Advanced Quantum Field Theory Chapter 2
 Physical States. S Matrix. LSZ Reduction

Jorge C. Romão
Instituto Superior Técnico, Departamento de Física \& CFTP
A. Rovisco Pais 1, 1049-001 Lisboa, Portugal

Fall 2013

Physical states

Lecture 3

Physical states

Lecture 3

- In states
- Spectral rep
- Out States

LSZ Reduction
Fermions
Photons
Cross sections
\square In the previous chapter we saw, for the case of free fields, how to construct the space of states, the so-called Fock space of the theory. When we consider the real physical case, with interactions, we are no longer able to solve the problem exactly. For instance, the interaction between electrons and photons is given by a set of nonlinear coupled equations,

$$
\begin{aligned}
& (i \not \partial-m) \psi=e A \psi \\
& \partial_{\mu} F^{\mu \nu}=e \bar{\psi} \gamma^{\nu} \psi
\end{aligned}
$$

that do not have an exact solution.
ㅁ In practice we have to resort to approximation methods. In the following chapter we will learn how to develop a covariant perturbation theory. Here we are going just to study the general properties of the theory.
\square Let us start by the physical states. As we do not know how to solve the problem exactly, we can not prove the assumptions we are going to make about these states. However, these are reasonable assumptions, based on Lorentz covariance. We choose our states to be eigenstates of energy and momentum, and of all the other observables that commute with P^{μ}.

Physical states

Lecture 3
Physical states

- In states
- Spectral rep
- Out States

LSZ Reduction
Fermions
Photons
Cross sections
a Besides that, we will also assume the following properties:

- The eigenvalues of p^{2} are non-negative and $p^{0}>0$.
- There exists one non-degenerate base state, with the minimum of energy, which is Lorentz invariant. This state is called the vacuum state $|0\rangle$ and by convention

$$
p^{\mu}|0\rangle=0
$$

- There exist one particle states $\left|p^{(i)}\right\rangle$, such that,

$$
p_{\mu}^{(i)} p^{(i) \mu}=m_{i}^{2}
$$

for each stable particle with mass m_{i}.

- The vacuum and the one-particle states constitute the discrete spectrum of p^{ν}.

Lecture 3
Physical states
\square As we are mainly interested in scattering problems, we should construct states that have a simple interpretation in the limit $t \rightarrow-\infty$. At that time, the particles that are going to participate in the scattering process have not interacted yet (we assume that the interactions are adiabatically switched off when $|t| \rightarrow \infty$ which is appropriate for scattering problems).
\square We look for operators that create one particle states with the physical mass. To be explicit, we start by an hermitian scalar field given by the Lagrangian

$$
\mathcal{L}=\frac{1}{2} \partial^{\mu} \varphi \partial_{\mu} \varphi-\frac{1}{2} m^{2} \varphi^{2}-V(x)
$$

where $V(x)$ is an operator made of more than two interacting fields φ at point x. For instance, those interactions can be self-interactions of the type

$$
V(x)=\frac{\lambda}{4!} \varphi^{4}(x)
$$

\square The field φ satisfies the following equation of motion

$$
\left(\square+m^{2}\right) \varphi(x)=-\frac{\partial V}{\partial \varphi(x)} \equiv j(x)
$$

In states

Lecture 3
Physical states

- In states
- Spectral rep
- Out States

LSZ Reduction
Fermions
Photons
Cross sections
\square The equal time canonical commutation relations are,

$$
\begin{aligned}
& {[\varphi(\vec{x}, t) \varphi(\vec{y}, t)]=[\pi(\vec{x}, t) \pi(\vec{y}, t)]=0} \\
& {[\pi(\vec{x}, t), \varphi(\vec{y}, t)]=-i \delta^{3}(\vec{x}-\vec{y}), \quad \text { where } \quad \pi(x)=\dot{\varphi}(x)}
\end{aligned}
$$

if we assume that $V(x)$ has no derivatives.
\square We designate by $\varphi_{i n}(x)$ the operator that creates one-particle states. It will be a functional of the fields $\varphi(x)$. Its existence will be shown by explicit construction. We require that $\varphi_{i n}(x)$ must satisfy the conditions:
i) $\varphi_{\text {in }}(x)$ and $\varphi(x)$ transform in the same way for translations and Lorentz transformations. For translations we have then

$$
i\left[P^{\mu}, \varphi_{i n}(x)\right]=\partial^{\mu} \varphi_{i n}(x)
$$

ii) The spacetime evolution of $\varphi_{i n}(x)$ corresponds to that of a free particle of mass m, that is

$$
\left(\square+m^{2}\right) \varphi_{i n}(x)=0
$$

In states

Lecture 3
Physical states

- Spectral rep
- Out States

LSZ Reduction
Fermions
Photons
Cross sections
\square From these definitions it follows that $\varphi_{i n}(x)$ creates one-particle states from the vacuum. In fact, let us consider a state $|n\rangle$, such that,

$$
P^{\mu}|n\rangle=p_{n}^{\mu}|n\rangle
$$

\square Then

$$
\partial^{\mu}\langle n| \varphi_{i n}(x)|0\rangle=i\langle n|\left[P^{\mu}, \varphi_{i n}(x)\right]|0\rangle=i p_{n}^{\mu}\langle n| \varphi_{i n}(x)|0\rangle
$$

and therefore

$$
\square\langle n| \varphi_{i n}(x)|0\rangle=-p_{n}^{2}\langle n| \varphi_{i n}(x)|0\rangle
$$

\square Then

$$
\left(\square+m^{2}\right)\langle n| \varphi_{i n}(x)|0\rangle=\left(m^{2}-p_{n}^{2}\right)\langle n| \varphi_{i n}(x)|0\rangle=0
$$

where we have used the fact that $\varphi_{i n}(x)$ is a free field
\square Therefore the states created from the vacuum by $\varphi_{i n}$ are those for which $p_{n}^{2}=m^{2}$, that is, the one-particle states of mass m

In states

Lecture 3
Physical states

- In states

- Spectral rep
- Out States

LSZ Reduction
Fermions

Photons

Cross sections

- The Fourier decomposition of $\varphi_{i n}(x)$ is then the same as for free fields,

$$
\varphi_{i n}(x)=\int \widetilde{d k}\left[a_{i n}(k) e^{-i k \cdot x}+a_{i n}^{\dagger}(k) e^{i k \cdot x}\right]
$$

where $a_{i n}(k)$ and $a_{i n}^{\dagger}(k)$ satisfy the usual algebra for creation and annihilation operators. In particular, by repeated use of $a_{i n}^{\dagger}(k)$ we can create one state of n particles.
\square To express $\varphi_{\text {in }}(x)$ in terms of $\varphi(x)$ we start by introducing the retarded Green's function of the Klein-Gordon operator,

$$
\left(\square_{x}+m^{2}\right) \Delta_{\mathrm{ret}}(x-y ; m)=\delta^{4}(x-y)
$$

where

$$
\Delta_{\mathrm{ret}}(x-y ; m)=0 \text { if } x^{0}<y^{0}
$$

ㅁ We can then write

$$
\sqrt{Z} \varphi_{i n}(x)=\varphi(x)-\int d^{4} y \Delta_{\mathrm{ret}}(x-y ; m) j(y)
$$

In states

Lecture 3
Physical states

- Spectral rep
- Out States

LSZ Reduction
Fermions
Photons
Cross sections
\square The field $\varphi_{i n}(x)$, satisfies the two initial conditions.
\square The constant \sqrt{Z} was introduced to normalize $\varphi_{i n}$ in such a way that it has amplitude 1 to create one-particle states from the vacuum. The fact that $\Delta_{\text {ret }}=0$ for $x_{0} \rightarrow-\infty$, suggests that $\sqrt{Z} \varphi_{\text {in }}(x)$ is, in some way, the limit of $\varphi(x)$ when $x_{0} \rightarrow-\infty$.
\square In fact, as φ and $\varphi_{\text {in }}$ are operators, the correct asymptotic condition must be set on the matrix elements of the operators. Let $|\alpha\rangle$ and $|\beta\rangle$ be two normalized states. We define the operators

$$
\varphi^{f}(t)=i \int d^{3} x f^{*}(x) \stackrel{\leftrightarrow}{\partial}_{0} \varphi(x), \quad \varphi_{i n}^{f}=i \int d^{3} x f^{*}(x) \stackrel{\leftrightarrow}{\partial}_{0} \varphi_{i n}(x)
$$

where $f(x)$ is a normalized solution of the Klein-Gordon equation. $\varphi_{i n}^{f}$ does not depend on time (for plane waves $f=e^{-i k \cdot x}$ and $\varphi_{i n}^{f}=a_{i n}$).
\square Then the asymptotic condition of Lehmann, Symanzik e Zimmermann (LSZ), is

$$
\lim _{t \rightarrow-\infty}\langle\alpha| \varphi^{f}(t)|\beta\rangle=\sqrt{Z}\langle\alpha| \varphi_{i n}^{f}|\beta\rangle
$$

Spectral representation for scalar fields

\square We saw that Z had a physical meaning as the square of the amplitude for the field $\varphi(x)$ to create one-particle states from the vacuum. Let us now find a formal expression for Z and show that $0 \leq Z \leq 1$.
\square We start by calculating the expectation value in the vacuum of the commutator of two fields,

$$
i \Delta^{\prime}(x, y) \equiv\langle 0|[\varphi(x), \varphi(y)]|0\rangle
$$

- As we do not know how to solve the equations for the interacting fields φ, we can not solve exactly the problem of finding the Δ^{\prime}, in contrast with the free field case. We can, however, determine its form using general arguments of Lorentz invariance and the assumed spectra for the physical states.
\square We introduce a complete set of states between the two operators and we use the invariance under translations in order to obtain,

$$
\begin{aligned}
\langle n| \varphi(y)|m\rangle & =\langle n| e^{i P \cdot y} \varphi(0) e^{-i P \cdot y}|m\rangle \\
& =e^{i\left(p_{n}-p_{m}\right) \cdot y}\langle n| \varphi(0)|m\rangle
\end{aligned}
$$

Spectral representation for scalar fields

\square Therefore we get

$$
\begin{aligned}
\Delta^{\prime}(x, y) & =-i \sum_{n}\langle 0| \varphi(0)|n\rangle\langle n| \varphi(0)|0\rangle\left(e^{-i p_{n} \cdot(x-y)}-e^{i p_{n} \cdot(x-y)}\right) \\
& \equiv \Delta^{\prime}(x-y)
\end{aligned}
$$

that is, like in the free field case, Δ^{\prime} is only a function of the difference $x-y$.
\square Introducing now

$$
1=\int d^{4} q \delta^{4}\left(q-p_{n}\right)
$$

we get

$$
\begin{aligned}
\Delta^{\prime}(x-y) & \left.=-\left.i \int \frac{d^{4} q}{(2 \pi)^{3}}\left[(2 \pi)^{3} \sum_{n} \delta^{4}\left(p_{n}-q\right)|\langle 0| \varphi(0)| n\right\rangle\right|^{2}\right]\left(e^{-i q \cdot(x-y)}-e^{i q \cdot(x-y)}\right) \\
& =-i \int \frac{d^{4} q}{(2 \pi)^{3}} \rho(q)\left(e^{-i q \cdot(x-y)}-e^{i q \cdot(x-y)}\right)
\end{aligned}
$$

Spectral representation for scalar fields

\square We have defined the density $\rho(q)$ (spectral amplitude),

$$
\left.\rho(q)=(2 \pi)^{3} \sum_{n} \delta^{4}\left(p_{n}-q\right)|\langle 0| \varphi(0)| n\right\rangle\left.\right|^{2}
$$

\square This spectral amplitude measures the contribution to Δ^{\prime} of the states with 4-momentum $q^{\mu} . \rho(q)$ is Lorentz invariant (as can be shown using the invariance of $\varphi(x)$ and the properties of the vacuum and of the states $|n\rangle$) and vanishes when q is not in future light cone, due the assumed properties of the physical states.
ㅁ Then we can write

$$
\rho(q)=\bar{\rho}\left(q^{2}\right) \theta\left(q^{0}\right)
$$

and we get

$$
\begin{aligned}
\Delta^{\prime}(x-y) & =-i \int \frac{d^{4} q}{(2 \pi)^{3}} \bar{\rho}\left(q^{2}\right) \theta\left(q^{0}\right)\left(e^{-i q \cdot(x-y)}-e^{i q \cdot(x-y)}\right) \\
& =-i \int \frac{d^{4} q}{(2 \pi)^{3}} \int d \sigma^{2} \delta\left(q^{2}-\sigma^{2}\right) \bar{\rho}\left(\sigma^{2}\right) \theta\left(q^{0}\right)\left[e^{-i q \cdot(x-y)}-e^{i q \cdot(x-y)}\right] \\
& =\int_{0}^{\infty} d \sigma^{2} \bar{\rho}\left(\sigma^{2}\right) \Delta(x-y ; \sigma)
\end{aligned}
$$

Spectral representation for scalar fields

- Where

$$
\Delta(x-y ; \sigma)=-i \int \frac{d^{4} q}{(2 \pi)^{3}} \delta\left(q^{2}-\sigma^{2}\right) \theta\left(q^{0}\right)\left(e^{-i q \cdot(x-y)}-e^{i q \cdot(x-y)}\right)
$$

is the invariant function for the commutator of free fields with mass σ.

Lecture 3
Physical states

- In states
\square The above relation is known as the spectral decomposition of the commutator of two fields. This expression will allow us to show that $0 \leq Z<1$.
\square To show that, we separate the states of one-particle from the sum. Let $|p\rangle$ be a one-particle state with momentum p. Then

$$
\begin{aligned}
\langle 0| \varphi(x)|p\rangle & =\sqrt{Z}\langle 0| \varphi_{\text {in }}(x)|p\rangle+\int d^{4} y \Delta_{\mathrm{ret}}(x-y ; m)\langle 0| j(y)|p\rangle \\
& =\sqrt{Z}\langle 0| \varphi_{\text {in }}(x)|p\rangle
\end{aligned}
$$

where we have used

$$
\begin{aligned}
\langle 0| j(y)|p\rangle & =\langle 0|\left(\square+m^{2}\right) \varphi(y)|p\rangle=\left(\square+m^{2}\right) e^{-i p \cdot y}\langle 0| \varphi(0)|p\rangle \\
& =\left(m^{2}-p^{2}\right) e^{-i p \cdot y}\langle 0| \varphi(0)|p\rangle=0
\end{aligned}
$$

Spectral representation for scalar fields

\square On the other hand

Lecture 3
Physical states

- In states

$$
\begin{aligned}
\langle 0| \varphi_{i n}(x)|p\rangle & =\int \frac{d^{3} k}{(2 \pi)^{3} 2 \omega_{k}} e^{-i k \cdot x}\langle 0| a_{i n}(k)|p\rangle \\
& =e^{-i p \cdot x}
\end{aligned}
$$

and then

$$
\begin{aligned}
\rho(q) & =(2 \pi)^{3} \int \widetilde{d p} \delta^{4}(p-q) Z+\text { contributions from more than one particle } \\
& =Z \delta\left(q^{2}-m^{2}\right) \theta\left(q^{0}\right)+\cdots
\end{aligned}
$$

- Therefore

$$
\Delta^{\prime}(x-y)=Z \Delta(x-y ; m)+\int_{m_{1}^{2}}^{\infty} d \sigma^{2} \bar{\rho}\left(\sigma^{2}\right) \Delta(x-y ; \sigma)
$$

where m_{1} is the mass of the lightest state of two or more particles.

Spectral representation for scalar fields

\square Finally noticing that

$$
\left.\frac{\partial}{\partial x^{0}} \Delta^{\prime}(x-y)\right|_{x^{0}=y^{0}}=\left.\frac{\partial}{\partial x^{0}} \Delta(x-y ; \sigma)\right|_{x^{0}=y^{0}}=-\delta^{3}(\vec{x}-\vec{y})
$$

we get the relation

$$
1=Z+\int_{m_{1}^{2}}^{\infty} d \sigma^{2} \bar{\rho}\left(\sigma^{2}\right)
$$

\square This means

$$
0 \leq Z<1
$$

where this last step results from the assumed positivity of $\bar{\rho}\left(\sigma^{2}\right)$.

Out states

Lecture 3
Physical states

- In states
- Spectral rep
\square In the same way as we reduced the dynamics of $t \rightarrow-\infty$ to the free fields $\varphi_{i n}$, it is also possible to define in the limit $t \rightarrow+\infty$ the corresponding free fields, $\varphi_{\text {out }}(x)$.
\square These free fields will be the final state of a scattering problem.
\square The formalism is copied from the case of $\varphi_{i n}$, and therefore we will present the results without going into the details of the derivations. $\varphi_{\text {out }}(x)$ obey the following relations:

$$
\begin{aligned}
& i\left[P^{\mu}, \varphi_{\text {out }}\right]=\partial^{\mu} \varphi_{\text {out }} \\
& \left(\square+m^{2}\right) \varphi_{\text {out }}=0
\end{aligned}
$$

and has the expansion

$$
\varphi_{\text {out }}(x)=\int \widetilde{d k}\left[a_{\text {out }}(k) e^{-i k \cdot x}+a_{\text {out }}^{\dagger}(k) e^{i k \cdot x}\right]
$$

व The asymptotic condition is now

$$
\lim _{t \rightarrow \infty}\langle\alpha| \varphi^{f}(t)|\beta\rangle=\sqrt{Z}\langle\alpha| \varphi_{\text {out }}^{f}|\beta\rangle
$$

Out states

ㅁ Also

Lecture 3
Physical states

- In states
- Spectral rep

LSZ Reduction
Fermions
Photons
Cross sections

$$
\sqrt{Z} \varphi_{o u t}(x)=\varphi(x)-\int d^{4} y \Delta_{\mathrm{adv}}(x-y ; m) j(y)
$$

where the Green's functions $\Delta_{\text {adv }}$ satisfy

$$
\begin{aligned}
& \left(\square_{x}+m^{2}\right) \Delta_{\mathrm{adv}}(x-y ; m)=\delta^{4}(x-y) \\
& \Delta_{\mathrm{adv}}(x-y ; m)=0 \quad ; \quad x^{0}>y^{0} .
\end{aligned}
$$

\square For one-particle states we get

$$
\begin{aligned}
\langle 0| \varphi(x)|p\rangle & =\sqrt{Z}\langle 0| \varphi_{\text {out }}(x)|p\rangle \\
& =\sqrt{Z}\langle 0| \varphi_{\text {in }}(x)|p\rangle \\
& =\sqrt{Z} e^{-i p \cdot x}
\end{aligned}
$$

Lecture 3
Physical states

- In states
- Spectral rep
\square We have now all the formalism needed to study the transition amplitudes from one initial state to a given final state, the so-called S matrix elements. Let us start by an initial state with n non-interacting particles

$$
\left|p_{1} \cdots p_{n} ; i n\right\rangle \equiv|\alpha ; i n\rangle
$$

where $p_{1} \cdots p_{n}$ are the 4 -momenta of the n particles. Other quantum numbers are assumed but not explicitly written.

- The final state will be, in general, a state with m particles

$$
\left.\left.\mid p_{1}^{\prime} \cdots p_{m}^{\prime} ; \text { out }\right\rangle \equiv \mid \beta ; \text { out }\right\rangle
$$

口 The S matrix element $S_{\beta \alpha}$ is defined by the amplitude

$$
\left.S_{\beta \alpha} \equiv\langle\beta ; \text { out }| \alpha ; \text { in }\right\rangle
$$

\square The S matrix is an operator that induces an isomorphism between the in and out states, that by assumption are a complete set of states,

$$
\begin{aligned}
& \langle\beta ; \text { out }|=\langle\beta ; \text { in }| S, \quad\langle\beta ; \text { in }|=\langle\beta ; \text { out }| S^{-1} \\
& \langle\beta ; \text { out }| \alpha ; \text { in }\rangle=\langle\beta ; \text { in }| S \mid \alpha ; \text { in }\rangle=\langle\beta ; \text { out }| S \mid \alpha ; \text { out }\rangle
\end{aligned}
$$

\square From the assumed properties for the states we can show the following results for the S matrix.
i) $\langle 0| S|0\rangle=\langle 0 \mid 0\rangle=1$ (stability and unicity of the vacuum)
ii) The stability of the one-particle states gives

$$
\langle p ; \text { in }| S \mid p ; \text { in }\rangle=\langle p ; \text { out }| p ; \text { in }\rangle=\langle p ; \text { in }| p ; \text { out }\rangle=1
$$

$$
\text { because } \mid p ; \text { in }\rangle=\mid p ; \text { out }\rangle \text {. }
$$

iii) $\varphi_{\text {in }}(x)=S \varphi_{\text {out }}(x) S^{-1}$
iv) The S matrix is unitary. To show this we have

$$
\left.\left.\delta_{\beta \alpha}=\langle\beta ; \text { out }| \alpha ; \text { out }\right\rangle=\langle\beta ; \text { in }| S S^{\dagger} \mid \alpha ; \text { in }\right\rangle
$$

and therefore

$$
S S^{\dagger}=1
$$

v) The S matrix is Lorentz invariant. In fact we have

Lecture 3

Physical states

- In states
- Spectral rep

$$
\begin{aligned}
\varphi_{i n}(a x+b) & =U(a, b) \varphi_{i n}(x) U^{-1}(a, b)=U S \varphi_{o u t}(x) S^{-1} U^{-1} \\
& =U S U^{-1} \varphi_{o u t}(a x+b) U S^{-1} U^{-1}
\end{aligned}
$$

But

$$
\varphi_{\text {in }}(a x+b)=S \varphi_{\text {out }}(a x+b) S^{-1}
$$

and therefore we get finally

$$
S=U(a, b) S U^{-1}(a, b)
$$

LSZ reduction formula for scalar fields

\square The S matrix elements are the quantities that are directly connected to the experiment. In fact, $\left|S_{\beta \alpha}\right|^{2}$ represents the transition probability from the initial state $\mid \alpha ;$ in \rangle to the final $\mid \beta ;$ out \rangle.
\square We are going in this section to use the previous formalism to express these matrix elements in terms of the so-called Green functions for the interacting fields. In this way the problem of the calculation of these probabilities is transferred to the problem of calculating these Green functions. These, of course, can not be evaluated exactly, but we will learn in the next chapter how to develop a covariant perturbation theory for that purpose.
\square Let us then proceed to the derivation of the relation between the S matrix elements and the the Green functions of the theory. This technique is known as the $L S Z$ reduction from the names of Lehmann, Symanzik e Zimmermann that have introduced it. The starting point is, by definition

$$
\left.\left.\left\langle p_{1} \cdots ; \text { out }\right| q_{1} \cdots ; \text { in }\right\rangle=\left\langle p_{1}, \cdots ; \text { out }\right| a_{i n}^{\dagger}\left(q_{1}\right) \mid q_{2}, \cdots ; \text { in }\right\rangle
$$

Using

$$
a_{i n}^{\dagger}\left(q_{1}\right)=-i \int_{t} d^{3} x e^{-i q_{1} \cdot x} \stackrel{\leftrightarrow}{\partial}_{0} \varphi_{i n}(x)
$$

LSZ reduction formula for scalar fields

\square The last integral is time-independent, and therefore can be calculated for an arbitrary time t. If we take $t \rightarrow-\infty$ and use the asymptotic condition for the in fields, we get
$\left\langle p_{1} \cdots ;\right.$ out $| q_{1} \cdots ;$ in $\rangle=-\lim _{t \rightarrow-\infty} i Z^{-1 / 2} \int_{t} d^{3} x e^{-i q_{1} \cdot x} \stackrel{\leftrightarrow}{\partial}_{0}\left\langle p_{1} \cdots ;\right.$ out $| \varphi(x) \mid q_{2} \cdots ;$ in \rangle
\square In a similar way one can show that

$$
\begin{aligned}
& \left.\left\langle p_{1} \cdots ; \text { out }\right| a_{\text {out }}^{\dagger}\left(q_{1}\right) \mid q_{2} \cdots ; \text { in }\right\rangle= \\
& \left.=-\lim _{t \rightarrow \infty} i Z^{-1 / 2} \int_{t} d^{3} x e^{-i q_{1} \cdot x} \stackrel{\leftrightarrow}{\partial}_{0}\left\langle p_{1} \cdots ; \text { out }\right| \varphi(x) \mid q_{2} \cdots ; \text { in }\right\rangle
\end{aligned}
$$

- Then, using the result,

$$
\begin{aligned}
\left(\lim _{t \rightarrow \infty}-\lim _{t \rightarrow-\infty}\right) \int d^{3} x f(\vec{x}, t) & =\lim _{t_{f} \rightarrow \infty, t_{i} \rightarrow-\infty} \int_{t_{i}}^{t_{f}} d t \frac{\partial}{\partial t} \int d^{3} x f(\vec{x}, t) \\
& =\int d^{4} x \partial_{0} f(\vec{x}, t)
\end{aligned}
$$

LSZ reduction formula for scalar fields

\square Subtracting the last two equations we get

Lecture 3
Physical states

$$
\begin{aligned}
& \left.\left.\left\langle p_{1} \cdots ; \text { out }\right| q_{1} \cdots ; \text { in }\right\rangle=\left\langle p_{1} \cdots ; \text { out }\right| a_{\text {out }}^{\dagger}\left(q_{1}\right) \mid q_{2} \cdots ; \text { in }\right\rangle \\
& \left.\quad+i Z^{-1 / 2} \int d^{4} x \partial_{0}\left[e^{-i q_{1} \cdot x} \stackrel{\leftrightarrow}{\partial}_{0}\left\langle p_{1} \cdots ; \text { out }\right| \varphi(x) \mid q_{2} \cdots ; \text { in }\right\rangle\right]
\end{aligned}
$$

\square The first term on the right-hand side of corresponds to a sum of disconnected terms, in which at least one of the particles is not affected by the interaction (it will vanish if none of the initial momenta coincides with one of the final momenta). Its form is

$$
\begin{aligned}
& \left.\left\langle p_{1} \cdots ; \text { out }\right| a_{\text {out }}^{\dagger}\left(q_{1}\right) \mid q_{2} \cdots ; \text { in }\right\rangle= \\
& \left.\quad=\sum_{k=1}^{n}(2 \pi)^{3} 2 p_{k}^{0} \delta^{3}\left(\vec{p}_{k}-\vec{q}_{1}\right)\left\langle p_{1}, \cdots, \widehat{p}_{k}, \cdots ; \text { out }\right| q_{2}, \cdots ; \text { in }\right\rangle
\end{aligned}
$$

where \widehat{p}_{k} means that this momentum was taken out from that state.

LSZ reduction formula for scalar fields

\square For the second term we write,

Lecture 3
Physical states
LSZ Reduction
Fermions
Photons
Cross sections

$$
\begin{aligned}
& \left.\int d^{4} x \partial_{0}\left[e^{-i q_{i} x} \stackrel{\leftrightarrow}{\partial}_{0}\left\langle p_{1} \cdots ; \text { out }\right| \varphi(x) \mid q_{2} \cdots ; \text { in }\right\rangle\right] \\
= & \int d^{4} x\left[-\partial_{0}^{2} e^{-i q_{1} \cdot x}\langle\cdots\rangle+e^{-i q_{1} \cdot x} \partial_{0}^{2}\langle\cdots\rangle\right] \\
= & \int d^{4} x\left[\left(-\Delta^{2}+m^{2}\right) e^{-i q_{1} \cdot x}\langle\cdots\rangle+e^{-i q_{1} \cdot x} \partial_{0}^{2}\langle\cdots\rangle\right] \\
= & \left.\int d^{4} x e^{-i q_{1} \cdot x}\left(\square+m^{2}\right)\left\langle p_{1} \cdots ; \text { out }\right| \varphi(x) \mid q_{2} \cdots ; \text { in }\right\rangle
\end{aligned}
$$

where we have used $\left(\square+m^{2}\right) e^{-i q_{1} \cdot x}=0$, and have performed an integration by parts (whose justification would imply the substitution of plane waves by wave packets).

LSZ reduction formula for scalar fields

\square Therefore, after this first step in the reduction we get,

Lecture 3
Physical states
LSZ Reduction
Fermions
Photons
Cross sections

$$
\begin{aligned}
& \left.\left\langle p_{1}, \cdots p_{n} ; \text { out }\right| q_{1} \cdots q_{\ell} ; \text { in }\right\rangle= \\
= & \left.\sum_{k=1}^{n} 2 p_{k}^{0}(2 \pi)^{3} \delta^{3}\left(\vec{p}_{k}-\vec{q}_{1}\right)\left\langle p_{1}, \cdots \widehat{p}_{k} ; \cdots p_{n} ; \text { out }\right| q_{2} \cdots q_{2} \cdots q_{\ell} ; \text { in }\right\rangle \\
& \left.+i Z^{-1 / 2} \int d^{4} x e^{-i q_{1} x}\left(\square+m^{2}\right)\left\langle p_{1} \cdots p_{n} ; \text { out }\right| \varphi(x) \mid q_{2} \cdots q_{\ell} ; \text { in }\right\rangle
\end{aligned}
$$

a We will proceed with the process until all the momenta in the initial and final state are exchanged by the field operators. To be specific, let us now remove one momentum in the final state.

ㅁ From now on we will no longer consider the disconnected terms, because in practice we are only interested in the cases where all the particles interact. Once we know the cases where all the particles interact, we can always calculate situations where some of the particles do not participate in the scattering

LSZ reduction formula for scalar fields

\square We have then

Lecture 3
Physical states

LSZ Reduction

Fermions

Photons

Cross sections

$$
\left.\left.\left\langle p_{1} \cdots p_{n} ; \text { out }\right| \varphi\left(x_{1}\right) \mid q_{2} \cdots q_{\ell} ; \text { in }\right\rangle=\left\langle p_{2} \cdots p_{n} ; \text { out }\right| a_{\text {out }}\left(p_{1}\right) \varphi\left(x_{1}\right) \mid q_{2} \cdots q_{\ell} ; \text { in }\right\rangle
$$

$$
\left.=\lim _{y_{1}^{0} \rightarrow \infty} i Z^{-1 / 2} \int d^{3} y_{1} e^{i p_{1} \cdot y_{1}} \stackrel{\leftrightarrow}{\partial}_{y_{1}^{0}}\left\langle p_{2} \cdots p_{n} ; \text { out }\right| \varphi\left(y_{1}\right) \varphi\left(x_{1}\right) \mid q_{2} \cdots q_{\ell} ; \text { in }\right\rangle
$$

$$
\left.=\left\langle p_{2} \cdots p_{n} ; \text { out }\right| \varphi\left(x_{1}\right) a_{i n}\left(p_{1}\right) \mid q_{2} \cdots q_{\ell} ; \text { in }\right\rangle
$$

$$
\left.+\lim _{y_{1}^{0} \rightarrow \infty} i Z^{-1 / 2} \int d^{3} y_{1} e^{i p_{1} \cdot y_{1}} \stackrel{\leftrightarrow}{\partial}_{y_{1}^{0}}\left\langle p_{2} \cdots p_{n} ; \text { out }\right| \varphi\left(y_{1}\right) \varphi\left(x_{1}\right) \mid q_{2} \cdots q_{\ell} ; \text { in }\right\rangle
$$

$$
\left.-\lim _{y_{1}^{0} \rightarrow-\infty} i Z^{-1 / 2} \int d^{3} y_{1} e^{i p_{1} \cdot y_{1}} \stackrel{\leftrightarrow}{\partial}_{y_{1}^{0}}\left\langle p_{2} \cdots p_{n} ; \text { out }\right| \varphi\left(x_{1}\right) \varphi\left(y_{1}\right) \mid q_{2} \cdots q_{\ell} ; \text { in }\right\rangle
$$

$$
\left.=\left\langle p_{2} \cdots p_{n} ; \text { out }\right| \varphi\left(x_{1}\right) a_{i n}\left(p_{1}\right) \mid q_{2} \cdots q_{\ell} ; \text { in }\right\rangle
$$

$$
\left.+i Z^{-1 / 2}\left(\lim _{y_{1}^{0} \rightarrow \infty}-\lim _{1}^{0} \rightarrow-\infty\right) \int d^{3} y_{1} e^{i p_{1} \cdot y_{1}} \stackrel{\leftrightarrow}{\partial}_{y_{1}^{0}}\left\langle p_{2} \cdots p_{n} ; \text { out }\right| T \varphi\left(y_{1}\right) \varphi\left(x_{1}\right) \mid q_{2} \cdots q_{\ell} ; \text { in }\right\rangle
$$

LSZ reduction formula for scalar fields

\square Applying the same procedure as before we obtain,

Lecture 3
Physical states

$$
\begin{aligned}
& \left.\left\langle p_{1} \cdots p_{n}, ; \text { out }\right| \varphi\left(x_{1}\right) \mid q_{2} \cdots q_{\ell} ; \text { in }\right\rangle=\text { disconnected terms } \\
& \left.+i Z^{-1 / 2} \int d^{4} y_{1} e^{i p_{1} \cdot y_{1}}\left(\square_{y_{1}}+m^{2}\right)\left\langle p_{2} \cdots p_{n} ; \text { out }\right| T \varphi\left(y_{1}\right) \varphi\left(x_{1}\right) \mid q_{2} \cdots q_{\ell} ; \text { in }\right\rangle
\end{aligned}
$$

\square It is not very difficult to generalize this method to obtain the final reduction formula for scalar fields,

$$
\begin{aligned}
& \left.\left\langle p_{1} \cdots p_{n} ; \text { out }\right| q_{1} \cdots q_{\ell} ; \text { in }\right\rangle=\text { disconnected terms } \\
& +\left(\frac{i}{\sqrt{Z}}\right)^{n+\ell} \int d^{4} y_{1} \cdots d^{4} y_{n} d^{4} x_{1} \cdots d^{4} x_{\ell} e^{\left[i \sum_{1}^{n} p_{k} \cdot y_{k}-i \sum_{1}^{\ell} q_{r} \cdot x_{r}\right]} \\
& \left(\square_{y_{1}}+m^{2}\right) \cdots\left(\square_{x_{\ell}}+m^{2}\right)\langle 0| T \varphi\left(y_{1}\right) \cdots \varphi\left(y_{n}\right) \varphi\left(x_{1}\right) \cdots \varphi\left(x_{\ell}\right)|0\rangle
\end{aligned}
$$

\square This last equation is the fundamental equation in quantum field theory. It allows us to relate the transition amplitudes to the Green functions of the theory.

LSZ reduction formula for scalar fields

\square The quantity

$$
\langle 0| T \varphi\left(x_{1}\right) \cdots \varphi\left(x_{n}\right)|0\rangle \equiv G\left(x_{1} \cdots x_{n}\right)
$$

is known as the complete green function for $n=m+\ell$ particles
\square We will introduce the following diagrammatic representation for it

\square The factors $\left(\square+m^{2}\right)$ in force the external particles to be on-shell. In fact, in momentum space $\left(\square+m^{2}\right) \rightarrow\left(-p^{2}+m^{2}\right)$. Therefore the amplitude will vanish unless the propagators of the external legs are on-shell, as in that case they will have a pole, $\frac{1}{p^{2}-m^{2}}$. We conclude that for the transition amplitudes only the truncated Green functions will contribute, that is the ones with the external legs removed. In the next chapter we will learn how to evaluate these Green functions in perturbation theory.

Reduction Formula for fermions: States in and out

\square The definition of the in and out follows exactly the same steps as in the case of the scalar fields. We will therefore, for simplicity, just state the results with the details.
\square The states $\psi_{\text {in }}(x)$ satisfy the conditions,

$$
\begin{aligned}
& (i \not \partial-m) \psi_{i n}(x)=0 \\
& {\left[P_{\mu}, \psi_{i n}(x)\right]=-i \partial_{\mu} \psi_{i n}(x) .}
\end{aligned}
$$

\square The states $\psi_{i n}(x)$ will create one-particle states and they are related with the fields $\psi(x)$ by,

$$
\sqrt{Z_{2}} \psi_{i n}(x)=\psi(x)-\int d^{4} y S_{\mathrm{ret}}(x-y, m) j(y)
$$

where $\psi(x)$ satisfies the Dirac equation,

$$
(i \not \partial-m) \psi(x)=j(x)
$$

and $S_{\text {ret }}$ is the retarded Green function for the Dirac equation,

Reduction Formula for fermions: States in and out

\square Where the retarded Green function is

Lecture 3
Physical states
LSZ Reduction
Fermions

- Spectral rep
- LSZ for Fermions

$$
\begin{aligned}
& \left(i \not \partial_{x}-m\right) S_{\mathrm{ret}}(x-y, m)=\delta^{4}(x-y) \\
& S_{\mathrm{ret}}(x-y)=0 ; x^{0}<y^{0}
\end{aligned}
$$

\square The fields $\psi_{i n}(x)$, as free fields, have the Fourier expansion,

$$
\psi_{i n}(x)=\int \widetilde{d p} \sum_{s}\left[b_{i n}(p, s) u(p, s) e^{-i p \cdot x}+d_{i n}^{\dagger}(p, s) v(p, s) e^{i p \cdot x}\right]
$$

where the operators $b_{i n}, d_{i n}$ satisfy exactly the same algebra as in the free field case. The asymptotic condition is now,

$$
\lim _{t \rightarrow-\infty}\langle\alpha| \psi^{f}(t)|\beta\rangle=\sqrt{Z_{2}}\langle\alpha| \psi_{i n}^{f}|\beta\rangle
$$

where $\psi^{f}(t)$ and $\psi_{i n}^{f}$ have a meaning similar to the scalar case
\square For the $\psi_{\text {out }}$ fields we get essentially the same expressions with $\psi_{\text {in }}$ substituted by $\psi_{\text {out }}$.

Reduction Formula for fermions: States in and out

\square The main difference with respect to the in States is in the asymptotic condition that now reads,

$$
\lim _{t \rightarrow \infty}\langle\alpha| \psi^{f}(t)|\beta\rangle=\sqrt{Z_{2}}\langle\alpha| \psi_{\text {out }}^{f}|\beta\rangle
$$

implying the following relation between the fields $\psi_{\text {out }}$ and ψ,

$$
\sqrt{Z_{2}} \psi_{o u t}=\psi(x)-\int d^{4} y S_{\mathrm{adv}}(x-y ; m) j(y)
$$

\square The advanced Green function is defined by

$$
\begin{aligned}
& \left(i \not \partial_{x}-m\right) S_{a d v}(x-y ; m)=\delta^{4}(x-y) \\
& S_{\mathrm{adv}}(x-y ; m)=0 \quad x^{0}>y^{0}
\end{aligned}
$$

Spectral representation fermions

\square Let us consider the vacuum expectation value of the anti-commutator of two Dirac fields,

$$
\begin{aligned}
S_{\alpha \beta}^{\prime}(x, y) \equiv & i\langle 0|\left\{\psi_{\alpha}(x), \bar{\psi}_{\beta}(y)\right\}|0\rangle \\
= & i \sum_{n}\left[\langle 0| \psi_{\alpha}(0)|n\rangle\langle n| \bar{\psi}_{\beta}(0)|0\rangle e^{-i p_{n}(x-y)}\right. \\
& \left.+\langle 0| \bar{\psi}_{\beta}(0)|n\rangle\langle n| \psi_{\alpha}(0)|0\rangle e^{i p_{n} \cdot(x-y)}\right] \\
\equiv & S_{\alpha \beta}^{\prime}(x-y)
\end{aligned}
$$

where we have introduced a complete set of eigen-states of the 4 -momentum.
\square As before we introduce the spectral amplitude $\rho_{\alpha \beta}(q)$,

$$
\rho_{\alpha \beta}(q) \equiv(2 \pi)^{3} \sum_{n} \delta^{4}\left(p_{n}-q\right)\langle 0| \psi_{\alpha}(0)|n\rangle\langle n| \bar{\psi}_{\beta}(0)|0\rangle
$$

Spectral representation fermions

\square We will now find the most general form for $\rho_{\alpha \beta}(q)$ using Lorentz invariance arguments. $\rho_{\alpha \beta}(q)$ is a 4×4 matrix in Dirac space, and can be written as

$$
\rho_{\alpha \beta}(q)=\bar{\rho}(q) \delta_{\alpha \beta}+\rho_{\mu}(q) \gamma_{\alpha \beta}^{\mu}+\rho_{\mu \nu}(q) \sigma_{\alpha \beta}^{\mu \nu}+\tilde{\rho}(q) \gamma_{\alpha \beta}^{5}+\tilde{\rho}_{\mu}(q)\left(\gamma^{\mu} \gamma^{5}\right)_{\alpha \beta}
$$

\square Lorentz invariance arguments restrict the form of the coefficients $\bar{\rho}(q)$, $\rho_{\mu}(q), \rho_{\mu \nu}(q), \tilde{\rho}(q)$ and $\tilde{\rho}_{\mu}(q)$. Under Lorentz transformations the fields transform as

$$
\begin{aligned}
& U(a) \psi_{\alpha}(0) U^{-1}(a)=S_{\alpha \lambda}^{-1}(a) \bar{\psi}_{\lambda}(0) \\
& U(a) \bar{\psi}_{\alpha}(0) U^{-1}(a)=\bar{\psi}_{\lambda}(0) S_{\lambda \alpha}(a) \\
& S^{-1} \gamma^{\mu} S=a^{\mu}{ }_{\nu} \gamma^{\nu}
\end{aligned}
$$

\square Then we can show that the matrix (in Dirac space), $\rho_{\alpha \beta}$ must obey the relation,

$$
\rho(q)=S^{-1}(a) \rho\left(q a^{-1}\right) S(a)
$$

where we have used a matrix notation. This relation gives the properties of the different coefficients

Spectral representation fermions

\square For instance,

$$
\rho^{\mu}(q)=a^{\mu}{ }_{\nu} \rho^{\nu}\left(q a^{-1}\right)
$$

which means that ρ^{μ} transform as a 4 -vector.
\square Using the fact that $\rho_{\alpha \beta}$ is a function of q and vanishes outside the future light cone, we can finally write

$$
\rho_{\alpha \beta}(q)=\rho_{1}\left(q^{2}\right) q_{\alpha \beta}+\rho_{2}\left(q^{2}\right) \delta_{\alpha \beta}+\tilde{\rho}_{1}\left(q^{2}\right)\left(\not q \gamma^{5}\right)_{\alpha \beta}+\tilde{\rho}_{2}\left(q^{2}\right) \gamma_{\alpha \beta}^{5}
$$

that is, $\rho_{\alpha \beta}(q)$ is determined up to four scalar functions of q^{2}.
\square Requiring invariance under parity transformations we get

$$
\rho_{\alpha \beta}\left(\vec{q}, q_{0}\right)=\gamma_{\alpha \lambda}^{0} \rho_{\lambda \delta}\left(-\vec{q}, q^{0}\right) \gamma_{\delta \beta}^{0}
$$

and we obtain,

$$
\widetilde{\rho}_{1}=\widetilde{\rho}_{2}=0
$$

Spectral representation fermions

\square Therefore for the Dirac theory, that preserves parity, we get,

$$
\rho_{\alpha \beta}(q)=\rho_{1}\left(q^{2}\right) q_{\alpha \beta}+\rho_{2}\left(q^{2}\right) \delta_{\alpha \beta}
$$

\square Repeating the steps of the scalar case we write,

$$
\begin{aligned}
S_{\alpha \beta}^{\prime}(x-y)= & \int_{0}^{\infty} d \sigma^{2}\left\{\rho_{1}\left(\sigma^{2}\right) S_{\alpha \beta}(x-y ; \sigma)+\right. \\
& \left.+\left[\sigma \rho_{1}\left(\sigma^{2}\right)-\rho_{2}\left(\sigma^{2}\right)\right] \delta_{\alpha \beta} \Delta(x-y ; \sigma)\right\}
\end{aligned}
$$

where Δ and $S_{\alpha \beta}$ are the functions defined for free fields.
\square We can then show that
i) $\quad \rho_{1}$ e ρ_{2} are real
ii) $\quad \rho_{1}\left(\sigma^{2}\right) \geq 0$
iii) $\quad \sigma \rho_{1}\left(\sigma^{2}\right)-\rho_{2}\left(\sigma^{2}\right) \geq 0$
\square Using the previous relations we can extract of the one-particle states

Spectral representation fermions

\square We get,

Lecture 3

Physical states

LSZ Reduction

Fermions

- States In \& Out
- LSZ for Fermions

Photons
Cross sections

$$
\begin{aligned}
S_{\alpha \beta}^{\prime}(x-y)= & Z_{2} S_{\alpha \beta}(x-y ; m) \\
& +\int_{m_{1}^{2}}^{\infty} d \sigma^{2}\left\{\rho_{1}\left(\sigma^{2}\right) S_{\alpha \beta}(x-y ; \sigma)\right.
\end{aligned}
$$

$$
\left.+\left[\sigma \rho_{1}\left(\sigma^{2}\right)-\rho_{2}\left(\sigma^{2}\right)\right] \delta_{\alpha \beta} \Delta(x-y ; \sigma)\right\}
$$

where m_{1} is the threshold for the production of two or more particles.
\square Evaluating at equal times we can obtain

$$
1=Z_{2}+\int_{m_{1}^{2}} d \sigma^{2} \rho_{1}\left(\sigma^{2}\right)
$$

that is

$$
0 \leq Z_{2}<1
$$

Reduction formula for fermions

Lecture 3
Physical states
LSZ Reduction
\square To get the reduction formula for fermions we will proceed as in the scalar case.
\square The only difficulty has to do with the spinor indices. The creation and annihilation operators can be expressed in terms of the fields $\psi_{i n}$ by the relations,

$$
\begin{aligned}
& b_{i n}(p, s)=\int d^{3} x \bar{u}(p, s) e^{i p \cdot x} \gamma^{0} \psi_{i n}(x) \\
& d_{i n}^{\dagger}(p, s)=\int d^{3} x \bar{v}(p, s) e^{-i p \cdot x} \gamma^{0} \psi_{i n}(x) \\
& b_{i n}^{\dagger}(p, s)=\int d^{3} x \bar{\psi}_{i n}(x) \gamma^{0} e^{-i p \cdot x} u(p, s) \\
& d_{i n}(p, s)=\int d^{3} x \bar{\psi}_{i n}(x) \gamma^{0} e^{i p \cdot x} v(p, s)
\end{aligned}
$$

with the integrals being time independent.
\square In fact, to be more rigorous we should substitute the plane wave solutions by wave packets, but as in the scalar case, to simplify matter we will not do it.

Reduction formula for fermions

Lecture 3
Physical states
LSZ Reduction
Fermions

- States In \& Out
- Spectral rep
- LSZ for Fermions

Photons
Cross sections
\square To establish the reduction formula we start by extracting one electron from the initial state,

$$
\begin{aligned}
& \left.\langle\beta ; \text { out }|(p s) \alpha ; \text { in }\rangle=\langle\beta ; \text { out }| b_{\text {in }}^{\dagger}(p, s) \mid \alpha, \text { in }\right\rangle \\
& \left.\quad=\langle\beta-(p, s) ; \text { out }| \alpha ; \text { in }\rangle+\langle\beta ; \text { out }| b_{i n}^{\dagger}(p, s)-b_{\text {out }}^{\dagger}(p, s) \mid \alpha ; \text { in }\right\rangle \\
& \quad=\text { disconnected terms }
\end{aligned}
$$

$$
\left.+\int d^{3} x\langle\beta ; \text { out }| \bar{\psi}_{\text {in }}(x)-\bar{\psi}_{\text {out }}(x) \mid \alpha ; \text { in }\right\rangle \gamma^{0} e^{-i p \cdot x} u(p, s)
$$

$$
=\text { disconnected terms }
$$

$$
\left.\left.-\left(\lim _{t \rightarrow+\infty}-\lim _{t \rightarrow-\infty}\right) \frac{1}{\sqrt{Z_{2}}} \int d^{3} x\langle\beta ; \text { out }| \bar{\psi}(x) \right\rvert\, \alpha ; \text { in }\right\rangle \gamma^{0} e^{-i p \cdot x} u(p, s)
$$

$=$ disconnected terms

$$
\begin{aligned}
& -Z_{2}^{-1 / 2} \int d^{4} x\left[\langle\beta ; \text { out }| \partial_{0} \bar{\psi}(x) \mid \alpha ; \text { in }\right\rangle \gamma^{0} e^{-i p \cdot x} u(p, s) \\
& \left.\quad+\langle\beta ; \text { out }| \bar{\psi}(x) \mid \alpha ; \text { in }\rangle \gamma^{0} \partial_{0}\left(e^{-i p \cdot x} u(p, s)\right)\right]
\end{aligned}
$$

Reduction formula for fermions

ㅁ Using now

$$
\left(i \gamma^{0} \partial_{0}+i \gamma^{i} \partial_{i}-m\right)\left(e^{-i p \cdot x} u(p, s)\right)=0
$$

we get, after an integration by parts,

$$
\begin{aligned}
& \left.\langle\beta ; \text { out }| b_{i n}^{\dagger}(\rho, s) \mid \alpha ; \text { in }\right\rangle=\text { disconnected terms } \\
& \left.\quad-i Z_{2}^{-1 / 2} \int d^{4} x\langle\beta ; \text { out }| \bar{\psi}(x) \mid \alpha ; \text { in }\right\rangle\left(-i \overleftarrow{\not \partial}_{x}-m\right) e^{-i p \cdot x} u(p, s)
\end{aligned}
$$

\square In a similar way the reduction of an anti-particle from the initial state gives,

$$
\begin{aligned}
& \left.\langle\beta ; \text { out }| d_{i n}^{\dagger}(p, s) \mid \alpha ; \text { in }\right\rangle=\text { disconnected terms } \\
& \left.\quad+i Z_{2}^{-1 / 2} \int d^{4} x e^{-i p \cdot x} \bar{v}(p, s)\left(i \not \partial_{x}-m\right)\langle\beta ; \text { out }| \psi(x) \mid \alpha ; \text { in }\right\rangle
\end{aligned}
$$

Reduction formula for fermions

Lecture 3
Physical states
LSZ Reduction
Fermions

- States In \& Out
- Spectral rep
- LSZ for Fermions

Photons
Cross sections
\square The reduction of a particle or of an anti-particle from the final state give, respectively,

$$
\begin{aligned}
& \langle\beta ; \text { out }| b_{\text {out }}(p, s)|\alpha ; i n\rangle=\text { disconnected terms } \\
& \quad-i Z_{2}^{-1 / 2} \int d^{4} x e^{i p \cdot x} \bar{u}(p, s)\left(i \not \partial_{x}-m\right)\langle\beta ; \text { out }| \psi(x)|\alpha ; i n\rangle
\end{aligned}
$$

and
$\langle\beta ;$ out $| d_{\text {out }}(p, s) \mid \alpha ;$ in $\rangle=$ disconnected terms

$$
+i Z_{2}^{-1 / 2} \int d^{4} x\langle\beta ; \text { out }| \bar{\psi}(x)|\alpha ; i n\rangle\left(-i \overleftarrow{\not \partial}_{x}-m\right) v(p, s) e^{i p \cdot x}
$$

ㄱ Notice the formal relation between one electron in the initial state and a positron in the final state. To go from one to the other one just has to do,

$$
u(p, s) e^{-i p \cdot x} \rightarrow-v(p, s) e^{i p \cdot x}
$$

Reduction formula for fermions

Lecture 3
Physical states
\square To write the final expression we denote the momenta in the state $\langle i n|$ by p_{i} or $\overline{p_{i}}$, respectively for particles or anti-particles, and those in the state $\langle o u t|$ by $p_{i}^{\prime}, \bar{p}_{i}^{\prime}$.
\square We also make the following conventions (needed to define the global sign),

$$
\begin{aligned}
& \left.\mid\left(p_{1}, s_{1}\right), \cdots,\left(\bar{p}_{1}, \bar{s}_{1}\right) ; \cdots ; \text { in }\right\rangle=b_{i n}^{\dagger}\left(p_{1}, s_{1}\right) \cdots d_{\text {in }}^{\dagger}\left(\bar{p}_{1}, \bar{s}_{1}\right) \cdots|0\rangle \\
& \left\langle\text { out } ;\left(p_{1}^{\prime}, s_{1}^{\prime}\right) \cdots,\left(\bar{p}_{1}^{\prime}, \bar{s}_{1}^{\prime}\right) \cdots\right|=\langle 0| \cdots d_{\text {out }}\left(\bar{p}_{1}^{\prime}, \bar{s}_{1}^{\prime}\right), \cdots b_{\text {out }}\left(p_{1}^{\prime}, s_{1}^{\prime}\right)
\end{aligned}
$$

- Then, if $n\left(n^{\prime}\right)$ denotes the total number of particles (anti-particles), we get

$$
\begin{gathered}
\left.\left\langle\text { out } ;\left(p_{1}^{\prime}, s_{1}^{\prime}\right) \cdots,\left(\bar{p}_{1}^{\prime}, \bar{s}_{1}^{\prime}\right) \cdots\right|\left(p_{1}, s_{1}\right), \cdots\left(\bar{p}_{1}, \bar{s}_{1}\right), \cdots ; \text { in }\right\rangle=\text { disc. terms } \\
+\left(-i Z_{2}^{-1 / 2}\right)^{n}\left(i Z_{2}^{-1 / 2}\right)^{n^{\prime}} \int d^{4} x_{1} \cdots d^{4} y_{1} \cdots d^{4} x_{1}^{\prime} \cdots d^{4} y_{1}^{\prime} \cdots \\
e^{-i \sum\left(p_{i} \cdot x_{i}\right)-i \sum\left(\bar{p}_{i} \cdot y_{i}\right)} e^{+i \sum\left(p_{i}^{\prime} \cdot x_{i}^{\prime}\right)+i \sum\left(\bar{p}_{i}^{\prime} \cdot y_{1}^{\prime}\right)} \\
\bar{u}\left(p_{1}^{\prime}, s_{1}^{\prime}\right)\left(i \not \ddot{\phi}_{x_{1}^{\prime}}-m\right) \cdots \bar{v}\left(\bar{p}_{1}, \bar{s}_{1}\right)\left(i \not \partial_{y_{1}}-m\right) \\
\\
\langle 0| T\left(\cdots \bar{\psi}\left(y_{1}^{\prime}\right) \cdots \psi\left(x_{1}^{\prime}\right) \bar{\psi}\left(x_{1}\right) \cdots \psi\left(y_{1}\right) \cdots|0\rangle\right. \\
\left(-i \overleftarrow{\not \partial}_{x_{1}}-m\right) u\left(p_{1}, s_{1}\right) \cdots\left(-i \overleftarrow{\not \partial}_{y_{1}^{\prime}}-m\right) v\left(\bar{p}_{1}^{\prime}, \bar{s}_{1}^{\prime}\right)
\end{gathered}
$$

Reduction formula for fermions

Lecture 3
Physical states
LSZ Reduction
\square Last equation is the fundamental expression that allows to relate the elements of the S matrix with the Green functions of the theory.
\square The sign and ordering shown correspond to the previous conventions
\square In terms of diagrams, we represent the Green function,

$$
\langle 0| T\left[\bar{\psi}\left(y_{m^{\prime}}^{\prime}\right) \cdots \bar{\psi}\left(y_{1}^{\prime}\right) \psi\left(x_{\ell^{\prime}}^{\prime}\right) \cdots \psi\left(x_{1}^{\prime}\right) \bar{\psi}\left(x_{1}\right) \cdots \bar{\psi}\left(x_{\ell}\right) \psi\left(y_{1}\right) \cdots \psi\left(y_{m}\right)\right]|0\rangle
$$

by the diagram of the figure
ㅁ With lepton number conservation, the number of particles minus anti-particles is conserved, that is

$$
\ell-m=\ell^{\prime}-m^{\prime}
$$

- The operators $(i \not \partial-m)$ e $(-i \overleftarrow{\not \partial}-m)$ force the particles to be on-shell and remove the propagators from the external lines (truncated Green functions). In the next chapter we will learn how to determine these
 functions in perturbation theory.

Reduction formula for photons

Lecture 3
Physical states
LSZ Reduction
Fermions
Photons
\square The $L S Z$ formalism for photons, has some difficulties connected with the problems in quantizing the electromagnetic field. When one adopts a formalism (radiation gauge) where the only components of the field A^{μ} are transverse, the problems arise in showing the Lorentz and gauge invariance of the S matrix. In the formalism of the undefined metric, the difficulties are connected with the states of negative norm, besides the gauge invariance.
\square We will see later a more satisfactory procedure to quantize all gauge theories, including Maxwell theory of the electromagnetic field and the resulting perturbation theory coincides with the one we get here. This is our justification to assume that we can define the in fields by the relation,

$$
\sqrt{Z_{3}} A_{i n}^{\mu}(x)=A^{\mu}(x)-\int d^{4} y D_{\mathrm{ret}}^{\mu \nu}(x-y) j_{\nu}(y)
$$

and in the same way for the out fields,

$$
\sqrt{Z_{3}} A_{o u t}^{\mu}(x)=A^{\mu}(x)-\int d^{4} y D_{\mathrm{adv}}^{\mu \nu}(x-y) j_{\nu}(y)
$$

where

$$
\square A_{\text {in }}^{\mu}=\square A_{\text {out }}^{\mu}=0, \quad \square A^{\mu}=j^{\mu} \text { and } \square D_{\mathrm{adv}, \text { ret }}^{\mu \nu}=\delta^{\mu \nu} \delta^{\mu}(x-y)
$$

Reduction formula for photons

Lecture 3
Physical states
LSZ Reduction
Fermions
Photons

- LSZ for photons

Cross sections
\square The fields in and out are free fields, and therefore they have a Fourier expansion in plane waves and creation and annihilation operators of the form

$$
A_{i n}^{\mu}(x)=\int \widetilde{d k} \sum_{\lambda=0}^{3}\left[a_{i n}(k, \lambda) \varepsilon^{\mu}(k, \lambda) e^{-i k \cdot x}+a_{i n}^{\dagger}(k, \lambda) \varepsilon^{\mu *}(k, \lambda) e^{i k \cdot x}\right]
$$

■ Where

$$
\begin{aligned}
& a_{i n}(k, \lambda)=-i \int d^{3} x e^{i k \cdot x} \stackrel{\leftrightarrow}{\partial}_{0} \varepsilon^{\mu}(k, \lambda) A_{\mu}^{i n}(x) \\
& a_{i n}^{\dagger}(k, \lambda)=i \int d^{3} x e^{-i k \cdot x} \stackrel{\leftrightarrow}{\partial}_{0} \varepsilon^{\mu *}(k, \lambda) A_{\mu}^{i n}(x)
\end{aligned}
$$

and, as usual, $a_{i n}(k, \lambda)$ and $a_{i n}^{\dagger}(k, \lambda)$ are time independent.
\square Above, all the polarizations appear, but as the elements of the S matrix are between physical states, we are sure that the longitudinal and scalar polarizations do not contribute.

I In this formalism what is difficult to show is the spectral decomposition. We are not going to enter those details, just state that we can show that Z_{3} is gauge independent and satisfies $0 \leq Z_{3}<1$.

Reduction formula for photons

\square The reduction formula is easily obtained. We get
Lecture 3
Physical states
$\langle\beta ;$ out $|(k \lambda) \alpha ;$ in $\rangle=\langle\beta-(k, \lambda) ;$ out $| \alpha ;$ in $\rangle+\langle\beta ;$ out $| a_{\text {in }}^{\dagger}(k, \lambda)-a_{\text {out }}^{\dagger}(k, \lambda) \mid \alpha ;$ in \rangle
$=$ disconnected terms
$+i \int d^{3} x e^{-i k \cdot x} \stackrel{\leftrightarrow}{\partial}_{0} \varepsilon_{\mu}^{*}(k, \lambda)\langle\beta ;$ out $| A_{\text {in }}^{\mu}(x)-A_{\text {out }}^{\mu}(x) \mid \alpha ;$ in \rangle
$=$ disconnected terms
$-i\left(\lim _{t \rightarrow+\infty}-\lim _{t \rightarrow-\infty}\right) Z_{3}^{-1 / 2} \int d^{3} x e^{-i k \cdot x} \stackrel{\leftrightarrow}{\partial}_{0}\langle\beta ;$ out $| A^{\mu}(x) \mid \alpha ;$ in $\rangle \varepsilon_{\mu}^{*}(k, \lambda)$
$=$ disconnected terms
$-i Z_{3}^{-1 / 2} \int d^{4} x e^{-i k \cdot x} \stackrel{\leftrightarrow}{\partial}_{0}\langle\beta ;$ out $| A^{\mu}(x) \mid \alpha ;$ in $\rangle \varepsilon_{\mu}^{*}(k, \lambda)$
$=$ disconnected terms
$-i Z_{3}^{-1 / 2} \int d^{4} x e^{-i k \cdot x} \vec{\square}_{x}\langle\beta ;$ out $| A^{\mu}(x) \mid \alpha ;$ in $\rangle \varepsilon_{\mu}^{*}(k, \lambda)$

Reduction formula for photons

\square The final formula for photons is then

Lecture 3
Physical states
$\left\langle k_{1}^{\prime} \cdots k_{n}^{\prime} ;\right.$ out $| k_{1} \cdots k_{\ell} ;$ in $\rangle=$ disconnected terms

$$
\begin{aligned}
+\left(\frac{-i}{\sqrt{Z_{3}}}\right)^{n+\ell} & \int d^{4} y_{1} \cdots d^{4} y_{n} d^{4} x_{1} \cdots d^{4} x_{\ell} e^{\left[i \sum^{n} k_{i}^{\prime} \cdot y_{i}-i \sum^{\ell} k_{i} \cdot x_{i}\right]} \\
& \varepsilon^{\mu_{1}}\left(k_{1}, \lambda_{1}\right) \cdots \varepsilon^{\mu_{\ell}}\left(k_{\ell}, \lambda_{\ell}\right) \varepsilon^{* \mu_{1}^{\prime}}\left(k_{1}^{\prime}, \lambda_{1}^{\prime}\right) \cdots \varepsilon^{* \mu_{n}^{\prime}}\left(k_{n}^{\prime}, \lambda_{n}^{\prime}\right) \\
& \square_{y_{1}} \cdots \square_{x_{\ell}}\langle 0| T\left(A_{\mu_{1}^{\prime}}\left(y_{1}\right) \cdots A_{\mu_{n}^{\prime}}\left(y_{n}\right) A_{\mu_{1}}\left(x_{1}\right) \cdots A_{\mu_{\ell}}\left(x_{\ell}\right)|0\rangle\right.
\end{aligned}
$$

\square This corresponds to the diagram

Cross sections

Lecture 3
Physical states
LSZ Reduction
Fermions
\square The reduction formulas are the fundamental results of this chapter. They relate the transition amplitudes from the initial to the final state with the Green functions of the theory. In the next chapter we will show how to evaluate these Green functions setting up the so-called covariant perturbation theory. Before we close this chapter, let us indicate how these transition amplitudes

$$
S_{f i} \equiv\langle f ; \text { out } \mid i ; i n\rangle
$$

are related with the quantities that are experimentally accessible, the cross sections. Then the path between experiment (cross sections) and theory (Green functions) will be established.
\square As we have seen in the reduction formulas there is always a trivial contribution to the S matrix, that corresponds to the so-called disconnected terms, when the system goes from the initial to the final state without interaction. The subtraction of this trivial contribution leads to the T matrix

$$
S_{f i}=1_{f i}-i(2 \pi)^{4} \delta^{4}\left(P_{f}-P_{i}\right) T_{f i}
$$

where we have factorized explicitly the delta function expressing the 4 -momentum conservation.

Lecture 3
Physical states

I If we neglect the trivial contribution, the transition probability from the initial to the final state will be given by

$$
W_{f \leftarrow i}=\left|(2 \pi)^{4} \delta^{4}\left(P_{f}-P_{i}\right) T_{f i}\right|^{2}
$$

\square To proceed we have to deal with the meaning of a square of a delta function. This appears because we are using plane waves. To solve this problem we can normalize in a box of volume V and consider that the interaction has a duration of T. Then

$$
(2 \pi)^{4} \delta^{4}\left(P_{f}-P_{i}\right)=\lim _{V \rightarrow \infty} \int_{V} d^{3} x \int_{-T / 2}^{T / 2} d x^{0} e^{i\left(P_{f}-P_{i}\right) \cdot x}
$$

口 However

$$
F \equiv \int_{V} d^{3} x \int_{-T / 2}^{T / 2} d x^{0} e^{i\left(P_{f}-P_{i}\right) \cdot x}=V \delta_{\vec{P}_{f} \vec{P}_{j}} \frac{2}{\left|E_{f}-E_{i}\right|} \sin \left|\frac{T}{2}\left(E_{f}-E_{i}\right)\right|
$$

and the square of the last expression can be done, giving,

$$
|F|^{2}=V^{2} \delta_{\vec{P}_{f}, \vec{P}_{i}} \frac{4}{\left|E_{f}-E_{i}\right|^{2}} \sin ^{2}\left|\frac{T}{2}\left(E_{f}-E_{i}\right)\right|
$$

Cross sections

Lecture 3
Physical states LSZ Reduction Fermions Photons Cross sections

- If we want the transition rate by unit of volume (and unit of time) we divide by $V T$. Then

$$
\begin{aligned}
\Gamma_{f i}= & \lim _{\substack{V \rightarrow \infty}} V \delta_{\vec{P}_{f}, \vec{P}_{i}} 2 \frac{\sin ^{2} \frac{T}{2}\left(E_{f}-E_{i}\right)}{\frac{T}{2}\left(E_{f}-E_{i}\right)^{2}}\left|T_{f i}\right|^{2} \\
& T \rightarrow \infty
\end{aligned}
$$

\square Using now the results

$$
\begin{aligned}
& \lim _{V \rightarrow \infty} V \delta_{\vec{P}_{f} \vec{P}_{j}}=(2 \pi)^{3} \delta^{3}\left(\vec{P}_{f}-\vec{P}_{i}\right) \\
& \lim _{T \rightarrow \infty} 2 \frac{\sin ^{2} \frac{T}{2}\left(E_{f}-E_{i}\right)}{\frac{T}{2}\left(E_{f}-E_{i}\right)^{2}}=(2 \pi) \delta\left(E_{f}-E_{i}\right)
\end{aligned}
$$

we get for the transition rate by unit volume and unit time,

$$
\Gamma_{f i} \equiv(2 \pi)^{4} \delta^{4}\left(P_{f}-P_{i}\right)\left|T_{f i}\right|^{2}
$$

\square To get the cross section we have to further divide by the incident flux, and normalize the particle densities to one particle per unit volume. Finally, we sum (integrate) over all final states in a certain energy-momentum range.

Cross sections

\square We get,
Lecture 3
Physical states

$$
d \sigma=\frac{1}{\rho_{1} \rho_{2}} \frac{1}{\left|\vec{v}_{12}\right|} \Gamma_{f i} \prod_{j=3}^{n} \frac{d^{3} p_{j}}{2 p_{j}^{0}(2 \pi)^{3}}
$$

where $\rho_{1}=2 E_{1}$ and $\rho_{2}=2 E_{2}$
\square An equivalent way of writing this equation is

$$
d \sigma=\frac{1}{4\left[\left(p_{i} \cdot p_{2}\right)^{2}-m_{1}^{2} m_{2}^{2}\right]^{1 / 2}}(2 \pi)^{4} \delta^{4}\left(P_{f}-P_{i}\right)\left|T_{f i}\right|^{2} \prod_{j=3}^{n} d p_{j}
$$

that exhibits well the Lorentz invariance of each part that enters the cross section along the direction of collision. The incident flux and phase space factors are purely kinematics. The physics, with its interactions, is in the matrix element $T_{f i}$.
\square We note that with our conventions, fermion and boson fields have the same normalization, that is, the one-particle states obey

$$
\left\langle p \mid p^{\prime}\right\rangle=2 p^{0}(2 \pi)^{3} \delta^{3}\left(\vec{p}-\vec{p}^{\prime}\right)
$$

