Advanced Quantum Field Theory
12 Semester 2020/2021

I give here a brief description of the proposed topics. You should write a small text
on the chosen topic and make an oral presentation of 20 minutes. As we discussed you
send to me the small text a week before the presentation. These will take place on Friday
February 12th so that I can deliver the grades on time.

IST, 21 of December, 2020
Jorge C. Romao



1 Renormalization Group and Unified Theories

Objective: Evaluate the evolution of the coupling constants using the renormalization
group, for the Standard Model and for the MSSM. The student should do the explicit
calculations for the coefficients of the § functions that are needed, not just use the results

from the book [1].
Bibliography:
o Advanced Quantum Field Theory , Jorge C. Romao, Chapter 7.

Student: Anton Kuncinas



2 QED in a non-linear gauge
Consider QED with a non-linear gauge condition,

F= 8“A“+% A AP

1. Write L.y and show that sL.¢y = 0, where s is the Slavnov operator.

2. Write the Feynman rules for the new vertices and propagators. Then evaluate at
tree level v 4+~ — v 4+ v. Compare with the results in the usual linear gauge.

3. Evaluate the vacuum polarization at one-loop.

4. Show that the diagram of the figure, that would be potentially dangerous for the
anomalous magnetic moment of the electron (would be proportional to A) vanishes.

Student: Pablo Bilbao



3 Vacuum Polarization in QCD

Consider the theory that describes the interactions of quarks with gluons (QCD) given

by the Lagrangian:

1 SN N
Locp = = Fu P + Y 07 (iP— ma)it;
a=1

where

F;/,ll/ = (%Ag - aVAZ +)\'ZfabcAZAlcj
(D,u)ij = (5@»8“ — Zg (3) AZ .

v

The index a = 1,2,...,n denotes the different quark flavours (up,down,...,top)
to quantize the theory use the linear gauge condition,

1 2
- pa
Lar %€ (0, AF)

that gives the following Lagrangian for the ghosts,

Lo = 000" + gf 0" Al

To renormalize the theory one needs the following counter-term Lagrangian,

1

AL = —2(Zs— 1) (0,40 — 0,A,)" — (Zi— D)gf "D, Ay A A
1 —« a
_192(Z5 o l)fabCfadeAZAlc/AudAue + 2(22 . 1)“/% 7”0%@

a

—a ., —a A o ra
=S, — OB+ (2= D T () v
a o v
+(Zs — 10w 0"w® + (Z7 — 1) g f " OFw* Abwe .
1. Verify the expression for L.
2. Verify the Feynman rules given in the text.

3. Evaluate the vacuum polarization.

Student: José Bastos

. In order



4 Renormalization of QCD

Consider the theory that describes the interactions of quarks with gluons (QCD) given
by the Lagrangian:

1 ", o
Loop = —7F8,F™* + 3 40 (i — ma )i
a=1

4 m
where
F;/,ll/ = (%Ag - (9,,AZ —|_>\gfabcAZAlcj
(Dp)ij = 6150, — ig (7) AL
ij
The index a = 1,2, ..., n denotes the different quark flavours (up,down,...,top). In order

to quantize the theory use the linear gauge condition,

Lor = —i (O Aray?

that gives the following Lagrangian for the ghosts,
Lo =0,0"0"w" +g f“bcﬁ“w“AZwC

To renormalize the theory one needs the following counter-term Lagrangian,

AL = —2(Z3—1)(9,A% — 8,,AZ)2 —(Z4 — 1)gfe0, A2 A*> A7

— 297 (Zs — 1) f0fe AL AL AT A Z(Zz — )it Y 0utf

_Zma Ma wlb + Zl—ngQﬂ”}/ <)\2a>¢;lAZ
v

(Zs — DO, + (Zr — 1)gf ™0 “Ab e

1. Show that the following relations must be true

5 _4_ % _VE
Zy s L s

2. Evaluate 7y, Zs, Z3, Z4, Zg e Z7 using Minimal Subtraction (MS). Show explicitly
that Z1Z6 = Z2Z7.

3. Evaluate the contribution of the fermions to Z; and Z5. Show that they are in
agreement with the previous relations.

Student:



5 Renormalization of Scalar Electrodynamics

Consider Scalar Electrodynamics, that is the gauge theory of interactions of photons with
charged scalar particles.

1. Write the Lagrangian for this theory.
2. Derive the Feynman rules.
3. Identify the divergent diagrams.

4. Do the on-shell renormalization for the self-energies of the photon and charged scalar
particle.

Student: Francisco Albergaria



6 Unitarity in Non-Abelian Gauge Theories

Consider the theory that describes the interactions of quarks with gluons (QCD) given
by the Lagrangian:

1 ", o
Loop = —7F8,F™* + 3 40 (i — ma )i
a=1

4 m
where
F,L[Lllj = 8HAZ - 8VAZ +)\gfabcAZAI(i
(Dp)ij = 6150, — ig <7) AL
ij
The index o = 1,2, ..., n denotes the different quark flavours (up,down,...,top). In order
to quantize the theory use the linear gauge condition,
Lop = - (9, AH)?
GF 25 o )

that gives the following Lagrangian for the ghosts,
Lo =0,0"0"w" +g f“bcﬁ“w“AZwC
1. Verify the expression for L.
2. Show explicitly that the action is BRS invariant.

Consider now the amplitudes

P1 k1 P1 3}
-Tab = M, a 'Tab =
L o v, b = = b
b2 ko P2 ko

3. Evaluate T ;jfj at tree level. Verify that, for off-shell gluons, we have kY Tgfj # 0.
What happens for on-shell gluons?

4. Verify, at tree level, the Ward identities

kT = ky T

5. Use the above results to explicitly prove unitarity at one-loop level, showing that
the optical theorem holds in this case.

Student: Francisco Vazao



7 Feynman Rules for QED using the Path Integral

The generating functional for the Green functions in QED is given by,

Z(Ju’n’ﬁ) = /D(AM’@D’@) 6ifd4x(£QED+EGF+J“AH+ﬁw+E77) . (1)

where
1 —,.
Loep = —1 F F* 4+ 4(ip—m)y
Lar = __5(8 A)
D, =0, +1ieA, .

a) Determine Zy[J*,n, 7|
b) Show that

b nml =ex —ie A (— 75 H 0 d Hon,m
24 = exp { (i) [ 'z (1)L () it Ll @

c¢) Expand

Z=Zy[1+ (—ie)Z + (—ie)*Zy + - - | (3)

where we have subtracted the vacuum-vacuum amplitudes in Z;, that is, Z;[0] = 0 —

Z[0] = 1. Show that
/& (4)

fv@w (5)
d) Discuss the numerical factors and signs of the previous diagrams.
e) Evaluate in lowest order

O T Ao (2) 0) = gt s (©

and verify that it coincides with the Feynman rules for the vertex.

8



f) Determine the amplitude for the Compton scattering in lowest order, that is, eval-
uate the Green function,

(0] TAM(2) A” ()5 (2) 04 (w) |0) = ,m,a(w)i(gﬁ;(f)my(y)w“ "

and verify that it reproduces the result obtained from the usual Feynman rules in Chapter
3 of the text. You do not have to obtain Sy;, just the Green functions, as the rest of the
procedure is equal to what we have done in Chapter 3.

Student: Rodrigo Vicente



8 [ Function in a general SU(N) gauge theory: AAA

8.1 Definitions

We define here the theory to have all conventions consistent. Notice that some of these
conventions differ from the textbook.

Classical Theory
Consider the non-abelian SU(N) gauge theory defined by its classical Lagrangian,

1 .
Lsu) = =7 Fu F" + G(iP— mp)ighy + (D) [ D s — m§olo; (8)
where
Fy, = 0,A% — 0,A5 — gf*™ A} Ay (9)
(Du)ij = 52']'8“ +1g (Ta)ij AZ . (10)

and T} are the generators in the representation to which the fermion and scalar belong

(possibly different ones). To quantify the theory we have to introduce the gauge fixing
term, that we choose to be of the form,
Lop = —— (9,442 (1)
GF — 25 o )

for which we have the following ghost Lagrangian,
Le = 0,0"0"w" — gf“bca“w“Ach : (12)

Counterterm Lagrangian

To renormalize the theory we need the following counterterm Lagrangian

1
AL = —2(Zx = 1) (0uA} = 0,AL)" + (Zaan — g™ 0, AL AP A
1
_192(ZAAAA — 1) forefrr AL Ay AMIAY + (Zp — 1)ip " 0t — mp (Zn,, — 1)t

~(Zyypr — 1) g0 (T%); ¥4, + (Za — 1)0,w0"0"w" — (Zaaa — 1)g feorw “Ab c

+(Zs = 1)0,070 61 — mi(Zs — 1610 — (Zssa — 1) [igAo|T50"6; — ig A" 0! Ty

+(Zssaa — 1)92¢Iﬂ?¢jAZ¢LTIgm¢mAbmu :

10

oy

(13)



Feynman Rules

For completeness we give here the Feynman rules for this theory.
e Propagators:

i) Gauge bosons

gt k* kY o N#(E &

I g PR ], MR gy
(k2 + ie) k2 + ie

where, for future use, we have defined the numerator of the propagator in an arbitrary

R¢ gauge as,

» - » kF kY
ii) Ghosts
(UeeveveeenenneePerereaenunneees b : ) 16
3 k2 +ge (16)
e Vertices:
i)Triple gauge boson vertex
p,c
1 gf*™l g"(pr — p2)’ + g""(p2 — ps)*
3
4 \p} +gp“(p3 _pl)y] = ngucp(plap%p?)) (17>
I, a ' v,b
prtpe+p3=0
ii) Quartic gauge boson vertex
o.d p,C _7'92 feabfecd(gupgua - g’wg”p)
pzl\ /;?3 +feac.fedb(g'uggpy - g,u,ugpo)
p‘l/ \pQ +fead.febc(glwgp0 - gupguo)] = ngucila
M, a v, b
p1t+p2t+ps+pi=0
(18)

11



iii) Ghost-Gauge boson interaction

w,c
Tp:a
NP2
a ’ 41 B y2i

iv) Fermion-Gauge boson interaction

v) Scalar-Gauge boson interaction: Cubic term

[, a

Tp:a

N

L7 p2

i J

+p2 +p3 =0

—ig(p1 — p2)"' T35 = V& (p1, p2) T35

vi) Scalar-Gauge boson interaction: Quartic term

ig2guV{Ta> Tb}ij

Notice that in the definition of T, (p1, p2, p3) in Eq. (95) all the momenta are outgoing.

abc

This explains the different sign when comparing with Ref.[2].

Group factors

We summarize here some useful formulas for dealing with some group theory factors. Our
generators obey the defining commutation relations,

[Ta’ Tb] — ifabcTc

12



where the structure constants of the Lie group G are completely antisymmetric, and the

generators in a representation R of G are normalized as follows,
Te[TT") = Trds™
The structure constants obey the Jacobi identity
fobd pdee 4 ghed pdae 4 pead pdve _ ()
and we define the two Casimir invariants
fovd pdve _ v, §ad - pee — ¢
Useful relations are,
Trr=dr Cy
Te[T°T°T¢) — Te[T°T°T") = i T f**

Tabcd 4 Tabdc + Tacdb + Tadcb o 2Tacbd o 2Tadbc — TR (fadefbce 4 facefbde) ’

(24)

(27)
(28)
(29)

where 7 is the dimension of G, di the dimension of the representation R of G and 7% =

Tr[TeT*TeT?). For SU(N) we have,

r=N?-1 dy = N

1 N%2 -1
Ty = = _
N7 On IN
CA:TAdj:N

8.2 Calculate the g function

The ( function can be obtained in many ways. Here use as starting point

Zy=Zaan 2,

(30)
(31)

(32)

(33)

In all calculations consider the gauge with £ = 1 and evaluate the counter-terms using

the MS scheme (just consider the coefficient of the pole).
1. Calculate the pure gauge contribution to Z4 at one loop.
2. Calculate the pure gauge contribution to Z444 at one loop.
3. Calculate the fermion contribution to Z4 and Z444 at one loop.

4. Calculate the scalar contribution to Z4 and Z 44 at one loop.

5. Finally evaluate the 8 function for this theory. Check that you recover Eq. 7.181 of

the textbook [1].

Student:

13



9 [ Function in a general SU(N) gauge theory: FFA

9.1 Definitions

We define here the theory to have all conventions consistent. Notice that some of these
conventions differ from the textbook.

Classical Theory
Consider the non-abelian SU(N) gauge theory defined by its classical Lagrangian,

1 )
Lsum) = —ZF,Z,FW“ V(1D — mp)i; + (D) D¢y — miplo (34)
where
Fi, = 0,A% — 9,A% — gf ™ AL A? (35)
(D,u)ij = 52‘]‘8# + ’Lg (Ta)ij AZ . (36)

and T} are the generators in the representation to which the fermion and scalar belong

(possibly different ones). To quantify the theory we have to introduce the gauge fixing
term, that we choose to be of the form,
1 2
Lor = 3% (0, A")", (37)

for which we have the following ghost Lagrangian,
Le = 0,0"0"w" — gf“bca“w“Ach : (38)

Counterterm Lagrangian

To renormalize the theory we need the following counterterm Lagrangian

1
AL = —2(Zx = 1) (0uA} = 0,AL)" + (Zaan — g™ 0, AL AP A
1
_192(ZAAAA — 1) forefrr AL Ay AMIAY + (Zp — 1)ip " 0t — mp (Zn,, — 1)t

~(Zyppa = Vg iy (T%); ;AL + (Za — 1)9,5°0"w" — (Zaaa — 1)gf " 0"@" Ajw*

+(Zs = 1)0,070 61 — mi(Zs — 1610 — (Zssa — 1) [igAo|T50"6; — ig A" 0! Ty

+(Zssaa — 1)92¢Iﬂ?¢jAZ¢LTIgm¢mAbmu :

14

oy

(39)



Feynman Rules

For completeness we give here the Feynman rules for this theory.
e Propagators:

i) Gauge bosons

gt k* kY . N# (k&)
(1 =) | = i0pp— > 40

rlCY (k2 + ie)? TR e (40)
where, for future use, we have defined the numerator of the propagator in an arbitrary
R¢ gauge as,

» - » kF kY
ii) Ghosts
(UeeveveeenenneePerereaenunneees b : ) 49
3 k2 +ge (42)
e Vertices:
i)Triple gauge boson vertex
p,c
1 gf*™l g"(pr — p2)’ + g""(p2 — ps)*
3
4 \p} +gp“(p3 _pl)y] = ngucp(plap%p?)) (43)
I, a ' v,b
prtpe+p3=0
ii) Quartic gauge boson vertex
o.d p,C _7'92 feabfecd(gupgua - g’wg”p)
pzl\ /;?3 +feac.fedb(g'uggpy - g,u,ugpo)
p‘l/ \pQ +fead.febc(glwgp0 - gupguo)] = ngucila
M, a v, b
p1t+p2t+ps+pi=0
(44)

15



iii) Ghost-Gauge boson interaction

w,c
TP3
NP2
a ’ 41 B y2i

iv) Fermion-Gauge boson interaction

v) Scalar-Gauge boson interaction:

[, a

Tp:a

N

L7 p2

i J

Cubic term

—g fopi =Th,.(p1)

vi) Scalar-Gauge boson interaction: Quartic term

(45)

+p2 +p3 =0
—ig(y")gaT}; (46)
—ig(p1 — p)"'Ti; = V& (01, p2) T35 (47)
ig*gu AT, T} (48)

Notice that in the definition of T, (p1, p2, p3) in Eq. (95) all the momenta are outgoing.

abc

Group factors

[Ta’ Tb] — ifabcTc

16

This explains the different sign when comparing with Ref.[2].

We summarize here some useful formulas for dealing with some group theory factors. Our
generators obey the defining commutation relations,

(49)



where the structure constants of the Lie group G are completely antisymmetric, and the
generators in a representation R of G are normalized as follows,

Te[TT") = Trds™ (50)
The structure constants obey the Jacobi identity
fabdfdce + fbcdfdae + fcadfdbe =0 (51>

and we define the two Casimir invariants

fabd pdve _ ¢ gad - pape _ ¢ (52)

Useful relations are,
Trr=dgr Cy (53)
Te[T*TT) — Te[T*TT?) = i T f** (54)
abed y pabde | qracdy | padeb _ grpachd _ grpadse _ ( fode pbee | pace fbde) ’ (55)

where 7 is the dimension of G, di the dimension of the representation R of G and 7% =
Tr[TeT*TeT?). For SU(N) we have,

r=N?-1 dy =N (56)
1 N? -1

Ty = 5 CN = IN (57>

Cy=Tay =N : (58)

9.2 Calculate the g function

The ( function can be obtained in many ways. Here use as starting point
Zy= ZppaZy* Z;" (59)

In all calculations consider the gauge with £ = 1 and evaluate the counter-terms using
the MS scheme (just consider the coefficient of the pole).

1. Calculate the pure gauge contribution to Z4 at one loop.
2. Calculate Zpps and Zp at one loop.

3. Calculate the fermion contribution to Z4 at one loop.

4. Calculate the scalar contribution to Z4 at one loop.

5. Finally evaluate the 8 function for this theory. Check that you recover Eq. 7.181 of
the textbook [1].

Student:

17



10 ( Function in a general SU(IN) gauge theory: GGA

10.1 Definitions

We define here the theory to have all conventions consistent. Notice that some of these
conventions differ from the textbook.

Classical Theory
Consider the non-abelian SU(N) gauge theory defined by its classical Lagrangian,

1 )
Lsum) = —ZF,Z,FW“ V(1D — mp)i; + (D) D¢y — miplo (60)
where
Fi, = 0,A% — 9,A% — gf ™ AL A? (61)
(D,u)ij = 52‘]‘8# + ’Lg (Ta)ij AZ . (62)

and T} are the generators in the representation to which the fermion and scalar belong

(possibly different ones). To quantify the theory we have to introduce the gauge fixing
term, that we choose to be of the form,
1 2
Lor = 3% (0, A")", (63)

for which we have the following ghost Lagrangian,
Le = 0,0"0"w" — gf“bca“w“Ach : (64)

Counterterm Lagrangian

To renormalize the theory we need the following counterterm Lagrangian

1
AL = —2(Zx = 1) (0uA} = 0,AL)" + (Zaan — g™ 0, AL AP A
1
_192(ZAAAA — 1) forefrr AL Ay AMIAY + (Zp — 1)ip " 0t — mp (Zn,, — 1)t

~(Zyppa = Vg iy (T%); ;AL + (Za — 1)9,5°0"w" — (Zaaa — 1)gf " 0"@" Ajw*

+(Zs = 1)0,070 61 — mi(Zs — 1610 — (Zssa — 1) [igAo|T50"6; — ig A" 0! Ty

+(Zssaa — 1)92¢Iﬂ?¢jAZ¢LTIgm¢mAbmu :

18

oy

(65)



Feynman Rules

For completeness we give here the Feynman rules for this theory.
e Propagators:

i) Gauge bosons

gt k* kY . N# (k&)
(1 =) | = i0pp— > 66

rlCY (k2 + ie)? TR e (66)
where, for future use, we have defined the numerator of the propagator in an arbitrary
R¢ gauge as,

» - » k* kY
ii) Ghosts
(UeeveveeenenneePerereaenunneees b : ) 68
3 K2+ e (68)
e Vertices:
i)Triple gauge boson vertex
p,c
1 gf®™l g™ (1 — p2)’ + " (p2 — ps)*
3
4 \p} +gp“(p3 - pl)y] = ngucp(plap%p?)) (69)
I, a ' v,b
prtpe+p3=0
ii) Quartic gauge boson vertex
o d b —ig* | fearfeea(9""9"" — 9"79"")
pzl\ /;?3 +feac.fedb(g'uggpy - g,u,ugpo)
p‘l/ \pQ +fead.febc(glwgp0 - gupguo)] = ngucila
M, a v, b
p1t+p2t+ps+pi=0
(70)
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iii) Ghost-Gauge boson interaction

w,c
Tp:a
NP2
a ’ 41 B y2i

iv) Fermion-Gauge boson interaction

v) Scalar-Gauge boson interaction: Cubic term

[, a

Tp:a

N

L7 p2

i J

+p2 +p3 =0

—ig(p1 — p2)"' T35 = V& (p1, p2) T35

vi) Scalar-Gauge boson interaction: Quartic term

ig2guV{Ta> Tb}ij

Notice that in the definition of T, (p1, p2, p3) in Eq. (95) all the momenta are outgoing.

abc

This explains the different sign when comparing with Ref.[2].

Group factors

We summarize here some useful formulas for dealing with some group theory factors. Our
generators obey the defining commutation relations,

[Ta’ Tb] — ifabcTc

20



where the structure constants of the Lie group G are completely antisymmetric, and the
generators in a representation R of G are normalized as follows,

Te[TT") = Trds™ (76)
The structure constants obey the Jacobi identity
fabdfdce + fbcdfdae + fcadfdbe =0 (77>

and we define the two Casimir invariants

fabd pdve _ ¢ gad - pape _ ¢ (78)

Useful relations are,
Trr=dgr Cy (79)
Te[T*TT) — Te[T*TT?) = i T f** (80)
abed y pabde | qracdy | padeb _ grpachd _ grpadse _ ( fode pbee | pace fbde) ’ (81)

where 7 is the dimension of G, di the dimension of the representation R of G and 7% =
Tr[TeT*TeT?). For SU(N) we have,

r=N?-1 dy =N (82)
1 N? -1

Ty = 5 CN = IN (83>

Cy=Tay =N : (84)

10.2 Calculate the 8 function

The ( function can be obtained in many ways. Here use as starting point
Zy= Zaan 2,7 25 (85)

In all calculations consider the gauge with £ = 1 and evaluate the counter-terms using
the MS scheme (just consider the coefficient of the pole).

1. Calculate the pure gauge contribution to Z4 at one loop.
2. Calculate Zgga and Zg at one loop.

3. Calculate the fermion contribution to Z4 at one loop.

4. Calculate the scalar contribution to Z4 at one loop.

5. Finally evaluate the 8 function for this theory. Check that you recover Eq. 7.181 of
the textbook [1].

Student:

21



11 [ Function in a general SU(N) gauge theory: SSA

11.1 Definitions

We define here the theory to have all conventions consistent. Notice that some of these
conventions differ from the textbook.

Classical Theory
Consider the non-abelian SU(N) gauge theory defined by its classical Lagrangian,

1 )
Lsum) = —ZF,Z,FW“ V(1D — mp)i; + (D) D¢y — miplo (86)
where
Fi, = 0,A% — 9,A% — gf ™ AL A? (87)
(D,u)ij = 52‘]‘8# + ’Lg (Ta)ij AZ . (88)

and T} are the generators in the representation to which the fermion and scalar belong

(possibly different ones). To quantify the theory we have to introduce the gauge fixing
term, that we choose to be of the form,

Lap = _i (B A")? (89)

for which we have the following ghost Lagrangian,
Le = 0,0"0"w" — gf“bca“w“Ach : (90)

Counterterm Lagrangian

To renormalize the theory we need the following counterterm Lagrangian

AL = _i(ZA — 1) (0, A2 — 9,A%)" + (Zaaa — 1)g ™0, AL A A
1
— 79" (Zanan = D e ALALAMAY 4 (Ze = 1oy uths — mp(Zum,, — 1)1

~(Zyypr — 1) g0 (T%); ¥4, + (Za — 1)0,w"0"w" — (Zaaa — 1)gf“bca“w“Ach

+(Zs = 1)0,070 61 — mi(Zs — 1610 — (Zssa — 1) [igAo|T50"6; — ig A" 0! Ty

+(Zssaa — 1)92¢17;?¢]AZ¢LT£m¢mAbmu :

22
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Feynman Rules

For completeness we give here the Feynman rules for this theory.
e Propagators:

i) Gauge bosons

gt k* kY o N#(E &

7.—(1_5)ﬁ =1 ab# (92)
(k2 + ie) k2 + ie

where, for future use, we have defined the numerator of the propagator in an arbitrary

R¢ gauge as,

» - » k* kY
ii) Ghosts
(UeeveveeenenneePerereaenunneees b : ) 94
3 K2+ e (94)
e Vertices:
i)Triple gauge boson vertex
p,c
1 gf®™l g™ (1 — p2)’ + " (p2 — ps)*
3
4 \p} +gp“(p3 - pl)y] = ngucp(plap%p?)) (95>
I, a ' v,b
p1+p2+p3=0
ii) Quartic gauge boson vertex
o d b —ig* | fearfeea(9""9"" — 9"79"")
pzl\ /;?3 +feac.fedb(g'uggpy - g,u,ugpo)
p‘l/ \pQ +fead.febc(glwgp0 - gupguo)] = ngucila
M, a v, b
prt+petps+pi=0
(96)

23



iii) Ghost-Gauge boson interaction

w,c
TP3
NP2
a ’ 41 B y2i

iv) Fermion-Gauge boson interaction

v) Scalar-Gauge boson interaction:

[, a

Tp:a

N

L7 p2

i J

Cubic term

—g fopi =Th,.(p1)

vi) Scalar-Gauge boson interaction: Quartic term

(97)

+p2 +p3 =0
—ig(y")gaT}; (98)
—ig(p1 — p)"'Ti; = V& (01, p2) T35 (99)
ig*gu AT, T} (100)

Notice that in the definition of T, (p1, p2, p3) in Eq. (95) all the momenta are outgoing.

abc

Group factors

[Ta’ Tb] — ifabcTc

24

This explains the different sign when comparing with Ref.[2].

We summarize here some useful formulas for dealing with some group theory factors. Our
generators obey the defining commutation relations,

(101)



where the structure constants of the Lie group G are completely antisymmetric, and the
generators in a representation R of G are normalized as follows,

Te[TT") = Trds™ (102)
The structure constants obey the Jacobi identity
fabdfdce + fbcdfdae + fcadfdbe =0 (103>

and we define the two Casimir invariants

fabd pdve _ ¢ gad - pape _ ¢ (104)

Useful relations are,
Trr=dr Ca (105)
Te[T*TPT) — Te[T*TT®) = i Tx f** (106)
abed y abde | qracdy | rpadeb _ grpachd _ grpadse _ ( fode pbee | pace fbde) ’ (107)

where 7 is the dimension of G, di the dimension of the representation R of G and 7% =
Tr[TeT?TeT?). For SU(N) we have,

r=N?-1 dy = N (108)
1 N? -1

Tn =3 On = 5% (109)

Cy=Tay =N ) (110)

11.2 Calculate the 8 function

The ( function can be obtained in many ways. Here use as starting point
Zy= Zssa 2, 75" (111)

In all calculations consider the gauge with £ = 1 and evaluate the counter-terms using
the MS scheme (just consider the coefficient of the pole).

1. Calculate the pure gauge contribution to Z4 at one loop.
2. Calculate Zgg4 and Zg at one loop.

3. Calculate the fermion contribution to Z4 at one loop.

4. Calculate the scalar contribution to Z4 at one loop.

5. Finally evaluate the 8 function for this theory. Check that you recover Eq. 7.181 of
the textbook [1].

Student:

25



References

[1] J. C. Romao, Advanced Quantum Field Theory (IST, 2019), Available online at
http://porthos.tecnico.ulisboa.pt/Public/textos/tca.pdf.

2] J. C. Romao and J. P. Silva, Int. J. Mod. Phys. A27, 1230025 (2012), [1209.6213].

26



