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Instituto Superior Técnico, Departamento de F́ısica & CFTP

A. Rovisco Pais 1, 1049-001 Lisboa, Portugal

Fall 2013



Lecture 1

Lecture 1

Canonical Quantization

Scalar fields

Lecture 2

Dirac field

Electromagnetic field

Discrete Symmetries

Jorge C. Romão TCA-2012 – 2



Canonical quantization for particles

Lecture 1

Canonical Quantization

•Quantization in QM

•Quantization in FT

• Symmetries

Scalar fields

Lecture 2

Dirac field

Electromagnetic field

Discrete Symmetries

Jorge C. Romão TCA-2012 – 3

❐ Let us start with a system that consists of one particle with just one degree
of freedom, like a particle moving in one space dimension. The classical
equations of motion are obtained from the action,

S =

∫ t2

t1

dtL(q, q̇) .

❐ The condition for the minimization of the action, δS = 0, gives the
Euler-Lagrange equations,

d

dt

∂L

∂q̇
− ∂L

∂q
= 0

which are the equations of motion.

❐ Before proceeding to the quantization, it is convenient to change to the
Hamiltonian formulation. We start by defining the conjugate momentum p,
to the coordinate q, by

p =
∂L

∂q̇
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❐ Then we introduce the Hamiltonian using the Legendre transform

H(p, q) = pq̇ − L(q, q̇)

❐ In terms of H the equations of motion are,

{H, q}PB =
∂H

∂p
= q̇

{H, p}PB = −∂H
∂q

= ṗ

❐ The Poisson Bracket (PB) is defined by

{f(p, q), g(p, q)}PB =
∂f

∂p

∂g

∂q
− ∂f

∂q

∂g

∂p

obviously satisfying

{p, q}PB = 1 .
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❐ The quantization is done by promoting p and q to hermitian operators that
will satisfy the commutation relation (h̄ = 1),

[p, q] = −i

which is trivially satisfied in the coordinate representation where p = −i ∂
∂q

.

❐ The dynamics is given by the Schrödinger equation

H(p, q) |ΨS(t)〉 = i
∂

∂t
|ΨS(t)〉

❐ If we know the state of the system in t = 0, |ΨS(0)〉, then the previous
equation completely determines the state |Ψs(t)〉 and therefore the value of
any physical observable.

❐ This description, where the states are time dependent and the operators, on
the contrary, do not depend on time, is known as the Schrödinger
representation.
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❐ There exists and alternative description, where the time dependence goes to
the operators and the states are time independent. This is called the
Heisenberg representation.

❐ To define this representation, we formally integrate to obtain

|ΨS(t)〉 = e−iHt |ΨS(0)〉 = e−iHt |ΨH〉 .

❐ The state in the Heisenberg representation, |ΨH〉, is defined as the state in
the Schrödinger representation for t = 0. The unitary operator e−iHt allows
us to go from one representation to the other.

❐ If we define the operators in the Heisenberg representation as,

OH(t) = eiHtOSe
−iHt

then the matrix elements are representation independent. In fact,

〈ΨS(t)|OS|ΨS(t)〉 =
〈
ΨS(0)|eiHtOSe

−iHt|ΨS(0)
〉

= 〈ΨH |OH(t)|ΨH〉 .
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❐ The time evolution of the operator OH(t) is then given by the equation

dOH(t)

dt
= i[H,OH(t)] +

∂OH

∂t

The last term is only present if OS explicitly depends on time.

❐ In the non-relativistic theory the difference between the two representations
is very small if we work with energy eigenfunctions. For the relativistic
theory, the Heisenberg representation is more convenient, because Lorentz
covariance is more easily handled in the Heisenberg representation, because
time and spatial coordinates are together in the field operators.

❐ In the Heisenberg representation the fundamental commutation relation is
now

[p(t), q(t)] = −i

❐ The dynamics is now given by

dp(t)

dt
= i[H, p(t)] ;

dq(t)

dt
= i[H, q(t)]
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❐ Notice that in this representation the fundamental equations are similar to
the classical equations with the substitution,

{, }PB =⇒ −i[, ]

❐ In the case of a system with n degrees of freedom the generalization is

[pi(t), qj(t)] = −iδij
[pi(t), pj(t)] = 0

[qi(t), qj(t)] = 0

and

ṗi(t) = i[H, pi(t)] ; q̇i(t) = i[H, qi(t)]

❐ Because it is an important example let us look at the harmonic oscillator.
The Hamiltonian is

H =
1

2
(p2 + ω2

0q
2)
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❐ The equations of motion are

ṗ = i[H, p] = −ω2
0q , q̇ = i[H, q] = p =⇒ q̈ + ω2

0q = 0 .

❐ It is convenient to introduce the operators

a =
1√
2ω0

(ω0q + ip) ; a† =
1√
2ω0

(ω0q − ip)

❐ The equations of motion for a and a† are very simple:

ȧ(t) = −iω0a(t) e ȧ
†(t) = iω0a

†(t) .

They have the solution

a(t) = a0e
−iω0t ; a†(t) = a†0e

iω0t

❐ They obey the commutation relations

[a, a†] = [a0, a
†
0] = 1

[a, a] = [a0, a0] = 0 , [a†, a†] = [a†0, a
†
0] = 0
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❐ In terms of a, a† the Hamiltonian reads

H =
1

2
ω0(a

†a+ aa†) =
1

2
ω0(a

†
0a0 + a0a

†
0)

=ω0a
†
0a0 +

1

2
ω0

where we have used

[H, a0] = −ω0a0, [H, a†0] = ω0a
†
0

❐ We see that a0 decreases the energy of a state by the quantity ω0 while a†0
increases the energy by the same amount.

❐ As the Hamiltonian is a sum of squares the eigenvalues must be positive.
Then it should exist a ground state (state with the lowest energy), |0〉,
defined by the condition

a0 |0〉 = 0
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❐ The state |n〉 is obtained by the application of
(
a†0

)n

. If we define

|n〉 = 1√
n!

(
a†0

)n

|0〉

then

〈m|n〉 = δmn

and

H |n〉 =
(
n+

1

2

)
ω0 |n〉

❐ We will see that, in the quantum field theory, the equivalent of a0 and a†0 are
the creation and annihilation operators.
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❐ Let us move now to field theory, that is, systems with an infinite number of
degrees of freedom. To specify the state of the system, we must give for all
space-time points one number (more if we are not dealing with a scalar field)

❐ The equivalent of the coordinates qi(t) and velocities, q̇i, are here the fields
ϕ(~x, t) and their derivatives, ∂µϕ(~x, t). The action is now

S =

∫
d4xL(ϕ, ∂µϕ)

where the Lagrangian density L, is a functional of the fields ϕ and their
derivatives ∂µϕ.

❐ Let us consider closed systems for which L does not depend explicitly on the
coordinates xµ (energy and linear momentum are therefore conserved).

❐ For simplicity let us consider systems described by n scalar fields
ϕr(x), r = 1, 2, · · ·n. The stationarity of the action, δS = 0, implies the
equations of motion, the so-called Euler-Lagrange equations,

∂µ
∂L

∂(∂µϕr)
− ∂L
∂ϕr

= 0 r = 1, · · ·n
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❐ For the case of real scalar fields with no interactions that we are considering,
we can easily see that the Lagrangian density should be,

L =
n∑

r=1

[
1

2
∂µϕr∂µϕr −

1

2
m2ϕrϕr

]

in order to obtain the Klein-Gordon equations as the equations of motion,

(⊔⊓+m2)ϕr = 0 ; r = 1, · · ·n

❐ To define the canonical quantization rules we have to change to the
Hamiltonian formalism, in particular we need to define the conjugate
momentum π(x) for the field ϕ(x).

❐ To make an analogy with systems with n degrees of freedom, we divide the
3-dimensional space in cells with elementary volume ∆Vi. Then we
introduce the coordinate ϕi(t) as the average of ϕ(~x, t) in the volume
element ∆Vi, that is,

ϕi(t) ≡
1

∆Vi

∫

(∆Vi)

d3xϕ(~x, t)
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❐ Also

ϕ̇i(t) ≡
1

∆Vi

∫

(∆Vi)

d3xϕ̇(~x, t) .

❐ Then

L =

∫
d3xL →

∑

i

∆ViLi .

❐ Therefore the canonical momentum is now

pi(t) =
∂L

∂ϕ̇i(t)
= ∆Vi

∂Li

∂ϕ̇i(t)
≡ ∆Viπi(t)

❐ And the Hamiltonian

H =
∑

i

piϕ̇i − L =
∑

i

∆Vi(πiϕ̇i − Li)

❐ In the limit of the continuum, we define the conjugate momentum,

π(~x, t) ≡ ∂L(ϕ, ϕ̇)
∂ϕ̇(~x, t)

in such a way that its average value in ∆Vi is πi(t)
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❐ This suggests the introduction of an Hamiltonian density such that

H =

∫
d3xH

H =πϕ̇− L .

❐ To define the rules of the canonical quantization we start with the
coordinates ϕi(t) and conjugate momenta pi(t). We have

[pi(t), ϕj(t)] = −iδij

[ϕi(t), ϕj(t)] = 0

[pi(t), pj(t)] = 0

❐ In terms of momentum πi(t) we have

[πi(t), ϕj(t)] = −i δij
∆Vi

.
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❐ Going into the continuum limit, ∆Vi → 0, we obtain

[ϕ(~x, t), ϕ(~x′, t)] = 0 , [π(~x, t), π(~x′, t)] = 0

[π(~x, t), ϕ(~x′, t)] = −iδ(~x− ~x′)

❐ These relations are the basis of the canonical quantization. For the case of n
scalar fields, the generalization is:

[ϕr(~x, t), ϕs(~x
′, t)] = 0 [πr(~x, t), πs(~x

′, t)] = 0

[πr(~x, t), ϕs(~x
′, t)] = −iδrsδ(~x− ~x′)

where

πr(~x, t) =
∂L

∂ϕ̇r(~x, t)

❐ The Hamiltonian is

H =

∫
d3xH with H =

n∑

r=1

πrϕ̇r − L .
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❐ The Lagrangian formalism gives us a powerful method to relate symmetries
and conservation laws. At the classical level the fundamental result is

❐ Noether’s Theorem

To each continuous symmetry transformation that leaves L and the

equations of motion invariant, corresponds one conservation law.

❐ Instead of making the proof for all cases, we will consider three very
important particular cases:

❐ Translations

Let us consider an infinitesimal translation

x′µ = xµ + εµ

Then
δL = L′ − L = εµ

∂L
∂xµ

and L′ leads to the same equations of motion as L, as they differ only by a
4-divergence. If L is invariant for translations, then it can not depend
explicitly on the coordinates xµ.
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❐ Therefore

δL =
∑

r

[
∂L
∂ϕr

δϕr +
∂L

∂(∂µϕr)
δ(∂µϕr)

]
= ∂µ

[
∑

r

∂L
∂(∂µϕr)

εν∂νϕr

]

where we have used the equations of motion and δϕr = εν∂νϕr.

❐ From the above and using the fact that εµ is arbitrary we get

∂µT
µν = 0

where Tµν is the energy-momentum tensor defined by

Tµν = −gµνL+
∑

r

∂L
∂(∂µϕr)

∂ν ϕr

❐ Using these relations we can define the conserved quantities

Pµ ≡
∫
d3xT 0µ ⇒ dPµ

dt
= 0

Noticing that T 00 = H, it is easy to realize that Pµ should be the
4-momentum vector. Therefore we conclude that invariance for translations
leads to the conservation of energy and momentum.
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❐ Consider the infinitesimal Lorentz transformations

x′µ = xµ + ωµ
ν x

ν

❐ The transformation for the coordinates will induce the following
transformation for the fields,

ϕ′
r(x

′) = Srs(ω)ϕs(x)

❐ For the case of scalar fields Srs = δrs and for spinors we know that
Srs = δrs +

1
8 [γµ, γν ]rsω

µν . In general the variation of ϕr comes from two
different effects

❐ We have

δϕr(x) ≡ϕ′
r(x)− ϕr(x) = S−1

rs (ω)ϕs(x
′)− ϕr(x)

=− 1

2
ωαβ

[
(xα∂β − xβ∂α)δrs +Σαβ

rs

]
ϕs

where we have defined

Srs(ω) = δrs +
1

2
ωαβΣ

αβ
rs .
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❐ Then

δL = ∂µ

[
∂L

∂(∂µϕr)
δϕr

]

which gives

∂µM
µαβ = 0 with Mµαβ = xαTµβ − xβTµα +

∂L
∂(∂µϕr)

Σαβ
rs ϕs

❐ The conserved angular momentum is then

Mαβ =

∫
d3xM0αβ =

∫
d3x

[
xαT 0β − xβT 0α +

∑

r,s

πrΣ
αβ
rs ϕs

]

with

dMαβ

dt
= 0
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❐ Let us consider that the Lagrangian is invariant for an infinitesimal internal
symmetry transformation

δϕr(x) = −iελrsϕs(x)

❐ Then we can easily show that

∂µJ
µ = 0 where Jµ = −i ∂L

∂(∂µϕr)
λrsϕs

❐ This leads to the conserved charge

Q(λ) = −i
∫
d3xπrλrsϕs ;

dQ

dt
= 0
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❐ These relations between symmetries and conservation laws were derived for
the classical theory

❐ In the quantum theory the fields ϕr(x) become operators acting on the
Hilbert space of the states. The physical observables are related with the
matrix elements of these operators. We have therefore to require Lorentz
covariance for those matrix elements

❐ This means that the classical fields relation

ϕ′
r(x

′) = Srs(a)ϕs(x)

should be in the quantum theory

〈
Φ′

α|ϕr(x
′)|Φ′

β

〉
= Srs(a) 〈Φα|ϕs(x)|Φβ〉

❐ There should exist an unitary transformation U(a, b) that should relate the
two inertial frames

|Φ′〉 = U(a, b) |Φ〉

where aµν e bµ are defined by

x′µ = aµνx
ν + bµ
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❐ Therefore we get that the field operators should transform as

U(a, b)ϕr(x)U
−1(a, b) = S(−1)

rs (a)ϕs(ax+ b)

❐ Let us look at the consequences of this relation for translations and Lorentz
transformations. We consider first the translations. We get

U(b)ϕr(x)U
−1(b) = ϕr(x+ b)

❐ For infinitesimal translations we can write

U(ε) ≡ eiεµP
µ ≃ 1 + iεµPµ

where Pµ is an hermitian operator.

❐ This gives

i[Pµ, ϕr(x)] = ∂µϕr(x)

❐ The correspondence with classical mechanics and non relativistic quantum
theory suggests that we identify Pµ with the 4-momentum, that is,
Pµ ≡ Pµ where Pµ has been defined before
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❐ For Lorentz transformations x′µ = aµν x
ν , we write for an infinitesimal

transformation

aµν = gµν + ωµ
ν +O(ω2)

and therefore

U(ω) ≡ 1− i

2
ωµνMµν

❐ We then obtain the requirement

i[Mµν , ϕr(x)] = xµ∂νϕr − xν∂µϕr +Σµν
rs ϕs(x)

❐ As we have an explicit expression for Pµ and Mµν and we know the
commutation relations of the quantum theory, these equations become an
additional requirement that the theory has to verify in order to be invariant
under translations. We will see explicitly that this is indeed the case for the
theories in which we are interested.
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❐ The real scalar field described by the Lagrangian density

L =
1

2
∂µϕ∂µϕ− 1

2
m2ϕϕ

to which corresponds the Klein-Gordon equation

(⊔⊓+m2)ϕ = 0

is the simplest example, and in fact was already used to introduce the
general formalism.

❐ As we have seen the conjugate momentum is

π =
∂L
∂ϕ̇

= ϕ̇

❐ The commutation relations are

[ϕ(~x, t), ϕ(~x′, t)] = [π(~x, t), π(~x′, t)] = 0

[π(~x, t), ϕ(~x′, t)] = −iδ3(~x− ~x′)
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❐ The Hamiltonian is given by,

H = P 0 =

∫
d3xH =

∫
d3x

[
1

2
π2 +

1

2
|~∇ϕ|2 + 1

2
m2ϕ2

]

and the linear momentum is

~P = −
∫
d3xπ~∇ϕ

❐ Using these equations it is easy to verify that

i[Pµ, ϕ] = ∂µϕ

showing the invariance of the theory for the translations. In the same way we
can verify the invariance under Lorentz transformations, with Σµν

rs = 0 (spin
zero).

❐ In order to define the states of the theory it is convenient to have eigenstates
of energy and momentum.
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❐ To build these states we start by making a spectral Fourier decomposition of
ϕ(~x, t) in plane waves:

ϕ(~x, t) =

∫
d̃k

[
a(k)e−ik·x + a†(k)eik·x

]

where

d̃k ≡ d3k

(2π)32ωk
; ωk = +

√
|~k|2 +m2

is the Lorentz invariant integration measure.

❐ As in the quantum theory ϕ is an operator, also a(k) e a†(k) should be
operators. As ϕ is real, then a†(k) should be the hermitian conjugate to
a(k). In order to determine their commutation relations we start by solving
in order to a(k) and a†(k). Using the properties of the delta function, we get

a(k) = i

∫
d3xeik·x∂

↔

0ϕ(x) , a†(k) = −i
∫
d3xe−ik·x∂

↔

0ϕ(x)

where we have introduced the notation

a∂
↔

0b = a
∂b

∂t
− ∂a

∂t
b
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❐ a(k) and a†(k) time independent as can be checked explicitly (see the
Problems). This observation is important in order to be able to choose equal
times in the commutation relations. We get

[a(k), a†(k′)] =

∫
d3x

∫
d3y

[
eik·x∂

↔

0ϕ(~x, t), e
−ik′·y∂

↔

0ϕ(~y, t)
]

=(2π)32ωkδ
3(~k − ~k′)

and

[a(k), a(k′)] = [a†(k), a†(k′)] = 0

❐ We then see that, except for a small difference in the normalization, a(k) e
a†(k) should be interpreted as annihilation and creation operators of states
with momentum kµ. To show this, we observe that

H =
1

2

∫
d̃k ωk

[
a†(k)a(k) + a(k)a†(k)

]

~P =
1

2

∫
d̃k ~k

[
a†(k)a(k) + a(k)a†(k)

]
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❐ Using these explicit forms we can then obtain

[Pµ, a†(k)] = kµa†(k) [Pµ, a(k)] = −kµa(k)
showing that a†(k) adds momentum kµ and that a(k) destroys momentum
kµ. That the quantization procedure has produced an infinity number of
oscillators should come as no surprise. In fact a(k), a†(k) correspond to the
quantization of the normal modes of the classical Klein-Gordon field.

❐ By analogy with the harmonic oscillator, we are now in position of finding
the eigenstates of H. We start by defining the base state, that in quantum
field theory is called the vacuum. We have

a(k) |0〉k = 0 ; ∀k
❐ Then the vacuum, that we will denote by |0〉, will be formally given by

|0〉 = Πk |0〉k

and we will assume that it is normalized, that is 〈0|0〉 = 1. If now we
calculate the vacuum energy, we find immediately the first problem with
infinities in Quantum Field Theory (QFT).
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❐ In fact

〈0|H|0〉 =1

2

∫
d̃k ωk

〈
0|
[
a†(k)a(k) + a(k)a†(k)

]
|0
〉

=
1

2

∫
d̃k ωk

〈
0|
[
a(k), a†(k)

]
|0
〉

=
1

2

∫
d3k

(2π)32ωk
ωk(2π)

32ωkδ
3(0)

=
1

2

∫
d3k ωkδ

3(0) = ∞

❐ This infinity can be understood as the the (infinite) sum of the zero point
energy of all quantum oscillators. In the discrete case we would have,∑

k
1
2ωk = ∞. This infinity can be easily removed. We start by noticing

that we only measure energies as differences with respect to the vacuum
energy, and those will be finite. We will then define the energy of the
vacuum as being zero. Technically this is done as follows.
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❐ We define a new operator Pµ
N.O. as

Pµ
N.O. ≡

1

2

∫
d̃k kµ

[
a†(k)a(k) + a(k)a†(k)

]

− 1

2

∫
d̃k kµ

〈
0|
[
a†(k)a(k) + a(k)a†(k)

]
|0
〉

=

∫
d̃k kµa†(k)a(k)

❐ Now 〈0|Pµ
N.O.|0〉 = 0. The ordering of operators where the annihilation

operators appear on the right of the creation operators is called normal

ordering and the usual notation is

:
1

2
(a†(k)a(k) + a(k)a†(k)) :≡ a†(k)a(k)

❐ To remove the infinity of the energy and momentum corresponds to choose
the normal ordering. We will adopt this convention in the following dropping
the subscript ”N.O.” to simplify the notation. This should not appear as an
ad hoc procedure. In fact, in going from the classical theory where we have
products of fields into the quantum theory where the fields are operators, we
should have a prescription for the correct ordering of such products.
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❐ Once we have the vacuum we can build the states by applying the creation
operators a†(k). As in the case of the harmonic oscillator, we can define the
number operator,

N =

∫
d̃k a†(k)a(k)

❐ It is easy to see that N commutes with H and therefore the eigenstates of
H are also eigenstates of N .

❐ The state with one particle of momentum kµ is obtained as a†(k) |0〉. In fact
we have

Pµa†(k) |0〉 =
∫
d̃k

′
k′µa†(k′)a(k′)a†(k) |0〉

=

∫
d3k′k′µδ3(~k − ~k′)a†(k) |0〉

=kµa†(k) |0〉

and

Na†(k) |0〉 = a†(k) |0〉
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❐ In a similar way, the state a†(k1)...a
†(kn) |0〉 would be a state with n

particles. However, the sates that we have just defined have a problem.
They are not normalizable and therefore they can not form a basis for the
Hilbert space of the quantum field theory, the so-called Fock space.

❐ The origin of the problem is related to the use of plane waves and states
with exact momentum. This can be solved forming states that are
superpositions of plane waves

|1〉 = λ

∫
d̃k C(k)a†(k) |0〉

❐ Then

〈1|1〉 =λ2
∫
d̃k1d̃k2 C

∗(k1)C(k2)
〈
0|a(k1)a†(k2)|0

〉

=λ2
∫
d̃k|C(k)|2 = 1

and therefore

λ =

(∫
d̃k |C(k)|2

)−1/2

if

∫
d̃k |C(k)|2 <∞
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❐ If k is only different from zero in a neighborhood of a given 4-momentum
kµ, then the state will have a well defined momentum (within some
experimental error).

❐ A basis for the Fock space can then be constructed from the n–particle
normalized states

|n〉 =
(
n!

∫
d̃k1 · · · d̃kn|C(k1, · · · kn)|2

)−1/2

∫
d̃k1 · · · d̃knC(k1, · · · kn)a†(k1) · · · a†(kn) |0〉

that satisfy 〈n|n〉 = 1 , N |n〉 = n |n〉
❐ Due to the commutation relations of the operators a†(k), the functions
C(k1 · · · kn) are symmetric (obey the Bose–Einstein statistics),

C(· · · ki, · · · kj , · · · ) = C(· · · kj · · · ki · · · )

❐ This interpretation in terms of particles, with creation and annihilation
operators, that results from the canonical quantization, is usually called
second quantization, as opposed to the description in terms of wave
functions (the first quantization)
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❐ Classically, the fields can be measured with an arbitrary precision. In a
relativistic quantum theory we have several problems. The first, results from
the fact that the fields are now operators. This means that the observables
should be connected with the matrix elements of the operators and not with
the operators.

❐ Besides this question, we can only speak of measuring ϕ in two space-time
points x and y if [ϕ(x), ϕ(y)] vanishes. Let us look at the conditions needed
for this to occur.

[ϕ(x), ϕ(y)] =

∫
d̃k1d̃k2

{[
a(k1), a

†(k2)
]
e−ik1·x+ik2·y +

[
a†(k1), a(k2)

]
e

=

∫
d̃k1

(
e−ik1·(x−y) − eik1·(x−y)

)

≡i∆(x− y)

❐ The function ∆(x− y) is Lorentz invariant and satisfies the relations

(⊔⊓x +m2)∆(x− y) = 0

∆(x− y) = −∆(y − x) ∆(~x− ~y, 0) = 0
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❐ The last relation ensures that the equal time commutator of two fields
vanishes. Lorentz invariance implies then,

∆(x− y) = 0 ; ∀ (x− y)2 < 0

❐ This means that for two points that can not be physically connected, that is
for which (x− y)2 < 0, the fields interpreted as physical observables, can
then be independently measured. This result is known as Microscopic

Causality.

❐ We also note that

∂0∆(x− y)|x0=y0 = −δ3(~x− ~y)

which ensures the canonical commutation relation
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❐ It is well known from Quantum Mechanics that, in an harmonic oscillator,
the coordinate is not well defined for the energy eigenstates, that is

〈
n|q2|n

〉
> (〈n|q|n〉)2 = 0

❐ In Quantum Field Theory, we deal with an infinite set of oscillators, and
therefore we will have the same behavior, that is,

〈0|ϕ(x)ϕ(y)|0〉 6= 0

although

〈0|ϕ(x)|0〉 = 0

❐ We can calculate the above expression. We have

〈0|ϕ(x)ϕ(y)|0〉 =
∫
d̃k1d̃k2e

−ik1·xeik2·y
〈
0|a(k1)a†(k2)|0

〉

=

∫
d̃k1e

−ik·(x−y) ≡ ∆+(x− y)
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❐ The function ∆+(x− y) corresponds to the positive frequency part of
∆(x− y). When y → x this expression diverges quadratically,

〈
0|ϕ2(x)|0

〉
= ∆+(0) =

∫
d̃k1 =

∫
d3k1

(2π)32ωk1

❐ This divergence can not be eliminated in the way we did with the energy of
the vacuum. In fact these vacuum fluctuations, as they are known, do have
observable consequences like, for instance, the Lamb shift.

❐ We will be less worried with this result, if we notice that for measuring the
square of the operator ϕ at x we need frequencies arbitrarily large, that is,
an infinite amount of energy. Physically only averages over a finite
space-time region have meaning.
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❐ The description in terms of real fields does not allow the distinction between
particles and anti-particles. It applies only the those cases were the particle
and anti-particle are identical, like the π0. For the more usual case where
particles and anti-particles are distinct, it is necessary to have some charge
(electric or other) that allows us to distinguish them. For this we need
complex fields.

❐ The theory for the scalar complex field can be easily obtained from two real
scalar fields ϕ1 and ϕ2 with the same mass. If we denote the complex field ϕ
by,

ϕ =
ϕ1 + iϕ2√

2

then

L = L(ϕ1) + L(ϕ2) =: ∂µϕ†∂µϕ−m2ϕ†ϕ :

which leads to the equations of motion

(⊔⊓+m2)ϕ = 0 ; (⊔⊓+m2)ϕ† = 0
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❐ The classical theory has, at the classical level, a conserved current,
∂µJ

µ = 0,

Jµ = iϕ†∂
↔µ

ϕ

❐ Therefore we expect, at the quantum level, the charge Q

Q =

∫
d3x : i(ϕ†ϕ̇− ϕ̇†ϕ) :

to be conserved, that is, [H,Q] = 0.

❐ To show this we need to know the commutation relations for the field ϕ.
The definition and the commutation relations for ϕ1 and ϕ2 allow us to
obtain the following relations for ϕ and ϕ†:

[ϕ(x), ϕ(y)] = [ϕ†(x), ϕ†(y)] = 0

[ϕ(x), ϕ†(y)] = i∆(x− y)
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❐ For equal times we can get

[π(~x, t), ϕ(~y, t)] = [π†(~x, t), ϕ†(~y, t)] = −iδ3(~x− ~y)

where

π = ϕ̇† ; π† = ϕ̇

❐ The plane waves expansion is then

ϕ(x) =

∫
d̃k

[
a+(k)e

−ik·x + a†−(k)e
ik·x

]

ϕ†(x) =

∫
d̃k

[
a−(k)e

−ik·x + a†+(k)e
ik·x

]

where the definition of a±(k) is

a±(k) =
a1(k)± ia2(k)√

2
; a†± =

a†1(k)∓ ia†2(k)√
2



Charged scalar field

Lecture 1

Canonical Quantization

Scalar fields

•Real scalar field

•Causality

•Vac fluctuations

•Charged scalar field

• Feynman Propagator

Lecture 2

Dirac field

Electromagnetic field

Discrete Symmetries

Jorge C. Romão TCA-2012 – 42

❐ The algebra of the operators a± it is easily obtained from the algebra of the
operators ai′s. We get the following non-vanishing commutators:

[a+(k), a
†
+(k

′)] = [a−(k), a
†
−(k

′)] = (2π)32ωkδ
3(~k − ~k′)

therefore allowing us to interpret a+ and a†+ as annihilation and creation
operators of quanta of type +, and similarly for the quanta of type −.

❐ We can construct the number operators for those quanta:

N± =

∫
d̃k a†±(k)a±(k)

❐ One can easily verify that

N+ +N− = N1 +N2

where

Ni =

∫
d̃k a†i (k)ai(k)
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❐ The energy-momentum operator can be written in terms of the + and −
operators,

Pµ =

∫
d̃k kµ

[
a†+(k)a+(k) + a†−(k)a−(k)

]

where we have already considered the normal ordering.

❐ We also obtain for the charge Q:

Q =

∫
d3x : i(ϕ†ϕ̇− ϕ̇†ϕ̇) :

=

∫
d̃k

[
a†+(k)a+(k)− a†−(k)a−(k)

]

=N+ −N−

❐ Using the commutation relations one can easily verify that

[H,Q] = 0

showing that the charge Q is conserved. The previous equation allows us to
interpret the ± quanta as having charge ±1.
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❐ However, before introducing interactions, the theory is symmetric, and we
can not distinguish between the two types of quanta.

❐ From the commutation relations we obtain,

[Pµ, a†+(k)] = kµa†+(k)

[Q, a†+(k)] = +a†+(k)

❐ This shows that a†+(k) creates a quanta with 4-momentum kµ and charge

+1. In a similar way we can show that a†− creates a quanta with charge −1
and that a±(k) annihilate quanta of charge ±1, respectively.
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❐ The operator ϕ† creates a particle with charge +1 or annihilates a particle
with charge −1. In both cases it adds a total charge +1. In a similar way ϕ
annihilates one unit of charge. Let us construct a state of one particle (not
normalized) with charge +1 by application of ϕ† in the vacuum:

|Ψ+(~x, t)〉 ≡ ϕ†(~x, t) |0〉

❐ The amplitude to propagate the state |Ψ+〉 into the future to the point
(~x′, t′) with t′ > t is given by

θ(t′ − t) 〈Ψ+(~x
′, t′)|Ψ+(~x, t)〉 = θ(t′ − t)

〈
0|ϕ(~x′, t′)ϕ†(~x, t)|0

〉

❐ In ϕ†(~x, t) |0〉 only the operator a†+(k) is active, while in 〈0|ϕ(~x′, t′) the
same happens to a+(k). Therefore this is the matrix element that creates a
quanta of charge +1 in (~x, t) and annihilates it in (~x′, t′) with t′ > t.

❐ There exists another way of increasing the charge by +1 unit in (~x, t) and
decreasing it by −1 in (~x′, t′). This is achieved if we create a quanta of
charge −1 in ~x′ at time t′ and let it propagate to ~x where it is absorbed at
time t > t′. The amplitude is then,

θ(t− t′) 〈Ψ−(~x, t)|Ψ−(~x
′, t′)〉 =

〈
0|ϕ†(~x, t)ϕ(~x′, t′)|0

〉
θ(t− t′)
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❐ Since we can not distinguish the two paths we must sum of the two
amplitudes. This is the so-called Feynman propagator. It can be written in a
more compact way if we introduce the time ordered product. Given two
operators a(x) and b(x′) we define the time ordered product T by,

Ta(x)b(x′) ≡ θ(t− t′)a(x)b(x′) + θ(t′ − t)b(x′)a(x)

❐ In this prescription the older times are always to the right of the more recent
times. It can be applied to an arbitrary number of operators. With this
definition, the Feynman propagator reads,

∆F (x
′ − x) =

〈
0|Tϕ(x′)ϕ†(x)|0

〉

❐ Using the ϕ and ϕ† decomposition we can calculate ∆F (for free fields)

∆F (x
′ − x) =

∫
d̃k

[
θ(t′ − t)e−ik·(x′−x) + θ(t− t′)eik·(x

′−x)
]

=

∫
d4k

(2π)4
i

k2 −m2 + iε
e−ik·(x′−x)

≡
∫

d4k

(2π)4
∆F (k)e

−ik·(x′−x)
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❐ Where ∆F (k) ≡
i

k2 −m2 + iε
❐ ∆F (k) is the propagator in momenta space (Fourier transform). The

equivalence between the previous equations is done using integration in the
complex plane of the time component k0, with the help of the residue
theorem. The contour is defined by the iε prescription, as indicated in in the
figure

Re k0

Im k0

❐ Applying the operator (⊔⊓′
x +m2) to ∆F (x

′ − x) one can show that

(⊔⊓′
x +m2)∆F (x

′ − x) = −iδ4(x′ − x)

that is, ∆F (x
′ − x) is the Green’s function for the Klein-Gordon equation

with Feynman boundary conditions.
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❐ Let us now apply the formalism of second quantization to the Dirac field.
Something has to be changed, otherwise we would be led to a theory
obeying Bose statistics, while we know that electrons obey Fermi statistics.

❐ The Lagrangian density that leads to the Dirac equation is

L = iψγµ∂µψ −mψψ

The conjugate momentum to ψα is

πα =
∂L
∂ψ̇α

= iψ†
α

while the conjugate momentum to ψ†
α vanishes. The Hamiltonian density is

H = πψ̇ − L = ψ†(−i~α · ~∇+ βm)ψ

❐ The requirement of translational and Lorentz invariance for L leads to the
tensors Tµν and Mµνλ. We get for energy-momentum tensor

Tµν = iψγµ∂νψ − gµνL
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❐ And for the angular-momentum tensor density

Mµνλ = iψγµ(xν∂λ − xλ∂ν + σνλ)ψ −
(
xνgµλ − xµgνλ

)
L

where

σνλ =
1

4
[γν , γλ]

❐ The 4-momentum Pµ and the angular momentum tensor Mνλ are then
given by,

Pµ ≡
∫
d3xT 0µ, Mµλ ≡

∫
d3xM0νλ

❐ This gives for the energy and linear momentum

H ≡
∫
d3xψ†(−i~α · ~∇+ βm)ψ

~P ≡
∫
d3xψ†(−i~∇)ψ
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❐ If we define the angular momentum vector ~J ≡ (M23,M31,M12) we get

~J =

∫
d3xψ†

(
~r × 1

i
~∇+

1

2
~Σ

)
ψ

which has the familiar aspect ~J = ~L+ ~S.

❐ We can also identify a conserved current, ∂µj
µ = 0, with jµ = ψγµψ, which

will give the conserved charge

Q =

∫
d3xψ†ψ

❐ All that we have done so far is at the classical level. To apply the canonical
formalism we have to enforce commutation relations and verify the Lorentz
invariance of the theory. This will lead us into problems. To see what these
are and how to solve them, we will introduce the plane wave expansions,

ψ(x) =

∫
d̃p

∑

s

[
b(p, s)u(p, s)e−ip·x + d†(p, s)v(p, s)eip·x

]

ψ†(x) =

∫
d̃p

∑

s

[
b†(p, s)u†(p, s)e+ip·x + d(p, s)v†(p, s)e−ip·x

]
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❐ u(p, s) and v(p, s) are the spinors for positive and negative energy,
respectively, introduced in the study of the Dirac equation and b, b†, d and d†

are operators.

❐ To see what are the problems with the canonical quantization of fermions,
let us calculate Pµ. We get

Pµ =

∫
d̃k kµ

∑

s

[
b†(k, s)b(k, s)− d(k, s)d†(k, s)

]

where we have used the orthogonality and closure relations for the spinors.

❐ We realize that if we define the vacuum as b(k, s) |0〉 = d(k, s) |0〉 = 0 and if
we quantize with commutators then particles b and particles d will contribute
with opposite signs to the energy and the theory will not have a stable
ground state.

❐ In fact, this was the problem already encountered in the study of the
negative energy solutions of the Dirac equation, and this is the reason for
the negative sign. Dirac’s hole theory required Fermi statistics for the
electrons and we will see how spin and statistics are related.
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❐ To discover what are the relations that b, b†, d and d† should obey, we recall
that at the quantum level it is always necessary to verify Lorentz invariance.

i[Pµ, ψ(x)] = ∂µψ ; i[Pµ, ψ(x)] = ∂µψ

❐ We start with the above equations and we will discover the appropriate
relations for the operators. Using the plane wave expansions we can show
that the above equations lead to

[Pµ, b(k, s)] = −kµb(k, s) ; [Pµ, b
†(k, s)] = kµb

†(k, s)

[Pµ, d(k, s)] = −kµd(k, s) ; [Pµ, d
†(k, s)] = kµd

†(k, s)

❐ From the definition of Pµ we get

∑

s′

[(
b†(p, s′)b(p, s′)− d(p, s′)d†(p, s′)

)
, b(k, s)

]
= −(2π)32k0δ3(~k−~p)b(k, s)

and three other similar relations.
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❐ If we assume that

[d†(p, s′)d(p, s′), b(k, s)] = 0

the previous condition reads

∑

s′

[
b†(p, s′){b(p, s′), b(k, s)} − {b†(p, s′), b(k, s)}b(p, s′)

]
=

= −(2π)32k0δ3(~p− ~k)b(k, s)

where the parenthesis {, } denote anti-commutators.

❐ It is easy to see that this relation is verified if we impose the canonical
anti-commutation relations. We should have

{b†(p, s), b(k, s)} = (2π)32k0δ3(~p− ~k)δss′

{d†(p, s′), d(k, s)} = (2π)32k0δ3(~p− ~k)δss′

and all the other anti-commutators vanish. Note that as b anti-commutes
with d and d†, then it commutes with d†d as we have assumed.
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❐ With the anti-commutator relations both contributions to Pµ are positive.
As in boson case we have to subtract the zero point energy. This is done, as
usual, by taking all quantities normal ordered. Therefore we have for Pµ,

Pµ =

∫
d̃k kµ

∑

s

:
(
b†(k, s)b(k, s)− d(k, s)d†(k, s)

)
:

=

∫
d̃k kµ

∑

s

:
(
b†(k, s)b(k, s) + d†(k, s)d(k, s)

)
:

❐ For the charge

Q =

∫
d3x : ψ†(x)ψ(x) :=

∫
d̃k

∑

s

[
b†(k, s)b(k, s)− d†(k, s)d(k, s)

]

which means that the quanta of b type have charge +1 while those of d type
have charge −1. It is interesting to note that was the second quantization of
the Dirac field that introduced the − sign in the charge, making the charge
operator without a definite sign, while in Dirac theory was the probability
density that was positive defined. The reverse is true for bosons.
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❐ We can easily show that

[Q, b†(k, s)] = b†(k, s) , [Q, d(k, s)] = d(k, s), [Q,ψ] = −ψ
[Q, b(k, s)] = −b(k, s) , [Q, d†(k, s)] = −d†(k, s) [Q,ψ] = ψ

❐ In QED the charge is given by eQ (e < 0). Therefore we see that ψ creates
positrons and annihilates electrons and the opposite happens with ψ.

❐ We can introduce the number operators

N+(p, s) = b†(p, s)b(p, s) ; N−(p, s) = d†(p, s)d(p, s)

and we can rewrite

Pµ =

∫
d̃k kµ

∑

s

(N+(k, s) +N−(k, s))

Q =

∫
d̃k

∑

s

(N+(k, s)−N−(k, s))

❐ Using the anti-commutator relations it is now easy to verify that the theory
is Lorentz invariant, that is (see Problems)

i[Mµν , ψ] = (xµ∂ν − xν∂µ)ψ +Σµνψ .
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❐ The anti-commutation relations can be used to find the anti-commutation
relations at equal times for the fields. We get

{ψα(~x, t), ψ
†
β(~y, t)} =δ3(~x− ~y)δαβ

{ψα(~x, t), ψβ(~y, t)} ={ψ†
α(~x, t), ψ

†
β(~y, t)} = 0

❐ These relations can be generalized to unequal times

{ψα(x), ψ
†
β(y)} =

∫
d̃p

[[
(p/+m)γ0

]
αβ
e−ip·(x−y) −

[
(−p/+m)γ0

]
αβ
eip·(x−y)

]

=
[
(i∂/x +m)γ0

]
αβ

i∆(x− y)

where the ∆(x− y) function was defined before for the scalar field.

❐ The fact that γ0 appears is due to the fact that in the above relation we
took ψ† and not ψ. In fact, if we multiply on the right by γ0 we get

{ψα(x), ψβ(y)} =(i∂/x +m)αβi∆(x− y)

{ψα(x), ψβ(y)} ={ψα(x), ψβ(y)} = 0
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❐ We can easily verify the covariance of the above relations. We use

U(a, b)ψ(x)U−1(a, b) = S−1(a)ψ(ax+ b)

U(a, b)ψ(x)U−1(a, b) = ψ(ax+ b)S(a)

S−1γµS = aµνγ
ν

❐ We get

U(a, b){ψα(x), ψβ(y)}U−1(a, b) =

=S−1
ατ (a){ψτ (ax+ b), ψλ(ay + b)}Sλβ(a)

=S−1
ατ (a)(i∂/ax +m)τλi∆(ax− ay)Sλβ(a)

=(i∂/+m)αβi∆(x− y)

where we have used the invariance of ∆(x− y) and the result

S−1i∂/axS = i∂/x
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❐ For (x− y)2 < 0 the anti-commutators vanish, because ∆(x− y) also
vanishes. This result allows us to show that any two observables built as
bilinear products of ψ e ψ commute for two spacetime points for which
(x− y)2 < 0.

❐ We have

[
ψα(x)ψβ(x), ψλ(y)ψτ (y)

]
=

=ψα(x){ψβ(x), ψλ(y)}ψτ (y)− {ψα(x), ψλ(y)}ψβ(x)ψτ (y)

+ ψλ(y)ψα(x){ψβ(x), ψτ (y)} − ψλ(y){ψτ (y), ψα(x)}ψβ(x)

=0

for (x− y)2 < 0.

❐ In this way the microscopic causality is satisfied for the physical observables,
such as the charge density or the momentum density.
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❐ For the Dirac field, as in the case of the charged scalar field, there are two
ways of increasing the charge by one unit in x′ and decrease it by one unit in
x (note that the electron has negative charge). These ways are

θ(t′ − t)
〈
0|ψβ(x

′)ψ†
α(x)|0

〉

θ(t− t′)
〈
0|ψ†

α(x)ψβ(x
′)|0

〉

In one case an electron of positive energy is created at ~x in the instant t,
propagates until ~x′ where is annihilated at time t′ > t. In the other case a
positron of positive energy is created in x′ and annihilated at x with t > t′.

❐ The Feynman propagator is obtained summing the two amplitudes. Due the
exchange of ψβ and ψα there must be a minus sign between these two
amplitudes. Multiplying by γ0, we get for the Feynman propagator,

SF (x
′ − x)αβ =θ(t′ − t)

〈
0|ψα(x

′)ψβ(x)|0
〉

− θ(t− t′)
〈
0|ψβ(x)ψα(x

′)|0
〉

≡
〈
0|Tψα(x

′)ψβ(x)|0
〉
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❐ We have defined the time ordered product for fermion fields,

Tη(x)χ(y) ≡ θ(x0 − y0)η(x)χ(y)− θ(y0 − x0)χ(y)η(x) .

❐ Inserting in the definitio the expansions for ψ and ψ we get,

SF (x
′−x)αβ =

∫
d̃k
[
(k/+m)αβθ(t

′−t)e−ik·(x′−x) + (−k/+m)αβθ(t−t′)eik·(x
′−x)

]

=

∫
d4k

(2π)4
i(k/+m)αβ
k2 −m2 + iε

e−ik·(x′−x)

=

∫
d4k

(2π)4
SF (k)αβe

−ik·(x′−x)

where SF (k) is the Feynman propagator in momenta space.

❐ We can also verify that Feynman’s propagator is the Green function for the
Dirac equation, that is (see Problems),

(i∂/−m)λα SF (x
′ − x)αβ = iδλβδ

4(x′ − x)
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❐ The free electromagnetic field is described by the classical Lagrangian,

L = −1

4
FµνF

µν , where Fµν = ∂µAν − ∂νAµ

❐ The free field Maxwell equations are

∂αF
αβ = 0

that correspond to the usual equations in 3-vector notation,

~∇ · ~E = 0 ; ~∇× ~B =
∂ ~E

∂t
❐ The other Maxwell equations are a consequence of the anti-symmetry of Fµν

and can written as,

∂αF̃
αβ = 0 ; F̃αβ =

1

2
εαβµνFµν

corresponding to

~∇ · ~B = 0 ; ~∇× ~E = −∂
~B

∂t
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❐ Classically, the quantities with physical significance are the fields ~E e ~B, and
the potentials Aµ are auxiliary quantities that are not unique due to the
gauge invariance of the theory.

❐ In quantum theory the potentials Aµ are the ones playing the leading role as,
for instance in the minimal prescription. We have therefore to formulate the
quantum fields theory in terms of Aµ and not of ~E and ~B.

❐ When we try to apply the canonical quantization to the potentials Aµ we
immediately run into difficulties.

❐ For instance, if we define the conjugate momentum as,

πµ =
∂L
∂(Ȧµ)

we get

πk =
∂L

∂(Ȧk)
= −Ȧk − ∂A0

∂xk
= Ek π0 =

∂L
∂Ȧ0

= 0
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❐ Therefore the conjugate momentum to the coordinate A0 vanishes and does
not allow us to use directly the canonical formalism. The problem has its
origin in the fact that the photon, that we want to describe, has only two
degrees of freedom (positive or negative helicity) but we are using a field Aµ

with four degrees of freedom. In fact, we have to impose constraints on Aµ

in such a way that it describes the photon. This problem can be addressed in
three different ways:

❐ 1) Radiation Gauge

Historically, this was the first method to be used. It is based in the fact that
it is always possible to choose a gauge, called the radiation gauge, where

A0 = 0 ; ~∇ · ~A = 0

that is, the potential ~A is transverse. These conditions in reduce the number
of degrees of freedom to two, the transverse components of ~A. It is then
possible to apply the canonical formalism to these transverse components
and quantize the electromagnetic field in this way. The problem with this
method is that we loose explicit Lorentz covariance. It is then necessary to
show that this is recovered in the final result. This method is followed in
many text books, for instance in Bjorken and Drell.
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❐ 2) Quantization of systems with constraints

It can be shown that the electromagnetism is an example of an Hamilton
generalized system, that is a system where there are constraints among the
variables. The way to quantize these systems was developed by Dirac for
systems of particles with n degrees of freedom. The generalization to
quantum field theories is done using the formalism of path integrals. We will
study this method in Chapter 6, as it will be shown, this is the only method
that can be applied to non-abelian gauge theories, like the Standard Model.

❐ 3) Undefined metric formalism

There is another method that works for the electromagnetism, called the
formalism of the undefined metric, developed by Gupta and Bleuler. In this
formalism, that we will study below, Lorentz covariance is kept, that is we
will always work with the 4-vector Aµ, but the price to pay is the appearance
of states with negative norm. We have then to define the Hilbert space of
the physical states as a sub-space where the norm is positive. We see that in
all cases, in order to maintain the explicit Lorentz covariance, we have to
complicate the formalism. We will follow the book of Silvan Schweber.
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❐ To solve the difficulty of the vanishing of π0, we will start by modifying the
Maxwell Lagrangian introducing a new term,

L = −1

4
FµνF

µν − 1

2ξ
(∂ ·A)2

where ξ is a dimensionless parameter.

❐ The equations of motion are now,

⊔⊓Aµ −
(
1− 1

ξ

)
∂µ(∂ ·A) = 0

and the conjugate momenta

πµ =
∂L
∂Ȧµ

= Fµ0 − 1

ξ
gµ0(∂ ·A)

that is
{

π0 = − 1
ξ (∂ ·A)

πk = Ek
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❐ We remark that the above Lagrangian and the equations of motion, reduce
to Maxwell theory in the gauge ∂ ·A = 0. This why we say that our choice
corresponds to a class of Lorenz gauges with parameter ξ. With this abuse
of language (in fact we are not setting ∂ ·A = 0, otherwise the problems
would come back) the value of ξ = 1 is known as the Feynman gauge and
ξ = 0 as the Landau gauge.

❐ From the equations of motion we get

⊔⊓(∂ ·A) = 0

implying that (∂ ·A) is a massless scalar field. Although it would be possible
to continue with a general ξ, from now on we will take the case of the
so-called Feynman gauge, where ξ = 1. Then the equation of motion
coincide with the Maxwell theory in the Lorenz gauge.

❐ As we do not have anymore π0 = 0, we can impose the canonical
commutation relations at equal times:

[πµ(~x, t), Aν(~y, t)] = −igµν δ
3(~x− ~y)

[Aµ(~x, t), Aν(~y, t)] = [πµ(~x, t), πν(~y, t)] = 0



Undefined metric formalism

Lecture 1

Canonical Quantization

Scalar fields

Lecture 2

Dirac field

Electromagnetic field

• Introduction

•Undefined metric

• Feynman Propagator

Discrete Symmetries

Jorge C. Romão TCA-2012 – 68

❐ Knowing that [Aµ(~x, t), Aµ(~y, t)] = 0 at equal times, we can conclude that
the space derivatives of Aµ also commute at equal times. Then, noticing
that

πµ = −Ȧµ + space derivatives

we can write instead of the previous commutation relations

[Aµ(~x, t), Aν(~y, t)] = [Ȧµ(~x, t), Ȧµ(~y, t)] = 0

[Ȧµ(~x, t), Aν(~y, t)] = igµνδ
3(~x− ~y)

❐ If we compare these relations with the corresponding ones for the real scalar
field, where the only one non-vanishing is,

[ϕ̇(~x, t), ϕ(~y, t)] = −iδ3(~x− ~y)

we see (gµν = diag(+,−,−,−) that the relations for space components are
equal but they differ for the time component. This sign will be the source of
the difficulties previously mentioned.
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❐ If, for the moment, we do not worry about this sign, we expand Aµ(x)

Aµ(x) =

∫
d̃k

3∑

λ=0

[
a(k, λ)εµ(k, λ)e−ik·x + a†(k, λ)εµ∗(k, λ)eik·x

]

where εµ(k, λ) are a set of four independent 4-vectors that we assume to
real, without loss of generality.

❐ We will now make a choice for these 4-vectors. We choose εµ(1) and εµ(2)
orthogonal to kµ and nµ, such that

εµ(k, λ)εµ(k, λ
′) = −δλλ′ for λ, λ′ = 1, 2

After, we choose εµ(k, 3) in the plane (kµ, nµ) ⊥ to nµ such that

εµ(k, 3)nµ = 0 ; εµ(k, 3)εµ(k, 3) = −1

❐ Finally we choose εµ(k, 0) = nµ. The vectors εµ(k, 1) and εµ(k, 2) are
called transverse polarizations, while εµ(k, 3) and εµ(k, 0) longitudinal and
scalar polarizations, respectively.
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❐ In the frame where nµ = (1, 0, 0, 0) and ~k is along the z axis we have

εµ(k, 0) ≡ (1, 0, 0, 0) ; εµ(k, 1) ≡ (0, 1, 0, 0)

εµ(k, 2) ≡ (0, 0, 1, 0) ; εµ(k, 3) ≡ (0, 0, 0, 1)

❐ In general we can show that

ε(k, λ) · ε∗(k, λ′) = gλλ
′

,
∑

λ

gλλεµ(k, λ)ε∗ν(k, λ) = gµν

❐ Inserting the plane wave expansion we get

[a(k, λ), a†(k′, λ′)] = −gλλ′

2k0(2π)3δ3(~k − ~k′)

showing, once more, that the quanta associated with λ = 0 has a
commutation relation with the wrong sign.

❐ Before addressing this problem, we can verify we get for arbitrary times

[Aµ(x), Aν(y)] = −igµν∆(x, y)

showing the covariance of the theory. The function ∆(x− y) is the same
that was introduced before for scalar fields.
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❐ Therefore, up to this point, everything is as if we had 4 scalar fields. There
is, however, the problem of the sign difference in one of the commutators.

❐ Let us now see what are the consequences of this sign. For that we
introduce the vacuum state defined by

a(k, λ) |0〉 = 0 λ = 0, 1, 2, 3

❐ To see the problem with the sign we construct the one-particle state with
scalar polarization, that is

|1〉 =
∫
d̃k f(k)a†(k, 0) |0〉

and calculate its norm

〈1|1〉 =
∫
d̃k1d̃k2f

∗(k1)f(k2)
〈
0|a(k1, 0)a†(k2, 0)|0

〉

=− 〈0|0〉
∫
d̃k |f(k)|2

The state |1〉 has a negative norm.
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❐ The same calculation for the other polarization would give well behaved
positive norms. We therefore conclude that the Fock space of the theory has
indefinite metric. What happens to the probabilistic interpretation of QM?

❐ To solve this problem we note that we are not working anymore with the
classical Maxwell theory because we modified the Lagrangian. What we
would like to do is to impose the condition ∂ ·A = 0, but that is impossible
as an equation for operators. We can, however, require that condition on a
weaker form, as a condition only to be verified by the physical states.

❐ More specifically, we require that the part of ∂ ·A that contains the
annihilation operator (positive frequencies) annihilates the physical states,

∂µA(+)
µ |ψ〉 = 0

The states |ψ〉 can be written in the form

|ψ〉 = |ψT 〉 |φ〉

where |ψT 〉 is obtained from the vacuum with creation operators with
transverse polarization and |φ〉 with scalar and longitudinal polarization.
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❐ This decomposition depends, of course, on the choice of polarization vectors.
To understand the consequences it is enough to analyze the states |φ〉 as
∂µA

(+)
µ contains only scalar and longitudinal polarizations,

i∂ ·A(+) =

∫
d̃k e−ik·x

∑

λ=0,3

a(k, λ) ε(k, λ) · k

❐ Therefore the previous condition becomes

∑

λ=0,3

k · ε(k, λ) a(k, λ) |φ〉 = 0

❐ This does not determine completely |φ〉. In fact, there is much arbitrariness
in the choice of the transverse polarization vectors, to which we can always
add a term proportional to kµ because k · k = 0. This arbitrariness must
reflect itself on the choice of |φ〉. The condition is equivalent to,

[a(k, 0)− a(k, 3)] |φ〉 = 0 .
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❐ We can construct |φ〉 as a linear combination of states |φn〉 with n scalar or
longitudinal photons:

|φ〉 = C0 |φ0〉+ C1 |φ1〉+ · · ·+ Cn |φn〉+ · · ·

|φ0〉 ≡ |0〉

❐ The states |φn〉 are eigenstates of the operator number for scalar or
longitudinal photons,

N ′ |φn〉 = n |φn〉

where

N ′ =

∫
d̃k

[
a†(k, 3)a(k, 3)− a†(k, 0)a(k, 0)

]

❐ Then

n 〈φn|φn〉 = 〈φn|N ′|φn〉 = 0
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❐ This means that

〈φn|φn〉 = δn0

that is, for n 6= 0, the state |φn〉 has zero norm. We have then for the
general state |φ〉,

〈φ|φ〉 = |C0|2 ≥ 0

and the coefficients Ci, i = 1, · · ·n · · · are arbitrary.

❐ We have to show that this arbitrariness does not affect the physical
observables. The Hamiltonian is

H =

∫
d3x : πµȦµ − L :

=
1

2

∫
d3x :

3∑

i=1

[
Ȧ2

i + (~∇Ai)
2
]
− Ȧ2

0 − (~∇A0)
2 :

=

∫
d̃k k0

[
3∑

λ=1

a†(k, λ)a(k, λ)− a†(k, 0)a(k, 0)

]
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❐ It is easy to check that if |ψ〉 is a physical state we have

〈ψ|H|ψ〉
〈ψ|ψ〉 =

〈
ψT |

∫
d̃k k0

∑2
λ=1 a

†(k, λ)a(k, λ)|ψT

〉

〈ψT |ψT 〉

and the arbitrariness on the physical states completely disappears when we
take average values. Besides that, only the physical transverse polarizations
contribute to the result. One can show that the arbitrariness in |φ〉 is related
with a gauge transformation within the class of Lorenz gauges.

❐ It is important to note that although for the average values of the physical
observables only the transverse polarizations contribute, the scalar and
longitudinal polarizations are necessary for the consistency of the theory. In
particular they show up when we consider complete sums over the
intermediate states.

❐ Invariance for translations is readily verified. For that we write,

Pµ =

∫
d̃k kµ

3∑

λ=0

(−gλλ)a†(k, λ)a(k, λ)
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❐ Then

i[Pµ, Aν ] =

∫
d̃k d̃k

′
ikµ

∑

λ,λ′

(−gλλ)
{[
a†(k, λ)a(k, λ), a(k′, λ′)

]
εν(k′, λ′)e−ik·x

+
[
a†(x, λ)a(k, λ), a†(k′, λ′)

]
ε∗ν(k′, λ′)eik

′·x
}

=

∫
d̃k ikµ

∑

λ

[
a(k, λ)εν(k, λ)e−ik·x − a†(k, λ)εν(k, λ)eik·x

]

=∂µAν

showing the invariance under translations.

❐ In a similar way, it can be shown the invariance for Lorentz transformations
(see Problems). For that we have to show that

M jk =

∫
d3x :

[
xjT 0k − xkT 0j + EjAk − EkAj

]
:

M0i =

∫
d3x :

[
x0T 0i − xiT 00 − (∂ ·A)Ai − EiA0

]
:
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❐ Where (ξ = 1)

T 0i =− (∂ ·A) ∂iA0 − Ek∂iAk

T 00 =
3∑

i=1

[
Ȧ2

i + (~∇Aj)
2
]
− Ȧ2

0 − (~∇A0)
2

❐ Using these expressions one can show that the photon has helicity ±1,
corresponding therefore to spin one. For that we start by choosing the
direction of ~k along the axis 3 (z axis) and take the polarization vector
defined before. A one-photon physical state will then be (not normalized),

|k, λ〉 = a†(k, λ) |0〉 λ = 1, 2

❐ Let us now calculate the angular momentum along the axis 3. This is given
by

M12 |k, λ〉 =M12a†(k, λ) |0〉 = [M12, a†(k, λ)] |0〉

where we have used the fact that the vacuum state satisfies M12 |0〉 = 0.
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❐ The operator M12 has one part corresponding the orbital angular momenta
and another corresponding to the spin. The contribution of the orbital
angular momenta vanishes (angular momenta in the direction of motion) as
one can see calculating the commutator. In fact the commutator with the
orbital angular momenta is proportional to k1 or k2, which are zero by
hypothesis. Let us then calculate the spin part. Using the notation,

Aµ = Aµ(+) +Aµ(−)

where Aµ(+)(Aµ(−)) correspond to the + (−) frequencies, we get

: E1A2−E2A1 := E1(+)A2(+)+E1(−)A2(+)+A2(−)E1(+)+E1(−)A2(−)−(1 ↔ 2)

❐ Then

[
: E1A2 − E2A1 :, a†(k, λ)

]
=

=E1(+)
[
A2(+), a†(k, λ)

]
+
[
E1(+), a†(k, λ)

]
A2(+)

+ E1(−)
[
A2(+), a†(k, λ)

]
+A2(−)

[
E1(+), a†(k, λ)

]
− (1 ↔ 2)

=E1
[
A2(+), a†(k, λ)

]
+A2

[
E1(+), a†(k, λ)

]
− (1 ↔ 2)
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❐ Now (recall that λ = 1, 2)

[A2(+), a†(k, λ)] =

∫
d̃k

′ ∑

λ′

ε2(k′, λ′)
[
a(k′, λ′), a†(k, λ)

]
e−ik′·x

=ε2(k, λ)e−ik·x

[E1(+), a†(k, λ)] =

∫
d̃k

′∑

λ′

(
ik′0ε0(k′, λ′)+ik′1ε0(k′, λ′)

)[
a(k′, λ′), a†(k, λ)

]
e−ik′·x

=ik0ε1(k, λ)e−ik·x

❐ Therefore
∫
d3x

[
: E1A2 − E2A1 :, a†(k, λ)

]

=

∫
d3xe−ik·x

[
E1ε2(k, λ) +A2ik0ε1(k, λ)− E2ε1(k, λ) +A1ik0ε2(k, λ)

]

=

∫
d3xe−ik·x

[
ε1(k, λ)∂

↔

0A
2(x)− ε2(k, λ)∂

↔

0A
1(x)

]

where we have used the fact that Ei = −Ȧi, i = 1, 2, for our choice of
frame and polarization vectors.
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❐ On the other hand

a(k, λ) = −i
∫
d3xeik·x ∂

↔

0 ε
µ(k, λ)Aµ(x)

a†(k, λ) = i

∫
d3xe−ik·x ∂

↔

0 ε
µ(k, λ)Aµ(x)

❐ For our choice we get

a†(k, 1) =− i

∫
d3xe−ik·x ∂

↔

0 A
1(x)

a†(k, 2) =− i

∫
d3xe−ik·x ∂

↔

0 A
2(x)

❐ Therefore

[M12, a†(k, λ)] = iε1(k, λ)a†(k, 2)− iε2(k, λ)a†(k, 1)
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❐ We find that the state a†(k, λ) |0〉 , λ = 1, 2 is not an eigenstate of the
operator M12.

❐ However the linear combinations,

a†R(k) =
1√
2

[
a†(k, 1) + ia†(k, 2)

]

a†L(k) =
1√
2

[
a†(k, 1)− ia†(k, 2)

]

which correspond to right and left circular polarization, verify

[M12, a†R(k)] = a†R(k) ; [M12, a†L(k)] = −a†L(k)

❐ This shows that the photon has spin 1 with right or left circular polarization
(negative or positive helicity).
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❐ The Feynman propagator is defined as the vacuum expectation value of the
time ordered product of the fields, that is

Gµν(x, y) ≡〈0|TAµ(x)Aν(y)|0〉
=θ(x0 − y0) 〈0|Aµ(x)Aν(y)|0〉+ θ(y0 − x0) 〈0|Aν(y)Aµ(x)|0〉

❐ Inserting the expansions for Aµ(x) and Aν(y) we get

Gµν(x− y) =− gµν

∫
d̃k

[
e−ik·(x−y)θ(x0 − y0) + eik·(x−y)θ(y0−x0)

]

=− gµν

∫
d4k

(2π)4
i

k2 + iε
e−ik·(x−y)

≡
∫

d4k

(2π)4
Gµν(k)e

−ik·(x−y)

❐ Gµν(k) is the Feynman propagator on the momentum space

Gµν(k) ≡
−igµν
k2 + iε
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❐ It is easy to verify that Gµν(x− y) is the Green’s function of the equation of
motion, that for ξ = 1 is the wave equation, that is

⊔⊓xGµν(x− y) = igµνδ
4(x− y)

❐ These expressions for Gµν(x− y) and Gµν(k) correspond to the particular
case of ξ = 1, the so-called Feynman gauge. For the general case, ξ 6= 0

[
⊔⊓xg

µ
ρ −

(
1− 1

ξ

)
∂µ∂ρ

]
Aρ(x) = 0

❐ For this case the equal times commutation relations are more complicated
(see Problems). Using those relations one can show that the Feynman
propagator is still the Green’s function of the equation of motion, that is

[
⊔⊓xg

µ
ρ −

(
1− 1

ξ

)
∂µ∂ρ

]
〈0|TAρ(x)Aν(y)|0〉 = igµνδ4(x− y)

❐ Using this equation we can then obtain in an arbitrary ξ gauge (of the
Lorenz type),

Gµν(k) = −i gµν
k2 + iε

+ i(1− ξ)
kµkν

(k2 + iε)2
.
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❐ We know from the study of the Dirac equation the transformations like
space inversion (Parity) and charge conjugation, are symmetries of the Dirac
equation.

❐ More precisely, if ψ(x) is a solution of the Dirac equation, then

ψ′(x) = ψ′(−~x, t) = γ0ψ(~x, t)

ψc(x) = Cψ
T
(x)

are also solutions (if we take the charge −e for ψc). Similar operations could
also be defined for scalar and vector fields.

❐ With second quantization the fields are no longer functions, they become
operators. We have therefore to find unitary operators P and C that describe
those operations within this formalism. There is another discrete symmetry,
time reversal, that in second quantization will be described by an
anti-unitary operator T .

❐ We will exemplify with the scalar field how to get these operators. We will
leave the Dirac and Maxwell fields as exercises.
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❐ To define the meaning of the Parity operation we have to put the system in
interaction with the measuring system, considered to be classical. This
means that we will consider the system described by

L −→ L− jµ(x)A
µ
ext(x)

where we have considered that the interaction is electromagnetic. jµ(x) is
the electromagnetic current that has the form,

jµ(x) = ie : ϕ∗∂
↔

µϕ : scalar field

jµ(x) = e : ψγµψ : Dirac field

❐ In a Parity transformation we invert the coordinates of the measuring
system, therefore the classical fields are now

Aµ
ext = (A0

ext(−~x, t)),− ~Aext(−~x, t) = Aext
µ (−~x, t)

❐ For the dynamics of the new system to be identical to that of the original
system, which should be the case if Parity is conserved, it is necessary that
the equations of motion remain the same.
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❐ This is true if

PL(~x, t)P−1 = L(−~x, t)

Pjµ(~x, t)P−1 = jµ(−~x, t)

❐ These are the conditions that a theory should obey in order to be invariant
under Parity.

❐ Furthermore P should leave the commutation relations unchanged, so that
the quantum dynamics is preserved. For each theory that conserves Parity
should be possible to find an unitary operator P that satisfies these
conditions.

❐ Now we will find such an operator P for the scalar field. It is easy to verify
that the condition

Pϕ(~x, t)P−1 = ±ϕ(−~x, t)

satisfies all the requirements. The sign ± is the intrinsic parity of the
particle described by the field ϕ, (+ for scalar and − for pseudo-scalar).
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❐ In terms of the expansion of the momentum, the requirement is

Pa(k)P−1 = ±a(−k) ; Pa†(k)P−1 = ±a†(−k)

where −k means that we have changed ~k into −~k (but k0 remains intact,

that is, k0 = +

√
|~k|2 +m2).

❐ It is easier to solve this requirement in the momentum space. As P should
be unitary, we write

P = eiP

❐ Then

Pa(k)P−1 =a(k) + i[P, a(k)] + · · ·+ in

n!
[P, [· · · , [P, a(k)] · · · ] + · · ·

=− a(−k)

where we have chosen the case of the pseudo-scalar field.
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❐ The last relation suggests the form

[P, a(k)] =
λ

2
[a(k) + εa(−k)]

where λ and ε = ±1 are to be determined.

❐ We get

[P, [P, a(k)]] =
λ2

2
[a(k) + εa(−k)]

and therefore

Pa(k)P−1 =a(k) +
1

2

[
iλ+

(iλ)2

2!
+ · · ·+ (iλ)4

n!
+ · · ·

]
(a(k) + εa(−k))

=
1

2
[a(k)− εa(−k)] + 1

2
eiλ[a(k) + εa(−k)]

=− a(−k)

❐ We solve this if we choose λ = π and ε = +1 (λ = π and ε = −1 for the
scalar case).
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❐ It is easy to check that (for λ = π and ε = +1)

Pps =− π

2

∫
d̃k

[
a†(k)a(k) + a†(k)a(−k)

]
= P †

ps

Pps =exp

{
−iπ

2

∫
d̃k

[
a†(k)a(k) + a†(k)a(−k)

]}

❐ For the scalar field

Ps = exp

{
−iπ

2

∫
d̃k

[
a†(k)a(k)− a†(k)a(−k)

]}

❐ For the case of the Dirac field, the condition is now

Pψ(~x, t)P−1 = γ0ψ(−~x, t)

❐ Repeating the same steps we get

PDirac =exp

{
−iπ

2

∫
d̃p

∑

s

[
b†(p, s)b(p, s)− b†(p, s)b(−p, s)

+ d†(p, s)d(p, s) + d†(p, s)d(−p, s)
]}

❐ The case of the Maxwell field is left as an exercise.
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❐ The conditions for charge conjugation invariance are now

CL(x)C−1 = L ; CjµC−1 = −jµ

where jµ is the electromagnetic current.

❐ These conditions are verified for the charged scalar fields if

Cϕ(x)C−1 = ϕ∗(x) ; Cϕ∗(x)C−1 = ϕ(x)

and for the Dirac field if

Cψα(x)C−1 = Cαβ ψβ(x)

Cψα(x)C−1 = −ψβ(x)C
−1
βα

where C is the charge conjugation matrix.

❐ Finally from the invariance of jµA
µ we obtain the condition for the

electromagnetic field,

CAµC−1 = −Aµ
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❐ By using a method similar to the one used in the case of the Parity we can
get the operator C for the different theories. For the scalar field we get

Cs = exp

{
i
π

2

∫
d̃k (a†+ − a†−)(a+ − a−)

}

❐ For the Dirac field

C = C1C2

with

C1 =exp

{
−i

∫
d̃p

∑

s

φ(p, s)
[
b†(p, s)b(p, s)− d†(p, s)d(p, s)

]
}

C2 =exp

{
i
π

2

∫
d̃p

∑

s

[
b†(p, s)− d†(p, s)

]
[b(p, s)− d(p, s)]

}

❐ Where

v(p, s) = eiφ(p,s) uc(p, s) , u(p, s) = eiφ(p,s) vc(p, s)

and the phase φ(p, s) is arbitrary.
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❐ Classically the meaning of the time reversal invariance it is clear. We change
the sign of the time, the velocities change direction and the system goes
from what was the final state to the initial state.

❐ This exchange between the initial and final state has as consequence, in
quantum mechanics, that the corresponding operator must be anti-linear or
anti-unitary. In fact 〈f |i〉 = 〈i|f〉∗ and therefore if we want
〈T ϕf |T ϕi〉 = 〈ϕi|ϕf 〉 then T must include the complex conjugation
operation.

❐ We can write

T = UK

where U is unitary and K is the instruction to tale the complex conjugate of
all c-numbers. Then

〈Tϕf |Tϕi〉 = 〈UKϕf |UKϕi〉
= 〈Uϕf |Uϕi〉∗

= 〈ϕf |ϕi〉∗ = 〈ϕi|ϕf 〉
as we wanted.
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❐ A theory will be invariant under time reversal if

T L(~x, t)T −1 = L(~x,−t) , T jµ(~x, t)T −1 = jµ(~x,−t)

❐ For the scalar field this condition will be verified if

T ϕ(~x, t)T −1 = ±ϕ(~x,−t)

❐ For the electromagnetic field we must have.

T Aµ(~x, t)T −1 = Aµ(~x,−t)

making jµAµ invariant.

❐ For the case of the Dirac field the transformation is

T ψα(~x, t)T −1 = Tαβψβ(~x,−t)

In order that the last equation is satisfied, the T matrix must satisfy

TγµT
−1 = γTµ = γµ∗
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❐ This has a solution, in the Dirac representation,

T = iγ1γ3

❐ Applying the same type of reasoning already used for P and C we can find
T , or equivalently, U . For the Dirac field, noticing that

Tu(p, s) =u∗(−p,−s)eiα+(p,s)

Tv(p, s) =v∗(−p,−s)eiα−(p,s)

we can write U = U1U2 and obtain

U1 =exp

{
−i

∫
d̃p

∑

s

[
α+b

†(p, s)b(p, s)− α−d
†(p, s)d(p, s)

]
}

U2 =exp

{
−iπ

2

∫
d̃p

∑

s

[
b†(p, s)b(p, s) + b†(p, s)b(−p− s)

− d†(p, s)d(p, s)− d†(p, s)d(−p,−s)
]}
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❐ It is a fundamental theorem in Quantum Field Theory that the product T CP
is an invariance of any theory that satisfies the following general conditions:

◆ The theory is local and covariant for Lorentz transformations.

◆ The theory is quantized using the usual relation between spin and
statistics, that is, commutators for bosons and anti-commutators for
fermions.

❐ This theorem due to Lüdus, Zumino, Pauli e Schwinger has an important
consequence that if one of the discrete symmetries is not preserved then
another one must also be violated to preserve the invariance of the product.

❐ For a proof of the theorem see, for instance, the books of Bjorken and Drell
and Itzykson and Zuber
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