifying
enormously the calculations.
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❐ To understand how the Feynman rules appear, let us consider the case of a
real scalar field with an interaction of the form,

HI =
λ

4!
: ϕ4

in := −LI

❐ To be more precise we consider two particles in the initial and final state.
Then the S matrix element is,

Sfi = 〈p′1p′2; out|p1p2; in〉

=(i)4
∫

d4x1d
4x2d

4x3d
4x4e

−ip1·x1−ip2·x2+ip′

ix3+ip′

2
·x4

(⊔⊓x1
+m2) · · · (⊔⊓x4

+m2) 〈0|T (ϕ(x1)ϕ(x2)ϕ(x3)ϕ(x4)) |0〉

❐ For the Green function we use the previous expressions and we obtain,

G(x1, x2, x3, x4) =
∞
∑

p=0

(−iλ)p
p!

∫

d4z1 · · · d4zp

〈0|T (ϕin(x1)ϕin(x2)ϕin(x3)ϕin(x4) :
ϕ4
in(z1)

4!
: · · · : ϕ

4
in(zp)

4!
:) |0〉c
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❐ As the case p = 0 is trivial (there is no interaction) we begin by the p = 1
case. Then the Green function is,

G(x1, x2, x3, x4)=(−iλ)
∫

d4z 〈0|T
(

ϕin(x1)ϕin(x2)ϕin(x3)ϕin(x4) :
ϕ4
in(z)

4!
:

)

|0〉

=(−iλ)4!
4!

∫

d4z∆F (x1 − z)∆F (x2 − z)∆F (x3 − z)∆F (x4 − z)

❐ This corresponds, in the configuration space, the diagram

x1 x2

x3 x4

z

Figure 3: Vertex in the λφ4 theory.
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❐ To proceed, we introduce the Fourier transform of the propagators, that is,

∆F (x1 − z) =

∫

d4q1
(2π)4

e−iq1·(x1−z)∆F (q1)

where

∆F (q1) =
i

q21 −m2

❐ Then we get

G(x1, · · ·x4)=(−iλ)
∫

d4z
d4q1
(2π)4

· · · d
4q4

(2π)4
e−iq1·x1−iq2x2−iq3x3−iq4x4+i(q1+q2+q3+q4)·z

∆F (q1)∆F (q2)∆F (q3)∆F (q4)

=(−iλ)
∫

d4q1
(2π)4

· · · d
4q4

(2π)4
e−iq1·x1−iq2·x2−iq3·x3−iq4·x4

(2π)4δ4(q1 + q2 + q3 + q4)∆F (q1)∆F (q2)∆F (q3)∆F (q4)
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❐ If we now introduce the T matrix transition amplitude, defined by

Sfi = δfi − i(2π)4δ(Pf − Pi) Tfi

we obtain

−iTfi = (−iλ)

❐ For this amplitude we draw the Feynman diagram

p1 p2

p′1 p′2

−i λ

Figure 4: Vertex in momentum space.

and we associate to the vertex the number (−iλ).
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❐ Let us consider now a more complicated case, the evaluation of G(x1 · · ·x4)
in second order in the coupling λ. After this exercise we will be in position to
be able to state the Feynman rules in momentum space with all generality.

❐ We get in second order in λ,

G(x1, · · ·x4) =

=
(−iλ)2

2!

∫

d4z1d
4z2 〈0|T

(

ϕin(x1)ϕin(x2)ϕin(x3)ϕin(x4) :
ϕ4
in(z1)

4!
::
ϕ4
in(z2)

4!
:

)

|0〉c

=
(−iλ)2

2!

∫

d4z1d
4z2

(

4× 3

4!

)

×
(

4× 3

4!

)

× 2

{

∆F (x1 − z1)∆F (x2 − z1)∆F (z1 − z2)∆F (z1 − z2)∆F (z2 − x3)∆F (z2 − x4)

+ ∆F (x1 − z1)∆F (x2 − z2)∆F (z1 − z2)∆F (z1 − z2)∆F (z1 − x3)∆F (z2 − x4)

+ ∆F (x1 − z1)∆F (x2 − z2)∆F (z1 − z2)∆F (z1 − z2)∆F (z1 − x4)∆F (z2 − x3)

+ ∆F (x1 − z2)∆F (x2 − z2)∆F (z2 − z1)∆F (z2 − z1)∆F (z1 − x3)∆F (z1 − x4)

+ ∆F (x1 − z2)∆F (x2 − z1)∆F (z1 − z2)∆F (z2 − z1)∆F (z1 − x3)∆F (z2 − x4)

+ ∆F (x1 − z2)∆F (x2 − z1)∆F (z1 − z2)∆F (z1 − z2)∆F (z1 − x4)∆F (z1 − x3)
}
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❐ In terms of diagrams we have

G(x1, · · ·x4) =
(−iλ)2

2!

∫

d4z1d
4z2

{

+ (z1 ↔ z2)

}

x1 x1x1 x2 x2x2

x3 x3x4 x4 x4x3

z1 z1z2 z2z2z1
1

2
1

2

1

2
__ __ __
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❐ Let us now go into momentum space, by introducing the Fourier transform
of the propagators. We start by diagram a),

G(a)(x1, x2, x3, x4) =

=
(−iλ)2

2!

1

2

∫

d4z1d
4z2∆F (x1 − z1)∆F (x2 − z1)∆F (z1 − z2)∆F (z1 − z2)

∆F (z2 − x3)∆F (z2 − x4)

=
(−iλ)2

2!

1

2

∫

d4z1d
4z2

d4q1
(2π)4

d4q2
(2π)4

d4q3
(2π)4

d4q4
(2π)4

d4q5
(2π)4

d4q6
(2π)4

ei[(q1·x1+q2·x2−q3·x3−q4·x4)+z1·(q5−q1−q2+q6)+z2·(q3+q4−q5−q6)]

∆F (q1)∆F (q2)∆F (q3)∆F (q4)∆F (q5)∆F (q6)

=
(−iλ)2

2!

1

2
(2π)4

∫

d4q1
(2π)4

· · · d
4q5

(2π)4
δ4(q1 + q2 − q3 − q4) e

i[q1·x1+q2·x2−q2·x3−q4·x4]

∆F (q1)∆F (q2)∆F (q3)∆F (q4)∆F (q5)∆F (q1 + q2 − q5)



Feynman rules for λϕ4

Lecture 4

U matrix

Perturbative series

Wick’s theorem

Vacuum–Vacuum

Feynman rules λϕ4

• p=1

• p=2

Lecture 5

Feynman rules QED

General formalism

Jorge C. Romão TCA-2012 – 37

❐ Now we insert the last equation into the reduction formula. We get

S
(a)
fi =(i)4

∫

d4x1 · · · d4x4e−i[p1·x1+p2·x2−p
′

1
·x3−p

′

2
·x4]

(⊔⊓x1
+m2) · · · (⊔⊓x4

+m2)G(a)(x1, · · · , x4)

❐ The only dependence of G(a) in the coordinates, xi(i = 1, · · · 4), is in the
exponential, therefore,

(⊔⊓xi
+m2) → (−q2i +m2)

and using

(−q2i +m2)∆F (qi) = −i

we eliminate the propagators in the external legs of the diagram
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❐ We then get

S
(a)
fi =

(−iλ)2
2!

1

2

∫

d4x1 · · · d4x4
∫

d4q1
(2π)4

· · · d
4q5

(2π)4
(2π)4δ4(q1 + q2 − q3 − q4)

e−i[x1·(p1−q1)+x2·(p2−q2)−x3·(p
′

1
−q3)−x4·(p

′

2
−q4)]∆F (q5)∆F (q1 + q2 − q5)

=
(−iλ)2

2!

1

2

∫

d4q1
(2π)4

· · · d
4q5

(2π)4
(2π)4δ4(q1 + q2 − q3 − q4)(2π)

4δ4(p1 − q1)

(2π)4δ4(p2 − q2)(2π)
4δ4(p′1 − q3)(2π)

4δ4(p′2 − q4)∆F (q5)∆F (q1 + q2 − q5)

=
(−iλ)2

2!

1

2

∫

d4q5
(2π)4

(2π)4δ4(p1 + p2 − p′1 − p′2)∆F (q5)∆F (p1 + p2 − q5)

❐ This expression can be written in the form

S
(a)
fi = (2π)4δ4(p1 + p2 − p′1 − p′2)

(−iλ)2
2!

1

2

∫

d4q

(2π)4
∆F (q)∆F (p1 + p2 − q)
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❐ If we denote by a′) the diagram a) with the interchange z1 ↔ z2 and redo
the calculation we get exactly the same result

❐ Therefore,

S
(a+a′)
fi = (2π)4δ4(p1+p2−p′1−p′2)(−iλ)2

1

2

∫

d4q

(2π)4
∆F (q)∆F (p1+p2−q)

or in terms of the Tfi matrix,

−iT (a+a′)
fi = (−iλ)2 1

2

∫

d4q

(2π)4
∆F (q)∆F (p1 + p2 − q)

❐ To encode this result we draw the Feynman diagram

p1 p2

p′1 p′2

q q − p1 − p21
2
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❐ We find that in order to evaluate the −iT matrix, we associate to each
vertex a factor (−iλ), to each internal line a propagator ∆F and for each

loop the integral
∫

d4q
(2π)4 .

❐ Besides that we have 4-momentum conservation at each vertex.

❐ Finally there is a symmetry factor (see below) which takes the value 1
2 for

this diagram.

❐ If we repeat the calculations for diagrams b) + b′) and c) + c′) it is easy to
see that we get,

−iT (b+b′)
fi = (−iλ)2 1

2

∫

d4q

(2π)4
∆F (q)∆F (q − p1 + p′1)

and

−iT (c+c′)
fi = (−iλ)2 1

2

∫

d4q

(2π)4
∆F (q)∆F (q − p1 + p′2)
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❐ These correspond to the diagrams

p1p1 p2p2

p′1
p′1

p′2

p′2

qq

q−p1+p′2

q−p1+p′1
1
2

1
2

❐ After this exercise we are in position to state the Feynman rules with all
generality for the λϕ4 theory. These are rules for the −iT matrix, that is,
after we factorize (2π)4δ4(· · · ).
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1. Draw all topologically distinct diagrams with n external legs.

2. At each vertex multiply by the factor (−iλ).

3. To each internal line associate a propagator ∆F (q).

4. For each loop include an integral

∫

d4q

(2π)4

The direction of this momentum is irrelevant, but we have to respect
4-momentum conservation ate each vertex.

5. Multiply by the symmetry factor of the diagram. This is defined by,

S =
# of distinct ways of connecting the vertices to the external legs

Permutations of each vertex × Permutations of equal vertices

6. Add the contributions of all the topologically distinct diagrams. The result is
the −iT matrix amplitude that enters the formula for the cross section.



Lecture 5

Lecture 4

U matrix

Perturbative series

Wick’s theorem

Vacuum–Vacuum

Feynman rules λϕ4

Lecture 5

Feynman rules QED

General formalism

Jorge C. Romão TCA-2012 – 43



Feynman rules for QED

Lecture 4

U matrix

Perturbative series

Wick’s theorem

Vacuum–Vacuum

Feynman rules λϕ4

Lecture 5

Feynman rules QED

•Compton

•Bhabha

•Fermion Loops

•Rules for QED

General formalism

Jorge C. Romão TCA-2012 – 44

❐ We now turn to the case of QED. Like λφ4, it is a theory without derivatives
and therefore,

LI = −HI = −e Qψinγ
µψinA

in
µ

where e is the absolute value of the electron charge, or the proton charge.
For the electron the sign enters explicitly in Q = −1. This way of writing
allows for obvious generalizations for particles with other charges, like for
instance the quarks. For QED we have then,

LQED
I = e ψinγ

µψinA
in
µ

❐ Due to the electric charge conservation, the Green functions that we have to
deal with have an equal number of ψ and ψ fields. In general we have,

G(x1 · · ·xnxn+1 · · ·x2n; y1 · · · yp) =

= 〈0|T (ψ(x1) · · ·ψ(xn)ψ(xn+1) · · ·ψ(x2n)Aµ1(y1) · · ·Aµp(yp)) |0〉

where, for simplicity, we omit the spinorial indices in the fermion fields. This
equation is written in terms of the physical fields.
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❐ Following a similar procedure to the scalar field case, we can obtain an
expression for G in terms of the in fields.

❐ This will be,

G(x1 · · ·x2n; y1 · · · yp) =

〈0|Tψin(x1) · · ·ψin(x2n)A
µ1

in (y1) · · ·A
µp

in (yp) e
[i
∫
d4zLI(z)] |0〉

〈0|T exp[i
∫

d4zLI(z)] |0〉

= 〈0|Tψin(x1) · · ·ψin(x2n)A
µ1

in (y1) · · ·A
µp

in (yp) e
[i
∫
d4tLI(z)] |0〉c

where the fields in LI are normal ordered, and 〈0| · · · |0〉c means that we
only consider the connected diagrams.

❐ To get the Feynman rules we will evaluate a few simple processes.
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❐ Compton scattering corresponds to the following process,

e− + γ → e− + γ

with the kinematics shown in the figure

p p′

k k′

γγ

e−e−
❐ The S matrix element to evaluate is therefore,

Sfi = 〈(p′, s′), k′; out|(p, s), k; in〉

❐ Using the LSZ reduction formula we can write,

Sfi =

∫

d4xd4x′
∫

d4yd4y′e−i[p·x+k·y−p′·x′−k′·y′]εµ(k)ε∗µ
′

(k′)

u(p′, s′)α′(i∂
→

/x′−m)α′β′~⊔⊓y~⊔⊓y′

〈0|T (ψβ′(x′)ψβ(x)Aµ(y)Aµ′(y′)) |0〉 (−i∂
←

/x−m)βαuα(p, s)
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❐ Our task is therefore to evaluate the Green function

G(x′, x, y, y′) ≡ 〈0|T (ψβ′(x′)ψβ(x)Aµ(y)Aµ′(y′)) |0〉

❐ The lowest contribution is quadratic in the interaction. We get

G(x, x′, y, y′) =

=
(ie)2

2!

∫

d4z1d
4z2 〈0|T (ψin

β′ (x′)ψ
in

β (x)Ain
µ (y)Ain

µ′(y′)

: ψin(z1)γ
σψin(z1)A

in
σ (z1) :: ψ

in
(z2)γ

ρψin(z2)A
in
ρ (z2) :) |0〉

=
(ie)2

2!
(γσ)γδ (γρ)γ′δ′

∫

d4z1d
4z2 〈0|T (ψin

β′ (x′)ψ
in

β (x)Ain
µ (y)Ain

µ′(y′)

: ψ
in

γ (z1)ψ
in
δ (z1)A

in
σ (z1) :: ψ

in

γ′ (z2)ψ
in
δ′ (z2)A

in
ρ (z2) :) |0〉



Compton Scattering

Lecture 4

U matrix

Perturbative series

Wick’s theorem

Vacuum–Vacuum

Feynman rules λϕ4

Lecture 5

Feynman rules QED

•Compton

•Bhabha

•Fermion Loops

•Rules for QED

General formalism

Jorge C. Romão TCA-2012 – 48

❐ Now we use Wick’s theorem to write 〈0|T (· · · ) |0〉 in terms of the
propagators. We get,

〈0|T (ψin
β′ (x′)ψ

in

β (x)Ain
µ (y)Ain

µ′(y′) :ψ
in

γ (z1)ψ
in
δ (z1)A

in
σ (z1) ::ψ

in

γ′ (z2)ψ
in
δ′ (z2)A

in
ρ (z2)) :) |0〉

= 〈0|Tψin
β′ (x′)ψ

in

γ (z1) |0〉 〈0|Tψin
δ′ (z2)ψ

in

β (x) |0〉 〈0|Tψin
δ (z1)ψγ′(z2) |0〉

〈0|T (Ain
µ (y)Ain

σ (z1)) |0〉 〈0|TAin
µ′ (y′)Ain

ρ (z2) |0〉

+ 〈0|Tψin
β′ (x′)ψ

in

γ (z1) |0〉 〈0|Tψin
δ′ (z2)ψ

in

β (x) |0〉 〈0|Tψin
δ (z1)ψγ′(z2)|0

〈0|TAin
µ (y)Ain

ρ (z2) |0〉 〈0|TAin
µ′ (y′)Ain

σ (z1) |0〉

+ 〈0|Tψin
β′ (x′)ψ

in

γ′ (z2) |0〉 〈0|Tψin
δ (z1)ψ

in

β (x) |0〉 〈0|Tψin
δ′ (z2)ψ

in

γ (z1) |0〉

〈0|TAin
µ (y)Ain

σ (z1) |0〉 〈0|TAin
µ′ (y′)Ain

ρ (z2) |0〉

+ 〈0|Tψin
β′ (x′)ψ

in

γ′ (z2) |0〉 〈0|Tψin
δ (z1)ψ

in

β (x) |0〉 〈0|Tψin
δ′ (z2)ψ

in

γ (z1) |0〉

〈0|TAin
µ (y)Ain

ρ (z2) |0〉 〈0|TAin
µ′ (y′)Ain

σ (z1) |0〉
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❐ This can be written as

〈0|T (ψin
β′ (x′)ψ

in

β (x)Ain
µ (y)Ain

µ′ (y′) :ψ
in

γ (z1)ψ
in
δ (z1)A

in
σ (z1) ::ψ

in

γ′ (z2)ψ
in
δ′ (z2)A

in
ρ (z2)) :) |0〉

= SFβ′γ(x
′ − z1)SFδ′β(z2 − x)SFδγ′(z1 − z2)DFµσ(y − z1)DFµ′ρ(y

′ − z2)

+ SFβ′γ(x
′ − z1)SFδ′β(z2 − x)SFδγ′(z1 − z2)DFµρ(y − z2)DFµ′σ(y

′ − z1)

+ SFβ′γ′(x′ − z2)SFδβ(z1 − x)SFδ′γ(z2 − z1)DFµσ(y − z1)DFµ′ρ(y
′ − z2)

+ SFβ′γ′(x′ − z2)SFδβ(z1 − x)SFδ′γ(z2 − z1)DFµρ(y − z2)DFµ′σ(y
′ − z1)

❐ To better understand this it is useful to draw the corresponding diagrams

xx

xx

x′ x′

x′x′

y

yy

y

y′

y′

y′

y′

z1z1

z1z1

z2z2

z2z2
a) b)

c) d)
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❐ From this figure it is clear that b) ≡ c) and a) ≡ d) because z1 and z2 are
irrelevant labels. From this we get a factor of 2 that is going to cancel the 1

2!

❐ In fact this result is general, for n vertices we have n! that cancels against
the factor 1

n! from the expansion of the exponential

❐ We have then only two distinct diagrams that we take as c) and d). Then,
including already the factor of 2, we get for diagrama c)

G(c)(x, x′, y, y′)=(ie)2(γσ)γδ(γ
ρ)γ′δ′

∫

d4z1d
4z2 SFβ′γ′(x′−z2)SFδβ(z1−x)

SFδ′γ(z2 − z1)DFµσ(y − z1)DFµ′ρ(y
′ − z2)

❐ To proceed we could, like in the case of λϕ4, introduce the Fourier transform
of the propagators. However, it is easier to get rid of the external legs using

(i∂/x −m)αλSFλβ(x− y) = iδαβδ
4(x− y)

SFαλ(x− y)(−i∂
←

/y −m)λβ = iδαβδ
4(x− y)

⊔⊓xDFµν(x− y) = igµνδ
4(x− y)
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❐ We get therefore,

S
(c)
fi = (ie)2

∫

d4xd4x′d4yd4y′e−i(p·x+k·y−p′·x′−k′·y′)εµ(k)gµσε
∗µ′

(k′)gµ′ρ

(γσ)γδ(γ
ρ)γ′δ′ u(p

′, s′)α′δα′γ′uα(p, s) δδα
∫

d4z1d
4z2δ

4(x′ − z2)δ
4(x− z1)δ

4(y − z1)δ
4(y′ − z2) SFδ′γ(z2 − z1)

=(ie)2
∫

d4z1d
4z2e

−i(p·z1+k·z1−p
′·z2−k

′·z2)εµ(k)ε∗µ
′

(k′)

u(p′, s′)α′(γµ′)α′δ′SFδ′γ(z2 − z1)(γµ)γαuα(p, s)

❐ Finally we use

SF (z2 − z1) =

∫

d4q

(2π)4
i(q/+m)

q2 −m2 + iǫ
e−iq·(z2−z1)

≡
∫

d4q

(2π)4
SF (q)e

−iq·(z2−z1)
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❐ And we get

S
(c)
fi =

∫

d4q

(2π)4
d4z1d

4z2e
−iz1·(p+k−q)+iz2·(p

′+k′−q)

εµ(k)εµ
′∗(k′)u(p′, s′)(ieγµ′)SF (q)(ieγµ)u(p, s)

=(2π)4δ(4)(p+ k − p′ − k)·

εµ(k)εµ
′∗(k′)u(p′, s′)(ieγµ′)SF (p+ k)(ieγµ)u(p, s)

❐ Therefore, the T matrix transition amplitude is,

−iT (c)
fi = εµ(k)εµ

′∗(k′)u(p′, s′)(ieγµ′)SF (p+ k)(ieγµ)u(p, s)
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❐ This corersponds to the diagram on the left

p p′

k k′

µ ν

a) p p′

k k′

µ ν

b)

❐ We factor out the quantity (ieγµ), because it will be clear that this quantity
will be the Feynman rule for the vertex. The arrows in these diagrams
correspond to the flow of electric charge. Notice that to an electron in the
initial state we associate a spinor u(p, s) and for an electron in the final state
we associate the spinor u(p′, s′). Since the electron line as to be a c-number,
we start writing the line in the reverse order of that of the arrows.

❐ In a similar way for diagram d) we will get the diagram represented on the
right that corresponds to the following expression,

−iT (d)
fi = εµ(k)ε∗µ

′

(k′)u(p′, s′)(ieγµ)SF (p− k′)(ieγµ′)u(p, s)

❐ We are almost in a position to state the Feynman rules for QED. Before that
we will look at a case where we have positrons.
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❐ We will consider electron-positron elastic scattering, the so-called Bhabha

scattering,

e−(p) + e+(q) → e−(p′) + e+(q′)

❐ This example will teach us two things. First, how positrons (that is the
anti-particles) enter in the amplitudes. Secondly we will learn that,
sometimes, due the anti-commutation rules of the fermions, we will get
relative minus signs between different diagrams.

❐ We have,

Sfi =
〈

(p′, s′), (q′, s′); out|(p, s), (q, s); in
〉

corresponding to the kinematics in the figure

p p′

q q′
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❐ Notice that the arrows are in the direction of flow of charge of the electron,
but the momenta do correspond to the real momenta of the particles or
antiparticles in that frame: p entering and p′ exiting for the electron, and q
entering and q′ exiting for the positron.

❐ In the following we will not show the spin dependence in order to simplify
the notation. Then we write,

Sfi =

∫

d4xd4yd4x′d4y′e−i[p·x+q·y−p′·x′−q′·y′]

u(p′)α(i∂
→

/x′ −m)αβ vγ(q)(i∂
→

/y −m)γδ

〈0|Tψδ′(y
′)ψβ(x

′)ψβ′(x)ψδ(y) |0〉

(−i∂
←

/x −m)β′α′uα′(p)(−i∂
←

/y′ −m)δ′γ′vγ′(q′)

❐ We have, therefore, to evaluate the Green function

G(y′, x′, x, y) ≡ 〈0|Tψδ′(y
′)ψβ(x

′)ψβ′(x)ψδ(y) |0〉



Electron–positron elastic scattering (Bhabha scattering)

Lecture 4

U matrix

Perturbative series

Wick’s theorem

Vacuum–Vacuum

Feynman rules λϕ4

Lecture 5

Feynman rules QED

•Compton

•Bhabha

•Fermion Loops

•Rules for QED

General formalism

Jorge C. Romão TCA-2012 – 56

❐ The lowest order contribution is of second order in the coupling. We have
(to simplify we omit the label in),

G(y′, x′, x, y) =
(ie)2

2
(γµ)ǫǫ′(γ

ν)ϕϕ′

∫

d4z1d
4z2

〈0|Tψδ′(y
′)ψβ(x

′)ψβ′(x)ψδ(y) : ψǫ(z1)ψǫ′(z1)Aµ(z1) :: ψϕ(z2)ψϕ′(z2)Aν(z2) : |0〉

=
(ie)2

2
(γµ)εε′(γ

ν)ϕϕ′

∫

d4z1d
4z2

[

− SFβǫ(x
′ − z1)SFǫ′β′(z1 − x)SFδϕ(y − z2)SFϕ′δ′(z2 − y′)DFµν(z1 − z2)

+ SFδǫ(y − z1)SFǫ′β′(z1 − x)SFβϕ(x
′ − z2)SFϕ′δ′(z2 − y′)DFµν(z1 − z2)

+ (z1 ↔ z2)
]

❐ Once more the exchange (z1 ↔ z2) compensates for the factor 1
2! and we

have two diagrams with a relative minus sign
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❐ The diagrams are

+

b)a)

x x

y y

z1 z2

z1

z2

x’

y’

x’

y’

__

❐ Let us look at the contribution of diagram a),

S
(a)
fi = −

∫

d4xd4yd4x′d4y′d4z1d
4z2(ie)

2(γµ)εε′(γ
ν)ϕϕ′e−i[p·x+q·y−p′·x′−q′·y′]

u(p′)α(i∂
→

/′x −m)αβvγ(q)(i∂
→

/y −m)γδ

SFβε(x
′ − z1)SFε′β′(z1 − x)SFδϕ(y − z2)SFϕ′δ′(z2 − y′)

(−i∂
←

/x −m)β′α′uα′(p)(−i∂
←

/′y −m)δ′γ′vγ′(q′)DFµν(z1 − z2)

= −
∫

d4z1d
4z2e

−i[p·z1+q·z2−p
′·z1−q

′·z2]

u(p′)(ieγµ)u(p)v(q)(ieγν)v(q′)DFµν(z1 − z2)
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❐ Using now the Fourier transform of the photon propagator,

DFµν(z1 − z2) =

∫

d4k

(2π)4
−igµν
k2 + iε

e−ik·(z1−z2)

≡
∫

d4k

(2π)u
DFµν(k)e

−ik·(z1−z2)

we get

S
(a)
fi = −u(p′)(ieγµ)u(ρ)v(q)(ieγν)v(q′)

∫

d4z1d
4z2

d4k

(2π)4
DFµν(k)e

−iz1·(p−p
′+k)e−iz2·(q−q

′−k)

= −(2π)4δ4(p+ q − p′ − q′)u(p′)(ieγν)u(p)v(q)(ieγµ)v(q′)DFµν(p
′ − p)

❐ Therefore the T matrix element is,

−iT (a)
fi = −u(p′)(ieγµ)u(p)DFµν(p

′ − p)v(q)(ieγν)v(q′)
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❐ This corresponds the Feynman diagram

p p’

q q’

p’-p

µ

ν

❐ In a similar way we would get

−iT (b)
fi = v(q)(ieγµ)u(p)DFµν(p+ q)u(p′)(ieγν)v(q′)

that corresponds to the diagram

p

q q’

p’

µ ν
p+q

❐ Which of the diagrams has the minus sign is irrelevant, because this is the
lowest order diagram. It depends on the conventions determining how to
build the in state. Only the relative sign is important. However, higher order
terms have to respect the same conventions.
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❐ Before we summarize the Feynman rules for QED let us look at what happens
with fermion loops. One such example is the second order correction to the
photon propagator

❐ First of all, the loop orientation it is only relevant if leads to topologically
different diagrams. Therefore the following diagrams are topologically
equivalent and only one should be considered.

❐ However the diagrams below are topologically distinct and both should be
considered.

1

2 3

4 1

2

4

3
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❐ The second aspect that is relevant is a possible sign coming from the
anti-commutation of the fermion fields, that should affect some diagrams,
and in particular the fermion loop.

❐ To understand this sign we should note that by definition of loop, the internal
lines are not connected to external fermion lines, they should originate only
in the interaction. Therefore they should come from terms of the form

〈0|T · · · : ψ(z1)A/(z1)ψ(z1) : · · · : ψ(zn)A/(zn)ψ(zn) : · · · |0〉 .

❐ Now it is clear that in order to make the appropriate contractions of the
fermion fields to bring them to the form of the Feynman propagator,
〈0|Tψ(z1)ψ(z2) |0〉, it is necessary to make an odd number of permutations
of the fermion fields, and therefore we get a (−) sign for the loops.

❐ This sign is physically relevant because there is a lowest order diagram where
the photons do not interact, corersponding to the free propagator. So the
minus sign is defined in relation to this lowest order diagram and therefore it
is not arbitrary (see the difference with respect to the discussion of the
Bahbha scattering).
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We are now in position to state the Feynman rules for QED

1. For a given process, draw all topologically distinct diagrams.

2. For each electron entering a diagram a factor u(p, s). If it leaves the
diagram a factor u(p, s).

3. For each positron leaving the diagram (final state) a factor v(p, s). It it
enters the diagram (initial state) then we have a factor v(p, s).

4. For each photon in the initial state we have the vector εµ(k) and in the final
state ε∗µ(k).

5. For each internal fermionic line the propagator

SFαβ
(p) = i

(p/+m)αβ
p2 −m2 + iε

p αβ

6. For each virtual photon the propagator (Feynman gauge)

DFµν(k) = −igµν
k2µ ν

k
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7. For each vertex the factor

ieγµµ

α

β

8. For each internal momentum, not fixed by conservation of momenta, as in
the case of loops, a factor

∫

d4q

(2π)4

9. For each loop of fermions a −1 sign.

10. A factor of −1 between diagrams that differ by exchange of fermionic lines.
In doubt, revert to Wick’s theorem.
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❐ In QED there are no symmetry factors, that is, they are always equal to 1.

❐ In our discussion we did not consider the Z factors that come in the
reduction formulas. This is true in lowest order in perturbation theory. They
can be calculated also in perturbation theory.

❐ Their definition is (for instance for the electron),

lim
p/→m

S′F (p) = Z2SF (p)

where S′F (p) is the propagator of the theory with interactions. Then we can
obtain, in perturbation theory,

Z2 = 1 +O(α) + · · ·

❐ In higher orders it is necessary to correct the external lines with these
√
Z

factors.
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❐ After showing how to obtain the Feynman rules for λφ4 and QED, we are
going to present here, without proof, a general method to obtain the
Feynman rules of any theory, including the case when the interactions have
derivatives, that we have excluded up to now, and that is very important for
the Standard Model.

❐ This method can only be fully justified with the methods of Chapter 5. For
simplicity we will consider only scalar fields

❐ The starting point is the action taken as a functional of the fields,

Γ0[ϕ] ≡
∫

d4xL[ϕ]·

❐ In fact, Γ0[ϕ] is the generating functional of the one particle irreducible
Green functions in lowest order, as we will see in Chapter 5
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1. Start by evaluating Γ
(2)
0 (xi, xj) ≡

δ2Γ0[ϕ]

δϕ(xi)δϕ(xj)

2. Then evaluate the Fourier Transform (FT) to get Γ
(2)
0 (pi, pj) defined by the

relation

(2π)4δ4(pi + pj)Γ
(2)
0 (pi, pj) ≡

∫

d4xid
4xje

−i(pi·xi+pj ·xj)Γ
(2)
0 (xi, xj)

where all the momenta are incoming.

3. The Feynman propagator is then

G
(0)
Fij = i[Γ

(2)
0 (pi, pj)]

−1 .

4. Do not forget that pi = −pj .
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1. Evaluate Γ
(n)
0 (x1 · · ·xn) = δnΓ0[ϕ]

δϕ(x1) · · · δϕ(xn)
2. Then take the Fourier Transform to obtain

(2π)4δ4(p1 + p2 + · · ·+ pn)Γ
(n)
0 (p1 · · · pn)

≡
∫

d4x1 · · · d4xne−i(p1·x1+···pn·xn)Γ
(n)
0 (x1 · · ·xn)

3. The vertex in momenta space is then given by the rule

iΓ
(n)
0 (p1, · · · pn)
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❐ For fermionic fields it is necessary to take care with the order of the
derivation. The convention that we take is

δ2

δψα(x)δψβ(y)

(

ψ(z)Γψ(z)
)

≡ Γβαδ
4(z − x)δ4(z − y)

ψα(x) e ψβ(x) are here taken as classical anti-commuting fields (Grassmann
variables, see Chapter 5)

❐ The functional derivatives are defined by

δϕi(x)

δϕk(y)
≡ δikδ

4(x− y)



Example: Scalar Electrodynamics

Lecture 4

U matrix

Perturbative series

Wick’s theorem

Vacuum–Vacuum

Feynman rules λϕ4

Lecture 5

Feynman rules QED

General formalism

•Propagators

•Vertices

•Comments

•Example

Jorge C. Romão TCA-2012 – 69

❐ The Lagrangian is

L = (∂µ − ieQAµ)ϕ
∗(∂µ + ieQAµ)ϕ−mϕ∗ϕ+ LMaxwell −

λ

4
(ϕ∗ϕ)2

❐ Therefore

Lint = −ieQϕ∗∂
↔

µϕA
µ + e2Q2ϕ∗ϕAµA

µ

❐ The propagators are the usual ones, let us consider only the vertices. There
are two vertices. The cubic vertex is

µ
k

p

q
ϕ

ϕ∗

Figure 5: Cubic vertex in scalar QED.
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❐ We calculate

Γ(3)
µ (x1, x2, x3) = −ieQ

∫

d4zδ4(z−x1)(∂
→

µ−∂
←

µ)δ
4(z−x2)δ4(z−x3)

❐ Therefore

(2π)4δ4(p+ k + q)Γ(3)
µ (p, q, k) ≡

≡ −ieQ
∫

d4zd4x1d
4x2d

4x3e
−i(x1·p+x2·q+x3·k)

δ4(z − x1) (∂
→

µ − ∂
←

µ)δ
4(z − x2)δ

4(z − x3)

= −ieQ
∫

d4zd4x2e
−i[(p+k)·z+q·x2]∂µδ

4(z − x2)

+ ieQ

∫

d4zd4x1e
−i[p·x1+(q+k)·z]∂µδ

4(z − x1)

= −ieQ(ipµ − iqµ)(2π)
4δ4(p+ q + k)
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❐ Therefore we obtain for this vertex

iΓµ(p, q, k) = ieQ (pµ − qµ) = −ieQ (qµ − pµ)

❐ The other vertex is

µ ν

k1 k2

p q

Figure 6: Quartic vertex in scalar QED (seagull).

❐ We obtain,

Γ(4)
µν (x1, x2, x3, x4) = 2e2Q2δ4(x1 − x2)δ

4(x1 − x3)δ
4(x1 − x4)gµν
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❐ Doing the Fourier transform we get

Γ(4)
µν (p, q, k1, k2) = 2(eQ)2gµν

❐ We finally get for the Feynman rule

i2e2Q2 gµν
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❐ From the above results we can enunciate a simple rule for interactions that
have derivatives of fields.

Consider that we have one field in the Lagrangian that has a

derivative, say ∂µφ. Then the rule is

∂µφ→ −i (incoming momentum)µ

In the end do not forget to multiply the result by i.

❐ As an example consider the following term in the Lagrangian for scalar
electrodynamics

L = ieQ∂µϕ
∗ϕAµ + · · ·

❐ If p is the incoming momentum of the line associated with the field ϕ∗, we
have

Vertex = i× (ieQ)× (−ipµ) = i eQ pµ

in agreement with what we got before
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