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❐ In the previous chapter we saw, for the case of free fields, how to construct
the space of states, the so-called Fock space of the theory. When we
consider the real physical case, with interactions, we are no longer able to
solve the problem exactly. For instance, the interaction between electrons
and photons is given by a set of nonlinear coupled equations,

(i∂/−m)ψ = eA/ ψ

∂µF
µν = eψγνψ

that do not have an exact solution.

❐ In practice we have to resort to approximation methods. In the following
chapter we will learn how to develop a covariant perturbation theory. Here
we are going just to study the general properties of the theory.

❐ Let us start by the physical states. As we do not know how to solve the
problem exactly, we can not prove the assumptions we are going to make
about these states. However, these are reasonable assumptions, based on
Lorentz covariance. We choose our states to be eigenstates of energy and
momentum, and of all the other observables that commute with Pµ.
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❐ Besides that, we will also assume the following properties:

◆ The eigenvalues of p2 are non-negative and p0 > 0.

◆ There exists one non-degenerate base state, with the minimum of
energy, which is Lorentz invariant. This state is called the vacuum state
|0〉 and by convention

pµ |0〉 = 0

◆ There exist one particle states
∣∣p(i)

〉
, such that,

p(i)µ p(i)µ = m2
i

for each stable particle with mass mi.

◆ The vacuum and the one-particle states constitute the discrete
spectrum of pν .
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❐ As we are mainly interested in scattering problems, we should construct
states that have a simple interpretation in the limit t→ −∞. At that time,
the particles that are going to participate in the scattering process have not
interacted yet (we assume that the interactions are adiabatically switched off
when |t| → ∞ which is appropriate for scattering problems).

❐ We look for operators that create one particle states with the physical mass.
To be explicit, we start by an hermitian scalar field given by the Lagrangian

L =
1

2
∂µϕ∂µϕ− 1

2
m2ϕ2 − V (x)

where V (x) is an operator made of more than two interacting fields ϕ at
point x. For instance, those interactions can be self-interactions of the type

V (x) =
λ

4!
ϕ4(x)

❐ The field ϕ satisfies the following equation of motion

(⊔⊓+m2)ϕ(x) = − ∂V

∂ϕ(x)
≡ j(x)
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❐ The equal time canonical commutation relations are,

[ϕ(~x, t)ϕ(~y, t)] = [π(~x, t)π(~y, t)] = 0

[π(~x, t), ϕ(~y, t)] = −iδ3(~x− ~y) , where π(x) = ϕ̇(x)

if we assume that V (x) has no derivatives.

❐ We designate by ϕin(x) the operator that creates one-particle states. It will
be a functional of the fields ϕ(x). Its existence will be shown by explicit
construction. We require that ϕin(x) must satisfy the conditions:

i) ϕin(x) and ϕ(x) transform in the same way for translations and Lorentz
transformations. For translations we have then

i [Pµ, ϕin(x)] = ∂µϕin(x)

ii) The spacetime evolution of ϕin(x) corresponds to that of a free particle
of mass m, that is

(⊔⊓+m2)ϕin(x) = 0
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❐ From these definitions it follows that ϕin(x) creates one-particle states from
the vacuum. In fact, let us consider a state |n〉, such that,

Pµ |n〉 = pµn |n〉

❐ Then

∂µ 〈n|ϕin(x)|0〉 = i 〈n| [Pµ, ϕin(x)] |0〉 = ipµn 〈n|ϕin(x)|0〉

and therefore

⊔⊓ 〈n|ϕin(x)|0〉 = −p2n 〈n|ϕin(x)|0〉

❐ Then

(⊔⊓+m2) 〈n|ϕin(x)|0〉 = (m2 − p2n) 〈n|ϕin(x)|0〉 = 0

where we have used the fact that ϕin(x) is a free field

❐ Therefore the states created from the vacuum by ϕin are those for which
p2n = m2, that is, the one-particle states of mass m
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❐ The Fourier decomposition of ϕin(x) is then the same as for free fields,

ϕin(x) =

∫
d̃k

[
ain(k)e

−ik·x + a†in(k)e
ik·x

]

where ain(k) and a
†
in(k) satisfy the usual algebra for creation and

annihilation operators. In particular, by repeated use of a†in(k) we can create
one state of n particles.

❐ To express ϕin(x) in terms of ϕ(x) we start by introducing the retarded
Green’s function of the Klein-Gordon operator,

(⊔⊓x +m2)∆ret(x− y;m) = δ4(x− y)

where

∆ret(x− y;m) = 0 if x0 < y0

❐ We can then write

√
Zϕin(x) = ϕ(x)−

∫
d4y∆ret(x− y;m)j(y)
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❐ The field ϕin(x), satisfies the two initial conditions.

❐ The constant
√
Z was introduced to normalize ϕin in such a way that it has

amplitude 1 to create one-particle states from the vacuum. The fact that
∆ret = 0 for x0 → −∞, suggests that

√
Zϕin(x) is, in some way, the limit

of ϕ(x) when x0 → −∞.

❐ In fact, as ϕ and ϕin are operators, the correct asymptotic condition must
be set on the matrix elements of the operators. Let |α〉 and |β〉 be two
normalized states. We define the operators

ϕf (t) = i

∫
d3xf∗(x) ∂

↔

0 ϕ(x) , ϕf
in = i

∫
d3xf∗(x) ∂

↔

0 ϕin(x)

where f(x) is a normalized solution of the Klein-Gordon equation. ϕf
in does

not depend on time (for plane waves f = e−ik·x and ϕf
in = ain).

❐ Then the asymptotic condition of Lehmann, Symanzik e Zimmermann
(LSZ), is

lim
t→−∞

〈α|ϕf (t) |β〉 =
√
Z 〈α|ϕf

in |β〉
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❐ We saw that Z had a physical meaning as the square of the amplitude for
the field ϕ(x) to create one-particle states from the vacuum. Let us now find
a formal expression for Z and show that 0 ≤ Z ≤ 1.

❐ We start by calculating the expectation value in the vacuum of the
commutator of two fields,

i∆′(x, y) ≡ 〈0| [ϕ(x), ϕ(y)] |0〉

❐ As we do not know how to solve the equations for the interacting fields ϕ,
we can not solve exactly the problem of finding the ∆′, in contrast with the
free field case. We can, however, determine its form using general arguments
of Lorentz invariance and the assumed spectra for the physical states.

❐ We introduce a complete set of states between the two operators and we use
the invariance under translations in order to obtain,

〈n|ϕ(y)|m〉 = 〈n| eiP ·yϕ(0)e−iP ·y |m〉
=ei(pn−pm)·y 〈n|ϕ(0)|m〉
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❐ Therefore we get

∆′(x, y) =− i
∑

n

〈0|ϕ(0)|n〉 〈n|ϕ(0)|0〉 (e−ipn·(x−y) − eipn·(x−y))

≡∆′(x− y)

that is, like in the free field case, ∆′ is only a function of the difference x− y.

❐ Introducing now

1 =

∫
d4q δ4(q − pn)

we get

∆′(x−y) =− i

∫
d4q

(2π)3

[
(2π)3

∑

n

δ4(pn−q)| 〈0|ϕ(0)|n〉 |2
]
(e−iq·(x−y)−eiq·(x−y))

=− i

∫
d4q

(2π)3
ρ(q)(e−iq·(x−y) − eiq·(x−y))
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❐ We have defined the density ρ(q) (spectral amplitude),

ρ(q) = (2π)3
∑

n

δ4(pn − q)| 〈0|ϕ(0)|n〉 |2

❐ This spectral amplitude measures the contribution to ∆′ of the states with
4-momentum qµ. ρ(q) is Lorentz invariant (as can be shown using the
invariance of ϕ(x) and the properties of the vacuum and of the states |n〉)
and vanishes when q is not in future light cone, due the assumed properties
of the physical states.

❐ Then we can write

ρ(q) = ρ(q2)θ(q0)

and we get

∆′(x− y) =− i

∫
d4q

(2π)3
ρ(q2)θ(q0)(e−iq·(x−y) − eiq·(x−y))

=− i

∫
d4q

(2π)3

∫
dσ2δ(q2 − σ2)ρ(σ2)θ(q0)

[
e−iq·(x−y) − eiq·(x−y)

]

=

∫ ∞

0

dσ2ρ(σ2)∆(x− y;σ)
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❐ Where

∆(x− y;σ) = −i
∫

d4q

(2π)3
δ(q2 − σ2)θ(q0)(e−iq·(x−y) − eiq·(x−y))

is the invariant function for the commutator of free fields with mass σ.

❐ The above relation is known as the spectral decomposition of the
commutator of two fields. This expression will allow us to show that
0 ≤ Z < 1.

❐ To show that, we separate the states of one-particle from the sum. Let |p〉
be a one-particle state with momentum p. Then

〈0|ϕ(x)|p〉 =
√
Z 〈0|ϕin(x)|p〉+

∫
d4y∆ret(x− y;m) 〈0|j(y)|p〉

=
√
Z 〈0|ϕin(x)|p〉

where we have used

〈0|j(y)|p〉 =
〈
0|(⊔⊓+m2)ϕ(y)|p

〉
= (⊔⊓+m2)e−ip·y 〈0|ϕ(0)|p〉

=(m2 − p2)e−ip·y 〈0|ϕ(0)|p〉 = 0
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❐ On the other hand

〈0|ϕin(x)|p〉 =
∫

d3k

(2π)32ωk
e−ik·x 〈0|ain(k)|p〉

=e−ip·x

and then

ρ(q) =(2π)3
∫
d̃p δ4(p− q)Z + contributions from more than one particle

=Zδ(q2 −m2)θ(q0) + · · ·

❐ Therefore

∆′(x− y) = Z∆(x− y;m) +

∫ ∞

m2

1

dσ2ρ(σ2)∆(x− y;σ)

where m1 is the mass of the lightest state of two or more particles.
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❐ Finally noticing that

∂

∂x0
∆′(x− y)|x0=y0 =

∂

∂x0
∆(x− y;σ)|x0=y0 = −δ3(~x− ~y)

we get the relation

1 = Z +

∫ ∞

m2

1

dσ2ρ(σ2)

❐ This means

0 ≤ Z < 1

where this last step results from the assumed positivity of ρ(σ2).
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❐ In the same way as we reduced the dynamics of t→ −∞ to the free fields
ϕin, it is also possible to define in the limit t→ +∞ the corresponding free
fields, ϕout(x).

❐ These free fields will be the final state of a scattering problem.

❐ The formalism is copied from the case of ϕin, and therefore we will present
the results without going into the details of the derivations. ϕout(x) obey
the following relations:

i [Pµ, ϕout] = ∂µϕout

(⊔⊓+m2)ϕout = 0

and has the expansion

ϕout(x) =

∫
d̃k

[
aout(k)e

−ik·x + a†out(k)e
ik·x

]

❐ The asymptotic condition is now

lim
t→∞

〈α|ϕf (t) |β〉 =
√
Z 〈α|ϕf

out |β〉
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❐ Also

√
Zϕout(x) = ϕ(x)−

∫
d4y∆adv(x− y;m)j(y)

where the Green’s functions ∆adv satisfy

(⊔⊓x +m2)∆adv(x− y;m) = δ4(x− y)

∆adv(x− y;m) = 0 ; x0 > y0 .

❐ For one-particle states we get

〈0|ϕ(x)|p〉 =
√
Z 〈0|ϕout(x)|p〉

=
√
Z 〈0|ϕin(x)|p〉

=
√
Ze−ip·x
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❐ We have now all the formalism needed to study the transition amplitudes
from one initial state to a given final state, the so-called S matrix elements.
Let us start by an initial state with n non-interacting particles

|p1 · · · pn ; in〉 ≡ |α ; in〉

where p1 · · · pn are the 4-momenta of the n particles. Other quantum
numbers are assumed but not explicitly written.

❐ The final state will be, in general, a state with m particles

|p′1 · · · p′m ; out〉 ≡ |β ; out〉

❐ The S matrix element Sβα is defined by the amplitude

Sβα ≡ 〈β ; out|α ; in〉

❐ The S matrix is an operator that induces an isomorphism between the in
and out states, that by assumption are a complete set of states,

〈β ; out| = 〈β ; in|S , 〈β ; in| = 〈β ; out|S−1

〈β ; out|α ; in〉 = 〈β ; in|S|α ; in〉 = 〈β ; out|S|α; out〉
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❐ From the assumed properties for the states we can show the following results
for the S matrix.

i) 〈0|S|0〉 = 〈0|0〉 = 1 (stability and unicity of the vacuum)

ii) The stability of the one-particle states gives

〈p ; in|S|p ; in〉 = 〈p ; out|p ; in〉 = 〈p ; in|p ; out〉 = 1

because |p ; in〉 = |p ; out〉.
iii) ϕin(x) = Sϕout(x)S

−1

iv) The S matrix is unitary. To show this we have

δβα = 〈β ; out|α ; out〉 =
〈
β ; in|SS†|α ; in

〉

and therefore

SS† = 1
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v) The S matrix is Lorentz invariant. In fact we have

ϕin(ax+ b) =U(a, b)ϕin(x)U
−1(a, b) = USϕout(x)S

−1U−1

=USU−1ϕout(ax+ b)US−1U−1 .

But

ϕin(ax+ b) = Sϕout(ax+ b)S−1 ,

and therefore we get finally

S = U(a, b)SU−1(a, b) .
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❐ The S matrix elements are the quantities that are directly connected to the
experiment. In fact, |Sβα|2 represents the transition probability from the
initial state |α ; in〉 to the final |β ; out〉.

❐ We are going in this section to use the previous formalism to express these
matrix elements in terms of the so-called Green functions for the interacting
fields. In this way the problem of the calculation of these probabilities is
transferred to the problem of calculating these Green functions. These, of
course, can not be evaluated exactly, but we will learn in the next chapter
how to develop a covariant perturbation theory for that purpose.

❐ Let us then proceed to the derivation of the relation between the S matrix
elements and the the Green functions of the theory. This technique is known
as the LSZ reduction from the names of Lehmann, Symanzik e
Zimmermann that have introduced it. The starting point is, by definition

〈p1 · · · ; out|q1 · · · ; in〉 =
〈
p1, · · · ; out|a†in(q1)|q2, · · · ; in

〉

Using

a†in(q1) = −i
∫

t

d3xe−iq1·x ∂
↔

0ϕin(x)
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❐ The last integral is time-independent, and therefore can be calculated for an
arbitrary time t. If we take t→ −∞ and use the asymptotic condition for
the in fields, we get

〈p1 · · · ; out|q1 · · · ; in〉 =− lim
t→−∞

iZ−1/2
∫

t

d3xe−iq1·x∂
↔

0 〈p1 · · · ; out|ϕ(x)|q2 · · · ; in〉

❐ In a similar way one can show that

〈
p1 · · · ; out|a†out(q1)|q2 · · · ; in

〉
=

= − lim
t→∞

iZ−1/2
∫

t

d3xe−iq1·x ∂
↔

0 〈p1 · · · ; out|ϕ(x)|q2 · · · ; in〉 .

❐ Then, using the result,

(
lim
t→∞

− lim
t→−∞

)∫
d3xf(~x, t) = lim

tf→∞,ti→−∞

∫ tf

ti

dt
∂

∂t

∫
d3xf(~x, t)

=

∫
d4x∂0f(~x, t)
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❐ Subtracting the last two equations we get

〈p1 · · · ; out|q1 · · · ; in〉 =
〈
p1 · · · ; out|a†out(q1)|q2 · · · ; in

〉

+ iZ−1/2
∫
d4x ∂0

[
e−iq1·x∂

↔

0 〈p1 · · · ; out|ϕ(x)|q2 · · · ; in〉
]

❐ The first term on the right-hand side of corresponds to a sum of
disconnected terms, in which at least one of the particles is not affected by
the interaction (it will vanish if none of the initial momenta coincides with
one of the final momenta). Its form is

〈
p1 · · · ; out|a†out(q1)|q2 · · · ; in

〉
=

=

n∑

k=1

(2π)32p0k δ
3(~pk − ~q1) 〈p1, · · · , p̂k, · · · ; out|q2, · · · ; in〉

where p̂k means that this momentum was taken out from that state.
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❐ For the second term we write,
∫
d4x ∂0

[
e−iqix∂

↔

0 〈p1 · · · ; out|ϕ(x)|q2 · · · ; in〉
]

=

∫
d4x

[
−∂20e−iq1·x 〈· · · 〉+ e−iq1·x∂20 〈· · · 〉

]

=

∫
d4x

[
(−∆2 +m2)e−iq1·x 〈· · · 〉+ e−iq1·x∂20 〈· · · 〉

]

=

∫
d4xe−iq1·x(⊔⊓+m2) 〈p1 · · · ; out|ϕ(x)|q2 · · · ; in〉

where we have used (⊔⊓+m2)e−iq1·x = 0, and have performed an integration
by parts (whose justification would imply the substitution of plane waves by
wave packets).
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❐ Therefore, after this first step in the reduction we get,

〈p1, · · · pn; out|q1 · · · qℓ; in〉 =

=

n∑

k=1

2p0k(2π)
3δ3(~pk − ~q1) 〈p1, · · · p̂k; · · · pn; out|q2 · · · q2 · · · qℓ; in〉

+ iZ−1/2
∫
d4xe−iq1x(⊔⊓+m2) 〈p1 · · · pn; out|ϕ(x)|q2 · · · qℓ; in〉

❐ We will proceed with the process until all the momenta in the initial and
final state are exchanged by the field operators. To be specific, let us now
remove one momentum in the final state.

❐ From now on we will no longer consider the disconnected terms, because in
practice we are only interested in the cases where all the particles interact.
Once we know the cases where all the particles interact, we can always
calculate situations where some of the particles do not participate in the
scattering
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❐ We have then

〈p1 · · · pn; out|ϕ(x1)|q2 · · · qℓ; in〉 = 〈p2 · · · pn; out|aout(p1)ϕ(x1)|q2 · · · qℓ; in〉

= lim
y0

1
→∞

iZ−1/2
∫
d3y1 e

ip1·y1∂
↔

y0

1

〈p2 · · · pn; out|ϕ(y1)ϕ(x1)|q2 · · · qℓ; in〉

= 〈p2 · · · pn; out|ϕ(x1)ain(p1)|q2 · · · qℓ; in〉

+ lim
y0

1
→∞

iZ−1/2
∫
d3y1 e

ip1·y1∂
↔

y0

1

〈p2 · · · pn; out|ϕ(y1)ϕ(x1)|q2 · · · qℓ; in〉

− lim
y0

1
→−∞

iZ−1/2
∫
d3y1 e

ip1·y1∂
↔

y0

1

〈p2 · · · pn; out|ϕ(x1)ϕ(y1)|q2 · · · qℓ; in〉

= 〈p2 · · · pn; out|ϕ(x1)ain(p1)|q2 · · · qℓ; in〉

+iZ−1/2
(

lim
y0

1
→∞

− lim
y0

1
→−∞

)∫
d3y1e

ip1·y1∂
↔

y0

1

〈p2 · · · pn; out|Tϕ(y1)ϕ(x1)|q2 · · · qℓ; in〉
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❐ Applying the same procedure as before we obtain,

〈p1 · · · pn, ; out|ϕ(x1)|q2 · · · qℓ; in〉 = disconnected terms

+ iZ−1/2
∫
d4y1e

ip1·y1(⊔⊓y1
+m2) 〈p2 · · · pn; out|Tϕ(y1)ϕ(x1)|q2 · · · qℓ; in〉

❐ It is not very difficult to generalize this method to obtain the final reduction
formula for scalar fields,

〈p1 · · · pn; out|q1 · · · qℓ; in〉 = disconnected terms

+

(
i√
Z

)n+ℓ ∫
d4y1 · · · d4ynd4x1 · · · d4xℓe[i

∑n
1
pk·yk−i

∑ℓ
1
qr·xr]

(⊔⊓y1
+m2) · · · (⊔⊓xℓ

+m2) 〈0|Tϕ(y1) · · ·ϕ(yn)ϕ(x1) · · ·ϕ(xℓ)|0〉

❐ This last equation is the fundamental equation in quantum field theory. It
allows us to relate the transition amplitudes to the Green functions of the
theory.
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❐ The quantity

〈0|Tϕ(x1) · · ·ϕ(xn)|0〉 ≡ G(x1 · · ·xn)

is known as the complete green function for n = m+ ℓ particles

❐ We will introduce the following diagrammatic representation for it

G(x1 · · ·xn) =

x1 xi

xlxn

❐ The factors (⊔⊓+m2) in force the external particles to be on-shell. In fact, in
momentum space (⊔⊓+m2) → (−p2 +m2). Therefore the amplitude will
vanish unless the propagators of the external legs are on-shell, as in that case
they will have a pole, 1

p2−m2 . We conclude that for the transition amplitudes
only the truncated Green functions will contribute, that is the ones with the
external legs removed. In the next chapter we will learn how to evaluate
these Green functions in perturbation theory.
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❐ The definition of the in and out follows exactly the same steps as in the case
of the scalar fields. We will therefore, for simplicity, just state the results
with the details.

❐ The states ψin(x) satisfy the conditions,

(i∂/−m)ψin(x) = 0

[Pµ, ψin(x)] = −i∂µψin(x) .

❐ The states ψin(x) will create one-particle states and they are related with
the fields ψ(x) by,

√
Z2ψin(x) = ψ(x)−

∫
d4ySret(x− y,m)j(y)

where ψ(x) satisfies the Dirac equation,

(i∂/−m)ψ(x) = j(x)

and Sret is the retarded Green function for the Dirac equation,
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❐ Where the retarded Green function is

(i∂/x −m)Sret(x− y,m) = δ4(x− y)

Sret(x− y) = 0 ; x0 < y0

❐ The fields ψin(x), as free fields, have the Fourier expansion,

ψin(x) =

∫
d̃p

∑

s

[
bin(p, s)u(p, s)e

−ip·x + d†in(p, s)v(p, s)e
ip·x

]

where the operators bin, din satisfy exactly the same algebra as in the free
field case. The asymptotic condition is now,

lim
t→−∞

〈α|ψf (t) |β〉 =
√
Z2 〈α|ψf

in |β〉

where ψf (t) and ψf
in have a meaning similar to the scalar case

❐ For the ψout fields we get essentially the same expressions with ψin

substituted by ψout.
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❐ The main difference with respect to the in States is in the asymptotic
condition that now reads,

lim
t→∞

〈α|ψf (t) |β〉 =
√
Z2 〈α|ψf

out |β〉

implying the following relation between the fields ψout and ψ,

√
Z2ψout = ψ(x)−

∫
d4ySadv(x− y;m)j(y)

❐ The advanced Green function is defined by

(i∂/x −m)Sadv(x− y;m) = δ4(x− y)

Sadv(x− y;m) = 0 x0 > y0 .
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❐ Let us consider the vacuum expectation value of the anti-commutator of two
Dirac fields,

S′αβ(x, y) ≡i 〈0| {ψα(x), ψβ(y)} |0〉

=i
∑

n

[
〈0|ψα(0) |n〉 〈n|ψβ(0) |0〉 e−ipn(x−y)

+ 〈0|ψβ(0) |n〉 〈n|ψα(0) |0〉 eipn·(x−y)

]

≡S′αβ(x− y)

where we have introduced a complete set of eigen-states of the
4-momentum.

❐ As before we introduce the spectral amplitude ραβ(q),

ραβ(q) ≡ (2π)3
∑

n

δ4(pn − q) 〈0|ψα(0) |n〉 〈n|ψβ(0) |0〉
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❐ We will now find the most general form for ραβ(q) using Lorentz invariance
arguments. ραβ(q) is a 4× 4 matrix in Dirac space, and can be written as

ραβ(q) = ρ(q)δαβ + ρµ(q)γ
µ
αβ + ρµν(q)σ

µν
αβ + ρ̃(q)γ5αβ + ρ̃µ(q)(γ

µγ5)αβ

❐ Lorentz invariance arguments restrict the form of the coefficients ρ(q),
ρµ(q), ρµν(q), ρ̃(q) and ρ̃µ(q). Under Lorentz transformations the fields
transform as

U(a)ψα(0)U
−1(a) = S−1αλ (a)ψλ(0)

U(a)ψα(0)U
−1(a) = ψλ(0)Sλα(a)

S−1γµS = aµνγ
ν

❐ Then we can show that the matrix (in Dirac space), ραβ must obey the
relation,

ρ(q) = S−1(a)ρ(qa−1)S(a)

where we have used a matrix notation. This relation gives the properties of
the different coefficients
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❐ For instance,

ρµ(q) = aµνρ
ν(qa−1)

which means that ρµ transform as a 4−vector.

❐ Using the fact that ραβ is a function of q and vanishes outside the future
light cone, we can finally write

ραβ(q) = ρ1(q
2)q/αβ + ρ2(q

2)δαβ + ρ̃1(q
2)(q/γ5)αβ + ρ̃2(q

2)γ5αβ

that is, ραβ(q) is determined up to four scalar functions of q2.

❐ Requiring invariance under parity transformations we get

ραβ(~q, q0) = γ0αλρλδ(−~q, q0)γ0δβ

and we obtain,

ρ̃1 = ρ̃2 = 0
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❐ Therefore for the Dirac theory, that preserves parity, we get,

ραβ(q) = ρ1(q
2)q/αβ + ρ2(q

2)δαβ

❐ Repeating the steps of the scalar case we write,

S′αβ(x− y) =

∫ ∞

0

dσ2
{
ρ1(σ

2)Sαβ(x− y;σ)+

+
[
σρ1(σ

2)− ρ2(σ
2)
]
δαβ∆(x− y;σ)

}

where ∆ and Sαβ are the functions defined for free fields.

❐ We can then show that

i) ρ1 e ρ2 are real

ii) ρ1(σ
2) ≥ 0

iii) σρ1(σ
2)− ρ2(σ

2) ≥ 0

❐ Using the previous relations we can extract of the one-particle states
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❐ We get,

S′αβ(x− y) =Z2Sαβ(x− y;m)

+

∫ ∞

m2

1

dσ2

{
ρ1(σ

2)Sαβ(x− y;σ)

+
[
σρ1(σ

2)− ρ2(σ
2)
]
δαβ∆(x− y;σ)

}

where m1 is the threshold for the production of two or more particles.

❐ Evaluating at equal times we can obtain

1 = Z2 +

∫

m2

1

dσ2ρ1(σ
2)

that is

0 ≤ Z2 < 1
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❐ To get the reduction formula for fermions we will proceed as in the scalar
case.

❐ The only difficulty has to do with the spinor indices. The creation and
annihilation operators can be expressed in terms of the fields ψin by the
relations,

bin(p, s) =

∫
d3xu(p, s)eip·xγ0ψin(x)

d†in(p, s) =

∫
d3xv(p, s)e−ip·xγ0ψin(x)

b†in(p, s) =

∫
d3xψin(x)γ

0e−ip·xu(p, s)

din(p, s) =

∫
d3xψin(x)γ

0eip·xv(p, s)

with the integrals being time independent.

❐ In fact, to be more rigorous we should substitute the plane wave solutions by
wave packets, but as in the scalar case, to simplify matter we will not do it.
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❐ To establish the reduction formula we start by extracting one electron from
the initial state,

〈β; out|(ps)α; in〉 =
〈
β; out|b†in(p, s)|α, in

〉

= 〈β − (p, s); out|α; in〉+
〈
β; out|b†in(p, s)− b†out(p, s)|α; in

〉

=disconnected terms

+

∫
d3x

〈
β; out|ψin(x)− ψout(x)|α; in

〉
γ0e−ip·xu(p, s)

=disconnected terms

−
(

lim
t→+∞

− lim
t→−∞

)
1√
Z2

∫
d3x

〈
β; out|ψ(x)|α; in

〉
γ0e−ip·xu(p, s)

=disconnected terms

− Z
−1/2
2

∫
d4x

[〈
β; out|∂0ψ(x)|α; in

〉
γ0e−ip·xu(p, s)

+
〈
β; out|ψ(x)|α; in

〉
γ0∂0(e

−ip·xu(p, s))
]
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❐ Using now

(iγ0∂0 + iγi∂i −m)(e−ip·xu(p, s)) = 0

we get, after an integration by parts,

〈
β; out|b†in(ρ, s)|α; in

〉
= disconnected terms

− iZ
−1/2
2

∫
d4x

〈
β; out|ψ(x)|α; in

〉
(−i∂
←

/x −m)e−ip·xu(p, s)

❐ In a similar way the reduction of an anti-particle from the initial state gives,

〈
β; out|d†in(p, s)|α; in

〉
= disconnected terms

+ iZ
−1/2
2

∫
d4xe−ip·xv(p, s)(i∂/x −m) 〈β; out|ψ(x)|α; in〉
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❐ The reduction of a particle or of an anti-particle from the final state give,
respectively,

〈β; out|bout(p, s)|α; in〉 = disconnected terms

− iZ
−1/2
2

∫
d4xeip·xu(p, s)(i∂/x −m) 〈β; out|ψ(x)|α; in〉

and

〈β; out|dout(p, s)|α; in〉 = disconnected terms

+ iZ
−1/2
2

∫
d4x

〈
β; out|ψ(x)|α; in

〉
(−i∂
←

/x −m)v(p, s)eip·x

❐ Notice the formal relation between one electron in the initial state and a
positron in the final state. To go from one to the other one just has to do,

u(p, s)e−ip·x → −v(p, s)eip·x
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❐ To write the final expression we denote the momenta in the state 〈in| by pi
or pi, respectively for particles or anti-particles, and those in the state 〈out|
by p′i, p

′
i.

❐ We also make the following conventions (needed to define the global sign),

|(p1, s1), · · · , (p1, s1); · · · ; in〉 = b†in(p1, s1) · · · d
†
in(p1, s1) · · · |0〉

〈out; (p′1, s′1) · · · , (p′1, s′1) · · · | = 〈0| · · · dout(p′1, s′1), · · · bout(p′1, s′1)

❐ Then, if n(n′) denotes the total number of particles (anti-particles), we get

〈out; (p′1, s′1) · · · , (p′1, s′1) · · · |(p1, s1), · · · (p1, s1), · · · ; in〉 = disc. terms

+ (−iZ−1/22 )n(iZ
−1/2
2 )n

′

∫
d4x1 · · · d4y1 · · · d4x′1 · · · d4y′1 · · ·

e−i
∑

(pi·xi)−i
∑

(pi·yi)e+i
∑

(p′

i·x
′

i)+i
∑

(p′

i·y
′

i)

u(p′1, s
′
1)(i∂/x′

1
−m) · · · v(p1, s1)(i∂/y1

−m)

〈0|T (· · ·ψ(y′1) · · ·ψ(x′1)ψ(x1) · · ·ψ(y1) · · · |0〉

(−i∂
←

/x1
−m)u(p1, s1) · · · (−i∂

←

/y′

1
−m)v(p′1, s

′
1)
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❐ Last equation is the fundamental expression that allows to relate the
elements of the S matrix with the Green functions of the theory.

❐ The sign and ordering shown correspond to the previous conventions

❐ In terms of diagrams, we represent the Green function,

〈0|T
[
ψ(y′m′) · · ·ψ(y′1)ψ(x′ℓ′) · · ·ψ(x′1)ψ(x1) · · ·ψ(xℓ)ψ(y1) · · ·ψ(ym)

]
|0〉

by the diagram of the figure

❐ With lepton number conservation, the number of
particles minus anti-particles is conserved, that is

ℓ−m = ℓ′ −m′

❐ The operators (i∂/−m) e (−i∂
←

/−m) force the parti-
cles to be on-shell and remove the propagators from
the external lines (truncated Green functions). In the
next chapter we will learn how to determine these
functions in perturbation theory.

x1

x′1

y1

y′1

xl

x′l

ym

y′m
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❐ The LSZ formalism for photons, has some difficulties connected with the
problems in quantizing the electromagnetic field. When one adopts a
formalism (radiation gauge) where the only components of the field Aµ are
transverse, the problems arise in showing the Lorentz and gauge invariance
of the S matrix. In the formalism of the undefined metric, the difficulties are
connected with the states of negative norm, besides the gauge invariance.

❐ We will see later a more satisfactory procedure to quantize all gauge
theories, including Maxwell theory of the electromagnetic field and the
resulting perturbation theory coincides with the one we get here. This is our
justification to assume that we can define the in fields by the relation,

√
Z3A

µ
in(x) = Aµ(x)−

∫
d4yDµν

ret(x− y)jν(y)

and in the same way for the out fields,

√
Z3A

µ
out(x) = Aµ(x)−

∫
d4yDµν

adv(x− y)jν(y)

where

⊔⊓Aµ
in = ⊔⊓Aµ

out = 0 , ⊔⊓Aµ = jµ and ⊔⊓Dµν
adv, ret = δµνδµ(x− y)
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❐ The fields in and out are free fields, and therefore they have a Fourier
expansion in plane waves and creation and annihilation operators of the form

Aµ
in(x) =

∫
d̃k

3∑

λ=0

[
ain(k, λ)ε

µ(k, λ)e−ik·x + a†in(k, λ)ε
µ∗(k, λ)eik·x

]

❐ Where

ain(k, λ) =− i

∫
d3xeik·x∂

↔

0ε
µ(k, λ)Ain

µ (x)

a†in(k, λ) =i

∫
d3xe−ik·x∂

↔

0ε
µ∗(k, λ)Ain

µ (x)

and, as usual, ain(k, λ) and a
†
in(k, λ) are time independent.

❐ Above, all the polarizations appear, but as the elements of the S matrix are
between physical states, we are sure that the longitudinal and scalar
polarizations do not contribute.

❐ In this formalism what is difficult to show is the spectral decomposition. We
are not going to enter those details, just state that we can show that Z3 is
gauge independent and satisfies 0 ≤ Z3 < 1.



Reduction formula for photons

Lecture 3

Physical states

LSZ Reduction

Fermions

Photons

• LSZ for photons

Cross sections

Jorge C. Romão TCA-2012 – 45

❐ The reduction formula is easily obtained. We get

〈β; out|(kλ)α; in〉 = 〈β − (k, λ); out|α; in〉+
〈
β; out|a†in(k, λ)− a†out(k, λ)|α; in

〉

= disconnected terms

+ i

∫
d3xe−ik·x∂

↔

0ε
∗
µ(k, λ) 〈β; out|Aµ

in(x)−Aµ
out(x)|α; in〉

= disconnected terms

− i( lim
t→+∞

− lim
t→−∞

)Z
−1/2
3

∫
d3xe−ik·x∂

↔

0 〈β; out|Aµ(x)|α; in〉 ε∗µ(k, λ)

= disconnected terms

− iZ
−1/2
3

∫
d4xe−ik·x∂

↔

0 〈β; out|Aµ(x)|α; in〉 ε∗µ(k, λ)

= disconnected terms

− iZ
−1/2
3

∫
d4xe−ik·x~⊔⊓x 〈β; out|Aµ(x)|α; in〉 ε∗µ(k, λ)
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❐ The final formula for photons is then

〈k′1 · · · k′n; out|k1 · · · kℓ; in〉 = disconnected terms

+

( −i√
Z3

)n+ℓ ∫
d4y1 · · · d4ynd4x1 · · · d4xℓ e[i

∑n k′

i·yi−i
∑ℓ ki·xi]

εµ1(k1, λ1) · · · εµℓ(kℓ, λℓ)ε
∗µ′

1(k′1, λ
′
1) · · · ε∗µ

′

n(k′n, λ
′
n)

⊔⊓y1
· · · ⊔⊓xℓ

〈0|T (Aµ′

1
(y1) · · ·Aµ′

n
(yn)Aµ1

(x1) · · ·Aµℓ
(xℓ) |0〉

❐ This corresponds to the diagram

x1 xi

xlxn
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❐ The reduction formulas are the fundamental results of this chapter. They
relate the transition amplitudes from the initial to the final state with the
Green functions of the theory. In the next chapter we will show how to
evaluate these Green functions setting up the so-called covariant
perturbation theory. Before we close this chapter, let us indicate how these
transition amplitudes

Sfi ≡ 〈f ; out|i; in〉

are related with the quantities that are experimentally accessible, the cross
sections. Then the path between experiment (cross sections) and theory
(Green functions) will be established.

❐ As we have seen in the reduction formulas there is always a trivial
contribution to the S matrix, that corresponds to the so-called disconnected

terms, when the system goes from the initial to the final state without
interaction. The subtraction of this trivial contribution leads to the T matrix

Sfi = 1fi − i(2π)4δ4(Pf − Pi)Tfi

where we have factorized explicitly the delta function expressing the
4-momentum conservation.
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❐ If we neglect the trivial contribution, the transition probability from the
initial to the final state will be given by

Wf←i =
∣∣(2π)4δ4(Pf − Pi)Tfi

∣∣2

❐ To proceed we have to deal with the meaning of a square of a delta function.
This appears because we are using plane waves. To solve this problem we
can normalize in a box of volume V and consider that the interaction has a
duration of T . Then

(2π)4δ4(Pf − Pi) = lim
V → ∞
T → ∞

∫

V

d3x

∫ T/2

−T/2

dx0ei(Pf−Pi)·x .

❐ However

F ≡
∫

V

d3x

∫ T/2

−T/2

dx0ei(Pf−Pi)·x = V δ~Pf
~Pj

2

|Ef − Ei|
sin

∣∣∣∣
T

2
(Ef − Ei)

∣∣∣∣

and the square of the last expression can be done, giving,

|F |2 = V 2δ~Pf , ~Pi

4

|Ef − Ei|2
sin2

∣∣∣∣
T

2
(Ef − Ei)

∣∣∣∣
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❐ If we want the transition rate by unit of volume (and unit of time) we divide
by V T . Then

Γfi = lim
V → ∞
T → ∞

V δ~Pf , ~Pi
2
sin2 T

2 (Ef − Ei)
T
2 (Ef − Ei)2

|Tfi|2

❐ Using now the results

lim
V→∞

V δ~Pf
~Pj

= (2π)3δ3(~Pf − ~Pi)

lim
T→∞

2
sin2 T

2 (Ef − Ei)
T
2 (Ef − Ei)2

= (2π) δ(Ef − Ei)

we get for the transition rate by unit volume and unit time,

Γfi ≡ (2π)4δ4(Pf − Pi)|Tfi|2

❐ To get the cross section we have to further divide by the incident flux, and
normalize the particle densities to one particle per unit volume. Finally, we
sum (integrate) over all final states in a certain energy-momentum range.
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❐ We get,

dσ =
1

ρ1ρ2

1

|~v12|
Γfi

n∏

j=3

d3pj
2p0j(2π)

3

where ρ1 = 2E1 and ρ2 = 2E2

❐ An equivalent way of writing this equation is

dσ =
1

4 [(pi · p2)2 −m2
1m

2
2]

1/2
(2π)4δ4(Pf − Pi)|Tfi|2

n∏

j=3

dpj

that exhibits well the Lorentz invariance of each part that enters the cross
section along the direction of collision. The incident flux and phase space
factors are purely kinematics. The physics, with its interactions, is in the
matrix element Tfi.

❐ We note that with our conventions, fermion and boson fields have the same
normalization, that is, the one-particle states obey

〈p|p′〉 = 2p0(2π)3δ3(~p− ~p′)
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