Homework assignment

Hand in by the end of the first week of January, that is $6 / 1 / 2012$.

1 Relativity and Cosmology

Problem 1 (Total: 4 Points)
For radial infalls (i.e. when the orbital angular momentum $\tilde{L}=0$) the geodesic equation reduces to

$$
\begin{equation*}
\frac{d r}{d \tau}=-\left(\tilde{E}^{2}-1+\frac{2 M}{r}\right)^{1 / 2} \tag{1}
\end{equation*}
$$

By considering the limit $r \rightarrow \infty$ we see that there are three cases:

1) $\tilde{E}<1$: in this case the particle falls from rest at (say) $r=R$, where $1-\tilde{E}^{2}=2 M / R$. Show that if $\tau=0$ at $r=R$, then

$$
\begin{equation*}
\tau(r)=\left(\frac{R^{3}}{8 M}\right)^{1 / 2}\left[2\left(\frac{r}{R}-\frac{r^{2}}{R^{2}}\right)^{1 / 2}+\arccos \left(\frac{2 r}{R}-1\right)\right] \tag{2}
\end{equation*}
$$

Now introduce the "cycloid parameter" η such that $r=\frac{R}{2}(1+\cos \eta)$ and show that

$$
\begin{equation*}
\tau(\eta)=\left(\frac{R^{3}}{8 M}\right)^{1 / 2}(\eta+\sin \eta) \tag{3}
\end{equation*}
$$

Finally, integrate

$$
\begin{equation*}
\frac{d t}{d \tau}=\frac{\tilde{E}}{1-2 M / r} \tag{4}
\end{equation*}
$$

in terms of η to get

$$
\begin{equation*}
\frac{t(\eta)}{2 M}=\ln \left|\frac{(R / 2 M-1)^{1 / 2}+\tan (\eta / 2)}{(R / 2 M-1)^{1 / 2}-\tan (\eta / 2)}\right|+\left(\frac{R}{2 M}-1\right)^{1 / 2}\left[\eta+\frac{R}{4 M}(\eta+\sin \eta)\right] \tag{5}
\end{equation*}
$$

What can you say about the proper time it takes for a particle to fall from rest down to $r=2 M$? What is the proper time for a particle to fall from rest down to $r=0$? What is the coordinate time to fall from rest down to $r=2 M$? Make a plot of r / M as a function of t / M and τ / M.
2) $\tilde{E}=1$: show that in this case

$$
\begin{align*}
\tau(r) & =-\frac{2}{3}\left(\frac{r^{3}}{2 M}\right)^{1 / 2}+\text { constant } \tag{6}\\
t(r) & =-\frac{2}{3}\left(\frac{r^{3}}{2 M}\right)^{1 / 2}-4 M\left(\frac{r}{2 M}\right)^{1 / 2}+2 M \ln \left|\frac{(r / 2 M)^{1 / 2}+1}{(r / 2 M)^{1 / 2}-1}\right|+\text { constant } \tag{7}
\end{align*}
$$

3) $\tilde{E}>1: \tau(r), r(\eta), \tau(\eta)$ and $t(\eta)$ can be found by defining $2 M / R=\tilde{E}^{2}-1$ and changing the sign of R in the equations listed above. Show that in this case $2 M / R=v_{\infty}^{2} /\left(1-v_{\infty}^{2}\right)$.

Problem 2 (4 Points)

Find the radius as well as the ratio E / L of energy to orbital angular momentum for null circular geodesics in the equatorial plane of an extreme $(M=a)$ Kerr geometry. In Boyer-Lindquist coordinates, the rotating Kerr (Roy Kerr, 1963) metric reads

$$
\begin{equation*}
d s^{2}=-\left(1-\frac{2 M r}{\rho^{2}}\right) d t^{2}-\frac{4 a M r \sin ^{2} \theta}{\rho^{2}} d \phi d t+\frac{\rho^{2}}{\Delta} d r^{2}+\rho^{2} d \theta^{2}+\left(r^{2}+a^{2}+\frac{2 M r a^{2} \sin ^{2} \theta}{\rho^{2}}\right) \sin ^{2} \theta d \phi^{2} \tag{8}
\end{equation*}
$$

where

$$
\begin{align*}
\rho^{2} & \equiv r^{2}+a^{2} \cos ^{2} \theta \tag{9}\\
\Delta & \equiv r^{2}-2 M r+a^{2} \tag{10}\\
a & \equiv \frac{J}{M} \tag{11}
\end{align*}
$$

Additional points if:
a) you find (E, L) as a function of the orbital radius for a non-extremal $(a<M)$ Kerr geometry,
b) you prove that equatorial geodesics in the Kerr geometry remain equatorial.

2 Astroparticles

Write a short text for each of the following three topics.

1. The GZK cutoff
2. Transparency of the Universe to gamma rays in the TeV region: main targets, physical processes and critical energies
3. Cherenkov light output from electromagnetic showers close to the shower axis

3 Particle Physics

1. Give two reasons for the need of having at least two Higgs doublets in supersymmetric extensions of the Standard Model. Explain the reasons in such a way that another student not having attending the classes may understand.
2. Consider the process $\nu_{e}+\bar{\nu}_{e} \rightarrow W_{L}^{-}+W_{L}^{+}$. Reproduce the plots for the cross section that I gave in class showing the cancellation of the bad high-energy behaviour. You can use the expressions for the square of the amplitudes that I gave in class and that you can find in the article in my page
http://porthos.ist.utl.pt/CTQFT/files/HiggsAndSM.pdf
