

Introduction to Supersymmetry & Implications from the LHC Data

Jorge C. Romão Instituto Superior Técnico, Departamento de Física & CFTP A. Rovisco Pais 1, 1049-001 Lisboa, Portugal

5 de Dezembro de 2012

Summary

Motivation

- SUSY Algebra
- MSSM

LEP Results

LHC Results

Conclusions

- Motivation
- **I** SUSY Algebra and Representations
- MSSM
 - Particle Content
 - Superpotential
 - Masses
 - Couplings
- Bounds: LEP, Tevatron, ···
 - Higgs
 - Chargino, Neutralinos, · · ·
 - Dark Matter
- Results from LHC
- Conclusions

Bibliography

Motivation

SUSY Algebra

IST

MSSM

LEP Results

LHC Results

Conclusions

Books

- Supersymmetry and Supergravity, Julius Wess and Jonathan Bagger.
 (-,+,+,+)
- Supersymmetric Gauge Field Theory and String Theory, David Bailin and Alexander Love. (+, -, -, -)
 - Supersymmetry in Particle Physics, Ian Aitchison. (+, -, -, -)

Other Texts

- The search for supersymmetry: Probing physics beyond the standard model, H. E. Haber and G. L. Kane, Phys. Rep. 117 (1985) 75.
 (+,-,-,-)
- A Supersymmetry primer, Stephen Martin, hep-ph/9709356.
 (-,+,+,+)
- BUSSTEPP Lectures on Supersymmetry, José M. Figueroa-O'Farrill, hep-ph/0109172. (-,+,+,+)
- The Minimal Supersymmetric Standard Model, Jorge C. Romão, (see my homepage). (+, -, -, -)

ţ,	IS ⁻
----	-----------------

Motivation

Summary

Motivation

Naturalness

SUSY Algebra

MSSM

LEP Results

LHC Results

Conclusions

Although there is not yet direct experimental evidence for supersymmetry (SUSY), there are many theoretical arguments indicating that SUSY might be of relevance for physics around the 1 TeV scale.

The most commonly invoked theoretical arguments for SUSY are:

- Interrelates matter fields (leptons and quarks) with force fields (gauge and/or Higgs bosons).
- As local SUSY implies gravity (supergravity) it could provide a way to unify gravity with the other interactions.
- As SUSY and supergravity have fewer divergences than conventional field theories, the hope is that it could provide a consistent (finite) quantum gravity theory.
- □ SUSY can help to understand the mass problem, in particular solve the naturalness problem (and in some models even the hierarchy problem) if SUSY particles have masses $\leq O(1\text{TeV})$.

- Motivation
 Naturalness
- SUSY Algebra
- MSSM
- LEP Results
- LHC Results
- Conclusions

- As the SM is not asymptotically free, at some energy scale Λ , the interactions must become strong indicating the existence of new physics. Candidates for this scale: $M_X \simeq \mathcal{O}(10^{16} \text{ GeV})$ in GUT's or the Planck scale $M_P \simeq \mathcal{O}(10^{19} \text{GeV})$.
- The only consistent way to give masses to the gauge bosons and fermions is through the Higgs mechanism involving at least one spin zero Higgs boson.
- □ Although the Higgs boson mass is not fixed by the theory, a value much bigger than $< H^0 > \simeq G_F^{-1/2} \simeq 250$ GeV would imply that the Higgs sector would be strongly coupled making it difficult to understand why we are seeing an apparently successful perturbation theory at low energies.
- **The one loop radiative corrections to the Higgs boson mass**

$$\delta m_H^2 = \mathcal{O}\left(\frac{\lambda^2}{16\pi^2}\right) \Lambda^2 + \cdots$$

would be too large if Λ is identified with Λ_{GUT} or $\Lambda_{Planck}.$

Motivation

Naturalness
 SUSY Algebra

MSSM

LEP Results

LHC Results

Conclusions

SUSY cures this problem in the following way. If SUSY were exact, radiative corrections to the scalar masses squared would be absent because the contribution of fermion loops exactly cancels against the boson loops.

Therefore if SUSY is broken, as it must, we should have

$$\delta m_H^2 = \mathcal{O}\left(\frac{\lambda}{16\pi^2}\right) \ (m_F^2 - m_B^2) \ln \frac{\Lambda}{m_B} + \cdots$$

We conclude that

SUSY provides a solution for the the naturalness problem if the masses of the superpartners are around O(1 TeV). This is the main reason behind all the phenomenological interest in SUSY.

The Poincare Algebra

Summary

Motivation

SUSY Algebra

• Poincare algebra

• SUSY algebra

• Simple Results

• Multipletos

• Superfields

MSSM

LEP Results

LHC Results

Conclusions

The Poincaré group is made up of the Lorentz group plus the translations. We denote by $J_{\mu\nu}$ the generators of the Lorentz group and by P_{μ} the generators of the translations. The algebra is defined by,

$$[J_{\mu\nu}, J_{\rho\sigma}] = i \left(g_{\nu\rho}J_{\mu\sigma} - g_{\nu\sigma}J_{\mu\rho} - g_{\mu\rho}J_{\nu\sigma} + g_{\mu\sigma}J_{\nu\rho}\right)$$
$$[P_{\alpha}, J_{\mu\nu}] = i \left(g_{\mu\alpha}P_{\nu} - g_{\nu\alpha}P_{\mu}\right)$$
$$[P_{\mu}, P_{\nu}] = 0$$

One can show that

$$[P^{2}, J_{\mu\nu}] = [P^{2}, P_{\mu}] = 0$$
$$[W^{2}, J_{\mu\nu}] = [W^{2}, P_{\mu}] = [W^{2}, P^{2}] = 0$$

where

$$W_{\mu} = -\frac{1}{2} \varepsilon_{\mu\nu\rho\sigma} \ J^{\nu\rho} \ P^{\sigma}$$

is the Pauli-Lubanski vector operator.

SUSY Algebra

Summary

Motivation

SUSY Algebra

• Poincare algebra

SUSY algebra

• Simple Results

• Multipletos

• Superfields

MSSM

LEP Results

LHC Results

Conclusions

The SUSY generators carry Spin 1/2 and obey the following algebra

 $\{Q_{\alpha}, Q_{\beta}\} = 0$ $\{\overline{Q}_{\dot{\alpha}}, \overline{Q}_{\dot{\beta}}\} = 0$ $\{Q_{\alpha}, \overline{Q}_{\dot{\beta}}\} = 2(\sigma^{\mu})_{\alpha\dot{\beta}} P_{\mu}$

where

$$\sigma^{\mu} \equiv (1, \sigma^{i}) \quad ; \quad \overline{\sigma}^{\mu} \equiv (1, -\sigma^{i})$$

and $\alpha, \beta, \dot{\alpha}, \dot{\beta} = 1, 2$ (Weyl 2-component spinor notation).

Motivation

SUSY Algebra

• Poincare algebra

SUSY algebra

• Simple Results

MultipletosSuperfields

MSSM

LEP Results

LHC Results

Conclusions

The commutation relations with the generators of the Poincaré group

$$[P^{\mu}, Q_{\alpha}] = 0 \qquad [J^{\mu\nu}, Q_{\alpha}] = -i \left(\sigma^{\mu\nu}\right)_{\alpha}{}^{\beta} Q_{\beta}$$

One can easily derive that the two invariants of the Poincaré group,

$$P^{2} = P_{\alpha}P^{\alpha} \qquad W^{2} = W_{\alpha}W^{\alpha} \qquad W_{\mu} = -\frac{1}{2}\epsilon_{\mu\nu\rho\sigma}J^{\nu\rho}P^{\sigma}$$
$$P^{2} |m,s\rangle = m^{2} |m,s\rangle \quad W^{2} |m,s\rangle = -m^{2}s(s+1) |m,s\rangle$$

where W^{μ} is the Pauli–Lubanski vector operator, are no longer invariants of the Super Poincaré group:

$$[Q_{\alpha}, P^2] = 0 \qquad [Q_{\alpha}, W^2] \neq 0$$

Irreducible multiplets will have particles of the same mass but different spin.

Simple Results from the Algebra

Summary

Motivation

SUSY Algebra

• Poincare algebra

SUSY algebra

• Simple Results

• Multipletos

• Superfields

MSSM

LEP Results

LHC Results

Conclusions

Number of Bosons = Number of Fermions

$$Q_{\alpha}|B\rangle = |F\rangle \quad (-1)^{N_F}|B\rangle = |B\rangle$$

 $Q_{\alpha}|F\rangle = |B\rangle \quad (-1)^{N_F}|F\rangle = -|F\rangle$

where $(-1)^{N_F}$ is the fermion number of a given state. Then we obtain

$$Q_{\alpha}(-1)^{N_F} = -(-1)^{N_F} Q_{\alpha}$$

Using this relation we can show that

$$Tr\left[(-1)^{N_F} \left\{ Q_{\alpha}, \overline{Q}_{\dot{\alpha}} \right\} \right] = Tr\left[(-1)^{N_F} Q_{\alpha} \overline{Q}_{\dot{\alpha}} + (-1)^{N_F} \overline{Q}_{\dot{\alpha}} Q_{\alpha} \right]$$
$$= Tr\left[-Q_{\alpha}(-1)^{N_F} \overline{Q}_{\dot{\alpha}} + Q_{\alpha}(-1)^{N_F} \overline{Q}_{\dot{\alpha}} \right] = 0$$

But we also have

$$Tr\left[(-1)^{N_F} \left\{ Q_{\alpha}, \overline{Q}_{\dot{\alpha}} \right\} \right]$$
$$= Tr\left[(-1)^{N_F} 2\sigma^{\mu}_{\alpha \dot{\alpha}} P_{\mu} \right]$$

$$Tr\left[(-1)^{N_F}\right] = \#\mathsf{Bosons} - \#\mathsf{Fermions} = 0$$

SUSY Representations: Massive case

Summary

Motivation

SUSY Algebra

• Poincare algebra

• SUSY algebra

• Simple Results

Multipletos

• Superfields

MSSM

LEP Results

LHC Results

Conclusions

In the rest frame

Then we have 4 states

If $J_3 |\Omega\rangle = j_3 |\Omega\rangle$

$$\left\{Q_{\alpha}, \overline{Q}_{\dot{\alpha}}\right\} = 2 \, m \, \delta_{\alpha \dot{\alpha}}$$

This algebra is similar to the algebra of the spin 1/2 creation and annihilation operators. Choose $|\Omega\rangle$ such that

$$Q_1 \left| \Omega \right\rangle = Q_2 \left| \Omega \right\rangle = 0$$

$$\left|\Omega\right\rangle \; ; \; \overline{Q}_1 \left|\Omega\right\rangle \; ; \; \overline{Q}_2 \left|\Omega\right\rangle \; ; \; \overline{Q}_1 \overline{Q}_2 \left|\Omega\right\rangle$$

$$\begin{array}{|c|c|c|}\hline \text{State} & J_3 \text{ Eigenvalue} \\ \hline |\Omega\rangle & j_3 \\ \hline \overline{Q}_1 \left|\Omega\rangle & j_3 + \frac{1}{2} \\ \hline \overline{Q}_2 \left|\Omega\rangle & j_3 - \frac{1}{2} \\ \hline \overline{Q}_1 \overline{Q}_2 \left|\Omega\rangle & j_3 \end{array}$$

Two bosons and two fermions states separated by one half unit of spin.

Motivation

SUSY Algebra

• Poincare algebra

• SUSY algebra

• Simple Results

MultipletosSuperfields

• Superne

MSSM

LEP Results

LHC Results

Conclusions

If m = 0 then we can choose $P^{\mu} = (E, 0, 0, E)$. In this frame

$$\left\{Q_{\alpha}, \overline{Q}_{\dot{\alpha}}\right\} = M_{\alpha \dot{\alpha}}$$

where the matrix M takes the form

$$M = \left(\begin{array}{cc} 0 & 0\\ 0 & 4E \end{array}\right)$$

Then $\{Q_2, \overline{Q}_2\} = 4E$ all others vanish. We have then just **two** states $|\Omega\rangle$; $\overline{Q}_2 |\Omega\rangle$

If
$$J_3 \ket{\Omega} = \lambda \ket{\Omega}$$

$$\begin{array}{|c|c|c|} \hline {\sf State} & J_3 \ {\sf Eigenvalue} \\ \hline & |\Omega\rangle & \lambda \\ \hline & \overline{Q}_2 \, |\Omega\rangle & \lambda - \frac{1}{2} \\ \hline \end{array}$$

Two states, one fermion one boson separated by one half unit of spin.

Motivation

- SUSY Algebra
- Poincare algebra
- SUSY algebra
- Simple Results
- Multipletos
- Superfields
- MSSM
- LEP Results
- LHC Results
- Conclusions

T Chiral Superfields: Spin $0 + \text{Spin } \frac{1}{2}$

$$\phi \text{ Complex Scalar: } 2 \text{ d.o.f}$$

$$\chi_L \text{ Chiral Fermion: } 2 \text{ d.o.f (on-shell)}$$

D Vector Superfields: Spin
$$\frac{1}{2}$$
 + Spin 1

$$V = V(\lambda, W^{\mu})$$

 λ Chiral Fermion: 2 d.o.f W^{μ} Massless Vector: 2 d.o.f (on-shell)

Motivation

SUSY Algebra

MSSM

Content

Gauge

Leptons

Quarks

Higgs

LEP Results

LHC Results

Conclusions

Gauge Fields

We want to have gauge fields for the gauge group $G = SU_c(3) \otimes SU_L(2) \otimes U_Y(1)$. Therefore we will need three vector superfields (or vector supermultiplets) \hat{V}_i with the following components:

$$\widehat{V}_1 \equiv (\lambda', W_1^{\mu}) \quad \rightarrow \quad U_Y(1)$$

$$\widehat{V}_2 \equiv (\lambda^a, W_2^{\mu a}) \quad \rightarrow \quad SU_L(2) \quad , \quad a = 1, 2, 3$$

$$\widehat{V}_3 \equiv (\widetilde{g}^b, W_3^{\mu b}) \quad \rightarrow \quad SU_c(3) \quad , \quad b = 1, \dots, 8$$

where W_i^{μ} are the gauge fields and λ', λ and \tilde{g} are the $U_Y(1)$ and $SU_L(2)$ gauginos and the gluino, respectively.

Motivation

SUSY Algebra

MSSM

Content

• Gauge

• Leptons

• Quarks

• Higgs

LEP Results

LHC Results

Conclusions

Leptons

As each chiral multiplet only describes one helicity state, we will need two chiral multiplets for each charged lepton (We will assume that the neutrinos do not have mass).

Supermultiplet	$SU_c(3)\otimes SU_L(2)\otimes U_Y(1)$ Quantum Numbers	
$\widehat{L}_i \equiv (\widetilde{L}, L)_i$	$(1, 2, -\frac{1}{2})$	
$\widehat{R}_i \equiv (\widetilde{\ell}_R, \ell_L^c)_i$	(1, 1, 1)	

Each helicity state corresponds to a complex scalar and we have that \hat{L}_i is a doublet of $SU_L(2)$

$$\widetilde{L}_{i} = \begin{pmatrix} \widetilde{\nu}_{Li} \\ \widetilde{\ell}_{Li} \end{pmatrix} \qquad ; \qquad L_{i} = \begin{pmatrix} \nu_{Li} \\ \ell_{Li} \end{pmatrix}$$

Motivation

SUSY Algebra

MSSM

Content

Gauge

• Leptons

Quarks

Higgs

LEP Results

LHC Results

Conclusions

Quarks

The quark supermultiplets are given in the Table. The supermultiplet \hat{Q}_i is also a doublet of $SU_L(2)$, that is

Supermultiplet	$SU_c(3)\otimes SU_L(2)\otimes U_Y(1)$ Quantum Numbers
$\widehat{Q}_i \equiv (\widetilde{Q}, Q)_i$	$(3, 2, \frac{1}{6})$
$\widehat{D}_i \equiv (\widetilde{d}_R, d_L^c)_i$	$(3, 1, \frac{1}{3})$
$\widehat{U}_i \equiv (\widetilde{u}_R, u_L^c)_i$	$(3, 1, -\frac{2}{3})$

$$\widetilde{Q}_i = \begin{pmatrix} \widetilde{u}_{Li} \\ \widetilde{d}_{Li} \end{pmatrix} \qquad ; \qquad Q_i = \begin{pmatrix} u_{Li} \\ d_{Li} \end{pmatrix}$$

Motivation

SUSY Algebra

MSSM

Content

Gauge

• Leptons

• Quarks

Higgs

LEP Results

LHC Results

Conclusions

Higgs Bosons

Finally the Higgs sector. In the MSSM we need at least two Higgs doublets. This is in contrast with the SM where only one Higgs doublet is enough to give masses to all the particles. The reason can be explained in two ways. Either the need to cancel the anomalies, or the fact that, due to the analyticity of the superpotential, we have to have two Higgs doublets of opposite hypercharges to give masses to the up and down type of quarks.

Supermultiplet	$SU_c(3)\otimes SU_L(2)\otimes U_Y(1)$ Quantum Numbers	
$\widehat{H}_1 \equiv (H_1, \widetilde{H}_1)$	$(1, 2, -\frac{1}{2})$	
$\widehat{H}_2 \equiv (H_2, \widetilde{H}_2)$	$(1, 2, +\frac{1}{2})$	

R-Parity

Summary

Motivation

SUSY Algebra

MSSM

Building $MSSM \cdot \cdot \cdot$

R-Parity

• Kinetic Terms

• Self Gauge Int

• Gauge & Matter

• Self Matter Int

Superpotential

Soft breakingCMSSM

LEP Results

LHC Results

Conclusions

Most discussions of SUSY phenomenology assume R-Parity conservation where,

$$R_P = (-1)^{2J + 3B + L}$$

This is the case of the MSSM. It implies:

I SUSY particles are pair produced.

D Every SUSY particle decays into another SUSY particle.

There is a LSP that it is stable (E signature).

But this is just an ad hoc assumption without a deep justification. We will see later what are the consequences of non conservation of R-Parity.

Kinetic Terms

Summary

Motivation

SUSY Algebra

MSSM

Building MSSM $\cdot \cdot \cdot$

R-Parity Kinetic Terms

• Self Gauge Int

• Gauge & Matter

• Self Matter Int

SuperpotentialSoft breaking

• CMSSM

LEP Results

LHC Results

Conclusions

Like in any gauge theory we have

$$\mathcal{L}_{kin} = -\frac{1}{4} F^a_{\mu\nu} F^{a\mu\nu} + i\overline{\lambda}^a \overline{\sigma}^\mu D_\mu \lambda^a + (D_\mu \phi)^\dagger D^\mu \phi + i\overline{\lambda}\overline{\sigma}^\mu D_\mu \chi$$

where the field strength $F^a_{\mu\nu}$ is given by

$$F^a_{\mu\nu} = \partial_\mu W^a_\nu - \partial_\nu W^a_\mu - g f^{abc} W^b_\mu W^c_\nu$$

and f^{abc} are the structure constants of the gauge group G. The covariant derivative is

$$D_{\mu} = \partial_{\mu} + igW^a_{\mu}T^a$$

One should note that $\boldsymbol{\chi}$ and $\boldsymbol{\lambda}$ are left handed chiral spinors.

- Motivation
- SUSY Algebra
- MSSM
- $\mathsf{Building}\;\mathsf{MSSM}\cdots$
- R-Parity
- Kinetic Terms

Self Gauge Int

- Gauge & Matter
- Self Matter IntSuperpotential
- Superpotentia
 Soft breaking
- CMSSM

LEP Results

LHC Results

Conclusions

For a non Abelian gauge group G we have the usual self-interactions, (cubic and quartic), of the gauge bosons with themselves. But we have a new interaction of the gauge bosons with the gauginos. In two component spinor notation it reads

$$\mathcal{L}_{\lambda\lambda W} = igf_{abc}\,\lambda^a\sigma^\mu\overline{\lambda}^b\,W^c_\mu + h.c.$$

where f_{abc} are the structure constants of the gauge group G and the matrices σ^{μ} are the equivalent of the γ matrices in two component language.

Motivation

SUSY Algebra

MSSM

Building MSSM· · ·

• R-Parity

• Kinetic Terms

• Self Gauge Int

• Gauge & Matter

• Self Matter Int

Superpotential

• Soft breaking

• CMSSM

LEP Results

LHC Results Conclusions In the usual non Abelian gauge theories we have the interactions of the gauge bosons with the fermions and scalars of the theory. In the supersymmetric case we also have interactions of the gauginos with the fermions and scalars of the chiral matter multiplet. The general form, in two component spinor notation is,

$$\mathcal{L}_{\Phi W} = -gT^{a}_{ij}W^{a}_{\mu} \left(\overline{\chi}_{i}\overline{\sigma}^{\mu}\chi_{j} + i\phi^{*}_{i}\overleftrightarrow{\partial}_{\mu}\phi_{j}\right) + g^{2} \left(T^{a}T^{b}\right)_{ij}W^{a}_{\mu}W^{\mu b}\phi^{*}_{i}\phi_{j}$$
$$+ig\sqrt{2}T^{a}_{ij} \left(\lambda^{a}\chi_{j}\phi^{*}_{i} - \overline{\lambda}^{a}\overline{\chi}_{i}\phi_{j}\right)$$

where the new interactions of the gauginos with the fermions and scalars are given in the last term.

Summary Motivation SUSY Algebra MSSM Building MSSM · · ·

• Kinetic Terms

• Self Gauge Int

• Gauge & Matter

• Self Matter Int

• Superpotential

• Soft breaking

• CMSSM

LEP Results

LHC Results

Conclusions

These correspond in non supersymmetric gauge theories both to the Yukawa interactions and to the scalar potential. In supersymmetric gauge theories we have less freedom to construct these terms. The first step is to construct the superpotential W. This must be a gauge invariant polynomial function of the scalar components of the chiral multiplet Φ_i , that is ϕ_i . It does not depend on ϕ_i^* . In order to have renormalizable theories the degree of the polynomial must be at most three.

The Yukawa interactions are

$$\mathcal{L}_{Yukawa} = -\frac{1}{2} \left[\frac{\partial^2 W}{\partial \phi_i \partial \phi_j} \,\chi_i \chi_j + \left(\frac{\partial^2 W}{\partial \phi_i \partial \phi_j} \right)^* \,\overline{\chi}_i \overline{\chi}_j \right]$$

and the scalar potential is

$$V_{scalar} = \frac{1}{2}D^a D^a + F_i F_i^*$$

where

$$F_i = \frac{\partial W}{\partial \phi_i}, \quad D^a = g \phi_i^* T^a_{ij} \phi_j$$

Motivation

SUSY Algebra

MSSM

Building MSSM· · ·

• R-Parity

• Kinetic Terms

• Self Gauge Int

• Gauge & Matter

• Self Matter Int

Superpotential

Soft breakingCMSSM

LEP Results

LHC Results

Conclusions

The MSSM Lagrangian is specified by the R–parity conserving superpotential ${\cal W}$

$$W = \varepsilon_{ab} \left[h_U^{ij} \widehat{Q}_i^a \widehat{U}_j \widehat{H}_2^b + h_D^{ij} \widehat{Q}_i^b \widehat{D}_j \widehat{H}_1^a + h_E^{ij} \widehat{L}_i^b \widehat{R}_j \widehat{H}_1^a - \mu \widehat{H}_1^a \widehat{H}_2^b \right]$$

where i, j = 1, 2, 3 are generation indices, a, b = 1, 2 are SU(2) indices, and ε is a completely antisymmetric 2×2 matrix, with $\varepsilon_{12} = 1$. The coupling matrices h_U, h_D and h_E will give rise to the usual Yukawa interactions needed to give masses to the leptons and quarks.

If it were not for the need to break SUSY the number of parameters involved would be less than in the SM.

SUSY Soft Breaking

Summary

Motivation

SUSY Algebra

MSSM

Building $MSSM \cdot \cdot \cdot$

• R-Parity

• Kinetic Terms

• Self Gauge Int

• Gauge & Matter

• Self Matter Int

• Superpotential

Soft breaking

• CMSSM

LEP Results

LHC Results

Conclusions

The most general SUSY soft breaking is

$$\mathcal{L}_{SB} = M_Q^{ij2} \widetilde{Q}_i^{a*} \widetilde{Q}_j^a + M_U^{ij2} \widetilde{U}_i \widetilde{U}_j^* + M_D^{ij2} \widetilde{D}_i \widetilde{D}_j^* + M_L^{ij2} \widetilde{L}_i^{a*} \widetilde{L}_j^a + M_R^{ij2} \widetilde{R}_i \widetilde{R}_j^* + m_{H_1}^2 H_1^{a*} H_1^a + m_{H_2}^2 H_2^{a*} H_2^a - \left[\frac{1}{2} M_s \lambda_s \lambda_s + \frac{1}{2} M \lambda \lambda + \frac{1}{2} M' \lambda' \lambda' + h.c.\right] + \varepsilon_{ab} \left[A_U^{ij} h_U^{ij} \widetilde{Q}_i^a \widetilde{U}_j H_2^b + A_D^{ij} h_D^{ij} \widetilde{Q}_i^b \widetilde{D}_j H_1^a + A_E^{ij} h_E^{ij} \widetilde{L}_i^b \widetilde{R}_j H_1^a - B \mu H_1^a H_2^b\right]$$

Parameter Counting

Theory	Gauge Sector	Fermion Sector	Higgs Sector
SM	e, g, α_s	h_U, h_D, h_E	μ^2,λ
MSSM	e, g, α_s	h_U, h_D, h_E	μ
Broken MSSM	e, g, α_s	h_U, h_D, h_E	$\mu, M_1, M_2, M_3, A_U, A_D, A_E, B$
			$m_{H_2}^2, m_{H_1}^2, m_Q^2, m_U^2, m_D^2, m_L^2, m_R^2$

The Constrained MSSM

Summary

- Motivation
- SUSY Algebra

MSSM

Building MSSM · · ·

- R-Parity
- Kinetic Terms
- Self Gauge Int
- Gauge & Matter
- Self Matter Int
- Superpotential
- Soft breaking
- CMSSM

LEP Results

LHC Results

Conclusions

The number of independent parameters can be reduced if we impose some further constraints. The most popular is the MSSM coupled to N = 1 Supergravity (mSUGRA).

$$\begin{split} A_t &= A_b = A_\tau \equiv A \ , \\ m_{H_1}^2 &= m_{H_2}^2 = M_L^2 = M_R^2 = m_0^2 \ , M_Q^2 = M_U^2 = M_D^2 = m_0^2 \ , \\ M_3 &= M_2 = M_1 = M_{1/2} \end{split}$$

Parameter Counting

Parameters	Conditions	Free Parameters
h_t , h_b , $h_ au$, v_1 , v_2	m_W , m_t , m_b , $m_ au$	$\tan\beta = v_2/v_1$
A , B , m_0 , $M_{1/2}$, μ	$t_i = 0$, $i = 1, 2$	A , m_0 , $M_{1/2}$, $\mathrm{sign}(\mu)$
Total = 10	Total = 6	Total = 4+"1"

It is remarkable that with so few parameters we can get the correct values for the parameters, in particular $m_{H_2}^2 < 0$. For this to happen the top Yukawa coupling has to be large which we know to be true.

The Chargino Mass Matrices

Summary

Motivation

SUSY Algebra

MSSM

Mass Matrices

● chargino

• neutralino

• Scalar Higgs

• SM Higgs Mass

• Higgs Mass RC

• Spectra

LEP Results

LHC Results

Conclusions

The charged gauginos mix with the charged higgsinos giving the so-called charginos. In a basis where $\psi^{+T} = (-i\lambda^+, \widetilde{H}_2^+)$ and $\psi^{-T} = (-i\lambda^-, \widetilde{H}_1^-)$, the chargino mass terms in the Lagrangian are

$$\mathcal{L}_m = -\frac{1}{2}(\psi^{+T}, \psi^{-T}) \begin{pmatrix} \mathbf{0} & \mathbf{M}_C^T \\ \mathbf{M}_C & \mathbf{0} \end{pmatrix} \begin{pmatrix} \psi^+ \\ \psi^- \end{pmatrix} + h.c.$$

where the chargino mass matrix is given by

$$\boldsymbol{M}_{C} = \begin{bmatrix} M_{2} & \frac{1}{\sqrt{2}}gv_{2} \\ \\ \frac{1}{\sqrt{2}}gv_{1} & \mu \end{bmatrix}$$

and M_2 is the SU(2) gaugino soft mass. We can write this as

$$\boldsymbol{M}_{C} = \begin{bmatrix} M_{2} & \sqrt{2}m_{W}\sin\beta \\ \\ \sqrt{2}m_{W}\cos\beta & \mu \end{bmatrix}$$

The Neutralino Mass Matrix

Summary

Motivation

SUSY Algebra

MSSM

Mass Matrices

• chargino

neutralino

• Scalar Higgs

• SM Higgs Mass

• Higgs Mass RC

• Spectra

LEP Results

LHC Results

Conclusions

The neutral gauginos mix with the neutral higgsinos giving the so-called neutralinos. In the basis $\psi^{0T} = (-i\lambda', -i\lambda^3, \tilde{H}_1^1, \tilde{H}_2^2)$ the neutral fermions mass terms in the Lagrangian are given by

$$\mathcal{L}_m = -\frac{1}{2} (\psi^0)^T \boldsymbol{M}_N \psi^0 + h.c.$$

where the neutralino mass matrix is

$$\begin{bmatrix} M_1 & 0 & -\frac{1}{2}g'v_1 & \frac{1}{2}g'v_2 \\ 0 & M_2 & \frac{1}{2}gv_1 & -\frac{1}{2}gv_2 \\ -\frac{1}{2}g'v_1 & \frac{1}{2}gv_1 & 0 & -\mu \\ \frac{1}{2}g'v_2 & -\frac{1}{2}gv_2 & -\mu & 0 \end{bmatrix}$$

and M_1, M_2 are the gaugino soft mass.

Neutral Higgs Mass Matrices

Summary

Motivation

SUSY Algebra

MSSM

Mass Matrices

• chargino

• neutralino

Scalar HiggsSM Higgs Mass

Higgs Mass RC

Higgs Mass R

• Spectra

LEP Results

LHC Results

Conclusions

$$oldsymbol{M}_{S^0}^2 = \left(egin{array}{ccc} aneta & -1 \ -1 & ext{cot}\,eta \end{array}
ight) B\mu + \left(egin{array}{ccc} ext{cot}\,eta & -1 \ -1 & ext{tan}\,eta \end{array}
ight) rac{1}{2}m_Z^2\sin^2eta$$

with masses

$$m_{h,H}^2 = \frac{1}{2} \left[m_A^2 + m_Z^2 \mp \sqrt{(m_A^2 + m_Z^2)^2 - 4m_A^2 m_Z^2 \cos 2\beta} \right]$$

$$oldsymbol{M}_{P^0}^2 = egin{pmatrix} an eta & -1 \ -1 & \cot eta \end{pmatrix} B \mu$$
 with mass $oldsymbol{m}_A^2 = rac{B \mu}{\sin 2 eta}$
Sum Rule

Higgs Boson Mass: Standard Model

Summary

Motivation

SUSY Algebra

MSSM

Mass Matrices

• chargino

• neutralino

• Scalar Higgs

SM Higgs MassHiggs Mass RC

• Spectra

Spectra

LEP Results

LHC Results

Conclusions

In the Standard Model

$$\mathcal{L}_{\text{Higgs}} = \left(D_{\mu}\Phi\right)^{\dagger} D^{\mu}\Phi - \frac{\lambda}{4} \left(\Phi^{\dagger}\Phi - \frac{v^2}{2}\right)^2$$

where

$$\Phi = \begin{pmatrix} \varphi^+ \\ \frac{v + H + i\varphi_Z}{\sqrt{2}} \end{pmatrix}$$

Therefore

$$\mathcal{L}_{\mathrm{Higgs}} = \partial_{\mu} H \partial^{\mu} H - \frac{\lambda v^2}{4} H^2$$

or

Higgs Boson Mass: Radiative corrections

As the top mass is very large there are important radiative corrections to the Higgs boson mass. The most important are:

Motivation SUSY Algebra

IST

MSSM

Summary

Mass Matrices

chargino

• neutralino

• Scalar Higgs

• SM Higgs Mass

• Higgs Mass RC

• Spectra

LEP Results

LHC Results Conclusions

🧊 IST

Example of Spectra

Couplings in the MSSM

Summary	Name	Туре	Name	Туре
Motivation	Gauge	VVV	4-Point	VVff
SUSY Algebra	Self-Interaction	VVVV	Coupling	HHVV
MSSM	3-Point Gauge	Vff		HGVV
Couplings	Coupling	$V \tilde{f} \tilde{f}$		GGVV
New vertices		$V \tilde{\chi} \tilde{\chi}$		$\tilde{f}\tilde{f}HH$
 Unification 		VHH		$\tilde{f}\tilde{f}GH$
LEP Results		VGH		$\tilde{f}\tilde{f}GG$
LHC Results		VGG		$\tilde{f}\tilde{f}\tilde{f}\tilde{f}\tilde{f}$
Conclusions	3-Point Higgs	Hff	Goldstone-Higgs	HHG
	Coupling	$H ilde{f} ilde{f}$	Interaction	HGG
		$H \tilde{\chi} \tilde{\chi}$		HHHG
		HVV		HHGG
	3-Point Goldstone	Gff		HGGG
	Coupling	$G \tilde{f} \tilde{f}$		GGGG
		$G \tilde{\chi} \tilde{\chi}$	Ghost	$\overline{\omega}\omega V$
		GVV		$\overline{\omega}\omega$ H
	Other 3-Point	$ ilde{f}far{ ilde{\chi}}$		$\overline{\omega}\omega$ G

Examples of New Couplings: Conserving R-Parity

Summary

Motivation

SUSY Algebra

MSSM

Couplings

couplings New vertices

• Unification

LEP Results

LHC Results

Conclusions

Rule: Change any two lines into the superpartners.

SUSY Algebra

MSSM

Couplings

• couplings

• New vertices

Unification

LEP Results

LHC Results

Conclusions

IST

Summary

MSSM

• Higgs

Motivation

SUSY Algebra

LEP Results

• Charginos ...

• Neutralinos • Dark Matter

LHC Results

Conclusions

Theory uncertainty $\Delta \alpha_{had}^{(5)} =$ 68% CL 5 ···· 0.02749±0.00012 ... incl. low Q² data 4 [GeV] $\Delta\chi^2$ 3 180 2 Ē 1 m, (Tevatron) Excluded Preliminary 0 100 30 300 $M_H = 114^{+69}_{-45} \,\, {\rm GeV}$ Excluded 160 10² 10³ 10 $M_H < 260 \text{ GeV } 0 95\% CL$ m_{H} [GeV] $M_H > 114.4 \,\,{\rm GeV}$

6

Higgs Boson

-High Q² except m,

200

m_{Limit} = 144 GeV

Limits on Charginos, Sneutrinos & Sleptons

Limits on Neutralinos

Neutralino as Dark Matter

Blue region: Neutralino consistent with dark matter.

The Large Hadron Collider (LHC)

	Beams	Energy	Luminosity
LEP	e+ e-	200 GeV	10 ³² cm ⁻² s ⁻¹
	рр	14 TeV	10 ³⁴
LIIC	Pb Pb	1312 TeV	10 ²⁷

Summary

Motivation

SUSY Algebra

IST

LHC Overview

MSSM

LEP Results

LHC Results

LHC Overview

• Basic Physics

• H: 2photons

• H: 4Leptons

• SUSY at LHC

• Signatures

• First Results 2011

• 2012 Results

Conclusions

Basic Physics at LHC

Collisions at LHC

Summary

Motivation

SUSY Algebra

MSSM

LEP Results

LHC Results

• LHC Overview

• Basic Physics

- H: 2photons
- H: 4Leptons
- SUSY at LHC
- Signatures
- First Results 2011
- 2012 Results

Conclusions

SM Higgs at LHC: Two photons

Higgs to 2 photons ($M_{H} < 140 \text{ GeV}$)

Summary

Motivation

SUSY Algebra

MSSM

LEP Results

LHC Results

• LHC Overview

• Basic Physics

• H: 2photons

• H: 4Leptons

- SUSY at LHC
- Signatures
- First Results 2011

• 2012 Results

Conclusions

 $H^0 \rightarrow \gamma \gamma$ is the most promising channel if M_H is in the range 80 - 140 GeV. The high performance PbWO₄ crystal electromagnetic calorimeter in CMS has been optimized for this search. The $\gamma \gamma$ mass resolution at $M_{\gamma \gamma} \sim 100$ GeV is better than 1%, resulting in a S/B of $\approx 1/20$

Higgs to 4 leptons (140 < M_{H} < 700 GeV)

Summary

Motivation

SUSY Algebra

MSSM

LEP Results

- LHC Results
- LHC Overview
- Basic Physics
- H: 2photons
- H: 4Leptons
- SUSY at LHC
- Signatures
- First Results 2011
- 2012 Results

Conclusions

In the $M_{\rm H}$ range 130 - 700 GeV the most promising channel is $H^0 \to ZZ^* \to 2\ell^+ 2\ell^-$ or $H^0 \to ZZ \to 2\ell^+ 2\ell^-$. The detection relies on the excellent performance of the muon chambers, the tracker and the electromagnetic calorimeter. For $M_{\rm H} \leq 170$ GeV a mass resolution of ~1 GeV should be achieved with the combination of the 4 Tesla magnetic field and the high resolution of the crystal calorimeter

SUSY Discovery Potential at LHC

Sparticles: discovery ranges

Summary

Motivation

SUSY Algebra

MSSM

LEP Results

LHC Results

• LHC Overview

• Basic Physics

• H: 2photons

• H: 4Leptons

• SUSY at LHC

- Signatures
- First Results 2011
- 2012 Results

Conclusions

 $\tilde{g}, \tilde{q} \rightarrow n\ell + X$

 $\Omega h^2 = 0.15$

800

m₀ GeV

1200

1600

 $\Omega h^2 = 0.4$

(400)

400

m_{1/2}, GeV 00

400

200

0

Gluinos and squarks can be searched for in various channels with leptons + E_t^{miss} + jets and discovered for masses up to ~ 2.2 TeV. Sleptons can be discovered for masses up to ~ 350 GeV. The region of parameter space 0.15 < Ω h² < 0.4 where LSP would be the Cold Dark Matter particle is contained well within the explorable region

Sparticles cannot escape discovery at the LHC

2000

Results from the LHC (LP2011)

S.	imn	aarv
5		iai y

- Motivation
- SUSY Algebra
- MSSM
- LEP Results
- LHC Results
- LHC Overview
- Basic Physics
- H: 2photonsH: 4Leptons
- SUSY at LHC
- Signatures
- First Results 2011
- 2012 Results
- Conclusions

A very long list of models x signatures

- Many extensions of the SM have been developed over the past decades:
- Supersymmetry
- Extra-Dimensions
- Technicolor(s)
- Little Higgs
- No Higgs
- GUT
- Hidden Valley
- Leptoquarks
- Compositeness 4
- 4th generation (t', b')⁴
- LRSM, heavy neutrino
- etc...

(for illustration only)

- 1 jet + MET
- jets + MET1 lepton + MET
 - Same-sign di-lepton
 - Dilepton resonance
 - Diphoton resonance
- Diphoton + MET
- Multileptons
 - Lepton-jet resonance
 - Lepton-photon resonance
 - Gamma-jet resonance Diboson resonance
 - Z+MET
 - W/Z+Gamma resonance
 - Top-antitop resonance
 - Slow-moving particles
- Long-lived particles
- Top-antitop production
- Lepton-Jets
 - Microscopic blackholes
 - . Dijet resonance
- etc...

A complex 2D problem

Experimentally, a **signature standpoint**

makes a lot of sense:

- → Practical
- → Less modeldependent
- → Important to cover every possible signature

Henri Bachacou, Irfu CEA-Saclay

Lepton-Photon 2011

9

Motivation

SUSY Algebra

MSSM

LEP Results

LHC Results

• LHC Overview

• Basic Physics

• H: 2photons

H: 4LeptonsSUSY at LHC

Signatures

• First Results 2011

• 2012 Results

Conclusions

Exclude up to ~ 1 TeV for m(squark) = m(gluino)

1. SUSY: Jets + Missing E_{T}

 $\tilde{q} \rightarrow q \tilde{\chi}_1^0$

 $\tilde{g} \rightarrow qq\tilde{\chi}$

Results from the LHC in 2012

DISCRETE 2012, CMS overview, J. Varela

12

Results from the LHC in 2012: Higgs

2. The 4th of July and after

Summary

Motivation

SUSY Algebra

MSSM

LEP Results

- LHC Results
- LHC Overview
- Basic Physics
- H: 2photons
- H: 4Leptons
- SUSY at LHC
- Signatures
- First Results 2011

• 2012 Results

Conclusions

After 48 years of postulat, 30 years of search (and a few heart attacks), the Higgs is discovered at LHC on the 4th of July: Higgstorical day!

Discrete–Lisbon, 03/12/2012

Implicatons of Higgs discovery – A. Djouadi – p.7/23

Jorge C. Romão

Results from the LHC in 2012: Higgs

Summary

Motivation

SUSY Algebra

MSSM

LEP Results

LHC Results

- LHC Overview
- Basic Physics
- H: 2photons
- H: 4Leptons
- SUSY at LHC
- Signatures

First Results 2011
2012 Results

Conclusions

Higgs combined results

Combination of 5 channels: bb, $\tau\tau$, WW, ZZ, $\gamma\gamma$

Significance 6.9σ versus 7.8σ expected.

DISCRETE 2012, CMS overview, J. Varela

Results from the LHC in 2012

Summary

Motivation

SUSY Algebra

MSSM

LEP Results

LHC Results

- LHC Overview
- Basic Physics
- H: 2photons
- H: 4Leptons
- SUSY at LHC
- Signatures
- First Results 2011

• 2012 Results

Conclusions

Results from the LHC in 2012: SUSY

Summary

Motivation

SUSY Algebra

MSSM

LEP Results

LHC Results

- LHC Overview
- Basic Physics
- H: 2photons
- H: 4Leptons
- SUSY at LHC
- Signatures
- First Results 2011

• 2012 Results

Conclusions

4. Implications for pMSSM: mass

Main results:

- \bullet Large $M_{\rm S}$ values needed:
- $M_{\rm S} \approx 1$ TeV: only maximal mixing
- $M_{\rm S}\approx 3$ TeV: only typical mixing.
- Large $\tan\!\beta$ values favored

but tan $\beta\!\approx\!3$ possible if $M_{\mathbf{S}}\!\approx\!3\text{TeV}$

How light sparticles can be with the constraint $M_{\rm h}=126$ GeV?

• 1s/2s gen. \tilde{q} should be heavy... But not main player here: the stops: $\Rightarrow m_{\tilde{t}_1} \lesssim 500$ GeV still possible! • M_1, M_2 and μ unconstrained, • non-univ. $m_{\tilde{f}}$: decouple $\tilde{\ell}$ from \tilde{q} EW sparticles can be still very light but watch out the new limits..

Discrete–Lisbon, 03/12/2012

Implicatons of Higgs discovery – A. Djouadi – p.15/23

Results from the LHC in 2012: SUSY

- Summary
- Motivation
- SUSY Algebra
- MSSM
- LEP Results
- LHC Results
- LHC Overview
- Basic Physics
- H: 2photons
- H: 4Leptons
- SUSY at LHC
- Signatures
- First Results 2011
- 2012 Results
- Conclusions

CMSSM interpretation

44

Results from the LHC in 2012: SUSY

	ATLAS SUSY Searches* - 95% CL Lower Limits (Status: Dec 2012)
Summary	$MSUGRA/CMSSM: 0 ep + i's + E \qquad I_{-5} e^{\frac{1}{2}} a TeV (ATLAS-CONE-2012-400) = 1 to TeV = 0 - 0 mass$
Sumary	$MSUGRA/CMSSM : 1 \text{ lep + j's + } E_{T,miss}$ $L=3.6 \text{ lb}^{1}, 8 \text{ tev [ATLAS-CONF-2012-104]}$ $1.24 \text{ Tev } \tilde{q} = \tilde{q} \text{ mass}$
Motivation	Pheno model : 0 lep + j's + $E_{T,miss}^{(1)1188}$ L=5.8 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-109] 1.18 TeV \tilde{g} mass $(m(\tilde{q}) < 2$ TeV, light $\tilde{\chi}_{1}^{0}$ ATLAS
	Pheno model : 0 lep + j's + $E_{T,\text{miss}}$ L=5.8 fb⁻¹, 8 TeV [ATLAS-CONF-2012-109] 1.38 TeV \tilde{q} mass ($m(\tilde{g}) < 2$ TeV, light $\tilde{\chi}_1^0$ Preliminary
SUSY Algebra	Gluino med. $\tilde{\chi}^{\perp}(\tilde{g} \rightarrow q\bar{q}\tilde{\chi}^{\perp})$: 1 lep + j's + $E_{T,\text{miss}}$ $L=4.7 \text{ fb}^{-1}, 7 \text{ TeV} [1208.4688]$ 900 GeV \tilde{g} mass $(m(\tilde{\chi}_1) < 200 \text{ GeV}, m(\tilde{\chi}^{\perp}) = \frac{1}{2}(m(\tilde{\chi})) + m(\tilde{g}))$
MSSM	$\frac{12}{9} \qquad \qquad$
	$GGM \text{ (wino NLSP)} : \gamma + \text{lep} + E_{T,\text{miss}}^{T,\text{miss}}$ $L=4.8 \text{ fb}^1, \text{ Tev [ATLAS-CONF-2012-144]}$ $619 \text{ GeV} \widetilde{g} \text{ mass}$
LEP Results	GGM (higgsino-bino NLSP) : γ + b + $E_{T,miss}^{\gamma, miss}$ L=4.8 fb ⁻¹ , 7 TeV [1211.1167] 900 GeV \tilde{g} mass $(m(\tilde{\chi}_1^0) > 220 \text{ GeV})$ [S = 7, 8 TeV
LHC Results	GGM (higgsino NLSP) : Z + jets + $E_{T,miss}$ L=5.8 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-152] 690 GeV \tilde{g} mass (m(H) > 200 GeV)
	Gravitino LSP: monojet + $E_{T,miss}$ $L=10.5 \text{ fb}^{-1}$, 8 TeV [ATLAS-CONF-2012-147] 645 GeV F SCale (m(G) > 10 ⁻⁴ eV)
• LHC Overview	$G \to DDY$ (VITUALD): U lep + 3 D-J S + $E_{T,miss}$ $G \to ft^{(0)}$ (virtual t): 2 lop (SS) + i's + $E_{T,miss}$ L=12.8 tb, 8 lev [AILAS-CONF-2012-145] $L=5.8 \text{ tb}^{-1}$ 8 TeV (ATLAS-CONF-2012-145] $L=5.8 \text{ tb}^{-1}$ 8 TeV (ATLAS-CONF-2012-145] 850 GeV \tilde{G} mass $(m(\chi_{1})^{2} < 300 \text{ GeV})$
 Basic Physics 	$ = \int_{0}^{\infty} \int$
• H: 2photons	$\widetilde{g} \rightarrow \widetilde{t} \widetilde{\chi}$ (virtual t): 0 lep + multi-j's + $E_{T, miss}$ $I = 5.8 \text{ fb}^{-1}, 8 \text{ TeV} [ATLAS-CONF-2012-103]$ 1.00 TeV \widetilde{g} mass ($m(\widetilde{\chi}^0) < 300 \text{ GeV}$) 7 TeV results
	$\widetilde{g} \rightarrow \widetilde{t} \widetilde{\chi}_{1}^{\circ}$ (virtual \widetilde{t}): 0 lep + 3 b-j's + $E_{T, miss}^{\prime}$ L=12.8 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-145] 1.15 TeV \widetilde{g} mass ($m(\widetilde{\chi}_{1}^{\circ}) < 200$ GeV)
• H. 4Leptons	bb, $b_1 \rightarrow b \tilde{\chi}_1^{\vee}$: 0 lep + 2-b-jets + $E_{T,\text{miss}}$ $L=12.8 \text{ fb}^4, 8 \text{ TeV} [ATLAS-CONF-2012-165]$ 620 GeV b mass $(m(\tilde{\chi}_1^{\vee}) < 120 \text{ GeV})$
 SUSY at LHC 	$\underset{(1,2)}{\overset{\otimes}{\times}} \underbrace{bb, b, \rightarrow t\chi}_{1} : 3 \text{ lep + } j's + E_{T,\text{miss}} $ $\underbrace{L=13.0 \text{ fb}', 8 \text{ TeV [ATLAS-CONF-2012-151]}}_{L=13.0 \text{ fb}', 8 \text{ TeV [ATLAS-CONF-2012-151]}} \underbrace{405 \text{ GeV}}_{1} D \text{ IIIaSS} (m(\chi_1) = 2 m(\chi_1))$
 Signatures 	$\widetilde{tt} (\text{medium}), \widetilde{t} \rightarrow b\widetilde{\gamma}^{\pm} : 1 \text{ lep } + \text{ b-iet } + E_{\pi}$
• First Results 2011	$\widetilde{t} \widetilde{t} (\text{medium})_{t}^{\dagger} \widetilde{t} \rightarrow b \widetilde{\chi}^{\pm} : 2 \text{ lep } + E_{T \text{ miss}}^{\prime,\text{miss}} L_{=13.0 \text{ fb}^{-1}, \text{ 8 TeV [ATLAS-CONF-2012-167]}} $ $160-440 \text{ GeV} \widetilde{t} \text{ mass} (m(\widetilde{\chi}^{0}) = 0 \text{ GeV}, m(\widetilde{t}) - m(\widetilde{\chi}^{\pm}) = 10 \text{ GeV})$
	$\int_{0}^{\infty} \int_{0}^{\infty} \sum_{n=1}^{\infty} \widetilde{t}_{n}^{T} \widetilde{t}_{n} \rightarrow t \widetilde{\chi}_{1}^{0} : 1 \text{ lep} + \text{b-jet} + E_{T,\text{miss}}^{1} L = 13.0 \text{ fb}^{-1}, 8 \text{ TeV [ATLAS-CONF-2012-166]} 230-560 \text{ GeV} \widetilde{t} \text{ mass} (m(\widetilde{\chi}_{1}^{0}) = 0)$
• 2012 Results	$\widetilde{\mathfrak{S}}$ $\widetilde{\mathfrak{S}}$ $\underbrace{tt, t \to t\widetilde{\chi}^{\circ}}_{transl}: 0/1/2 \text{ lep } (+ b \text{-jets}) + E_{T, \text{miss}}$ $L=4.7 \text{ fb}^{-1}, 7 \text{ TeV} [1208.1447, 1208.2590, 1209.4186]$ 230-465 GeV t mass $(m(\widetilde{\chi}^{\circ}) = 0)$
Conclusions	II (Indiural GINSB): $Z(\rightarrow II) + D^{-}jel + E$ $L=2.1 \text{ fb}; 7 \text{ TeV} [1204.6736]$ 310 GeV I (Mass (115 < $m(\chi_1) < 230 \text{ GeV})$
	$\sum_{i=1}^{5} \sum_{j=1}^{7} \tilde{\chi}_{j}^{+} \rightarrow [v(\tilde{\chi}_{j}) \rightarrow [v\tilde{\chi}_{j}^{-}] 2 \text{ lep } + F_{-}]$
	$\widetilde{\chi}_{\pm}^{\pm}\widetilde{\chi}$
	$\widetilde{\chi}_{\pm}^{\pm}\widetilde{\chi}_{2}^{\pm}$ $\widetilde{\chi}_{2}^{\pm}$ $\widetilde{\chi}_{2}^{\pm}$ $\widetilde{\chi}_{1}^{\pm}$ $\widetilde{\chi}_{1$
	Direct $\tilde{\chi}_1^{\perp}$ páir prod. (AMSB) : long-lived $\tilde{\chi}_1^{\perp}$ L=4.7 fb ⁻¹ , 7 TeV [1210.2852] 220 GeV $\tilde{\chi}_1^{\perp}$ mass $(1 < \tau(\tilde{\chi}_1^{\perp}) < 10 \text{ ns})$
	Stable g R-hadrons : low β , $\beta\gamma$ (full detector) Ctable \tilde{A} D hadrons : low β , $\beta\gamma$ (full detector) Ctable \tilde{A} D hadrons : low β , $\beta\gamma$ (full detector) L=4.7 fb ⁻¹ , 7 TeV [1211.1597] 985 GeV g mass
	Stable t R-hadrons : low p, py (full detector) $L=4.7$ fb ⁻¹ , 7 tev [1211.1597] 300 GeV $\tilde{\tau}$ mass (5 < table < 20)
	$\tilde{\chi}_{\mu}^{0} \rightarrow qq\mu (RPV) : \mu + heavy displaced vertex$ $L=4.4 \text{ fb}^{-1}, 7 \text{ TeV} [1210.7451]$ 700 GeV \tilde{q} mass $(0.3 \times 10^{-5} < \lambda_{211}^{-1} < 1.5 \times 10^{-5}, 1 \text{ mm} < c\tau < 1 \text{ m}, \tilde{g} \text{ decoupled})$
	$LFV: pp \rightarrow \widetilde{v}_{\tau} + X, \ \widetilde{v}_{\tau} \rightarrow e + \mu \ resonance \qquad \textbf{L=4.6 fb}^{-1}, \ \textbf{7 TeV} \ [Preliminary] \qquad \textbf{1.61 TeV} \qquad \widetilde{v}_{\tau} \ mass \qquad (\lambda_{311}^{*}=0.10, \lambda_{132}^{*}=0.05)$
	LFV: $pp \rightarrow \tilde{v}_{\tau} + X$, $\tilde{v}_{\tau} \rightarrow e(\mu) + \tau$ resonance L=4.6 fb ⁻¹ , 7 TeV [Preliminary] 1.10 TeV v_{τ} mass ($\lambda_{311}^{*}=0.10, \lambda_{1(2)33}=0.05$)
	Billinear RPV CIVISSIVI : I IEP + 7 JS + $E_{T,miss}$ $L=4.7 \text{ fb}; 7 \text{ TeV [ATLAS-CONF-2012-140]}$ 1.2 TeV $q = g \text{ (fildsS)}(cr_{LSP} < 1 \text{ mm})$ $T=4.7 \text{ fb}; 7 \text{ TeV [ATLAS-CONF-2012-140]}$ 1.2 TeV $q = g \text{ (fildsS)}(cr_{LSP} < 1 \text{ mm})$ $T=4.7 \text{ fb}; 7 \text{ TeV [ATLAS-CONF-2012-140]}$ 1.2 TeV $q = g \text{ (fildsS)}(cr_{LSP} < 1 \text{ mm})$
	$\frac{1}{1} = \frac{1}{1} + \frac{1}$
	$\widetilde{q} \rightarrow qqq$: 3-jet resonance pair L=4.6 fb ⁻¹ , 7 TeV [1210.4813] 666 GeV \widetilde{g} mass
	Scalar gluon : 2-jet resonance pair L=4.6 fb ⁻¹ , 7 TeV [1210.4826] 100-287 GeV sgluon mass (incl. limit from 1110.2693)
	WIMP Interaction (D5, Dirac χ): monojet + $E_{T,miss}$ $L=10.5 \text{ fb}^{-1}$, 8 TeV [ATLAS-CONF-2012;147] 704 GeV M [*] Scale (m_{χ} < 80 GeV, limit of < 687 GeV for D8)
	10 1 10
	* Only a selection of the available mass limits on new states or phenomena shown. Mass scale [TeV]
	All limits quoted are observed minus 1 σ theoretical signal cross section uncertainty.

Jorge C. Romão

Results from the LHC in 2012:SUSY

Motivation

SUSY Algebra

MSSM

LEP Results

LHC Results

• Basic Physics

- H: 2photons
- H: 4Leptons
- SUSY at LHC
- Signatures

First Results 2011
2012 Results

Conclusions

 $\chi^+\chi^0$ exclusion limits

7 TeV result

DISCRETE 2012, CMS overview, J. Varela

Conclusions

Summary

Motivation

SUSY Algebra

MSSM

LEP Results

LHC Results

Conclusions

Although there is not yet direct experimental evidence for supersymmetry (SUSY), there are many theoretical arguments indicating that SUSY might be of relevance for physics around the 1 TeV scale.

