Advanced Quantum Field Theory
1° Semester 2016 /2017

I give here a brief description of the proposed topics. You should write a small text
on the chosen topic and make an oral presentation. This will be organized in February,
with a maximum duration of the oral presentation shall be 20-30 minutes.

IST, 3 of December, 2016
Jorge C. Romao



1 Renormalization Group and Unified Theories

Objective: Evaluate the evolution of the coupling constants using the renormalization
group, for the Standard Model and for the MSSM. The student should do the explicit

calculations that are needed.
Bibliography:
o Advanced Quantum Field Theory , Jorge C. Romao, Chapter 7.

Student: Débora Barreiros



2 QED in a non-linear gauge
Consider QED with a non-linear gauge condition,

F= aMAug A AP

1. Write L.s¢ and show that sL.;r = 0, where s is the Slavnov operator.

2. Write the Feynman rules for the new vertices and propagators. Then evaluate at
tree level v + v — v + . Compare with the results in the usual linear gauge.

3. Evaluate the vacuum polarization at one-loop.

4. Show that the diagram of the figure, that would be potentially dangerous for the
anomalous magnetic moment of the electron (would be proportional to A) vanishes.

Student:



3 Vacuum Polarization in QCD

Consider the theory that describes the interactions of quarks with gluons (QCD) given

by the Lagrangian:

1 a va - s «a
Locp = —ZFH,,F” + Zi/% (1 — maq )i
a=1

where

FSV = 8qu — 8,,143 +>\'gfabcAZAi
(Du)ij = 5,~j6M — Zg <7> AZ .
ij

The index a = 1,2, ..., n denotes the different quark flavours (up,down,...,top).

to quantize the theory use the linear gauge condition,
Lop = _L (0 A““)2
GF 25 w

that gives the following Lagrangian for the ghosts,

L= 0,w"0"w" +g f“bca“w“Ach

To renormalize the theory one needs the following counter-term Lagrangian,

1

AL = —7(Zs—=1) (947 - 0,A%)" — (Zy — 1)gfbed, As A A"

1 R
—~g*(Zs — 1) fhe fote Al AS AR AT + Z(% — 1)i; /19

4

_Zma Me w w + Zl_lgzw 7 ()\QG)UQ/};‘IA

(26 —1)0,w" 0w + (Z7 — 1)g f“bcﬁ“ “Ab ¢
1. Verify the expression for Lg.
2. Verify the Feynman rules given in the text.

3. Evaluate the vacuum polarization.

Student: Gongcalo Quinta

In order



4 Renormalization if QCD

Consider the theory that describes the interactions of quarks with gluons (QCD) given
by the Lagrangian:

1 " N
Locp = =7 FoF™* + 3 4 (iD= ma)iis
a=1

4 m
where
FSV = 8,11«143 — 8,/142 +>\gfabcAZAf,
(D,U«)ZJ = 51]6M — Zg <?) AZ .
ij
The index o = 1,2, ..., n denotes the different quark flavours (up,down,...,top). In order

to quantize the theory use the linear gauge condition,

Lar = _i (O Aray?

that gives the following Lagrangian for the ghosts,
L= 0,w"0"w" +g f“bcﬁ“w“Ach

To renormalize the theory one needs the following counter-term Lagrangian,

1
AL = —7(Zs—=1) (947 - 0,A%)" — (Zy — 1)gfted, As A A

1 SVAS o
— 0P (Zs = DAL AT A A Z% = Divi 10,

_Zma Ma w w + Zl_lgzw 7 ()\QG)Q/};{AZ
ij

(Ze — 1) + (Zr — 1)g fabcaﬂwmg ¢

1. Show that the following relations must be true

Zy  Zy  Zr  NZs

AR N

2. Evaluate 7y, Zy, Zs, Z4, Zs e Z7 using Minimal Subtraction (MS). Show explicitly
that Z1Z6 = Z2Z7.

3. Evaluate the contribution of the fermions to Z; and Z5. Show that they are in
agreement with the previous relations.

Student: Bernardo Gongalves



5 Renormalization of Scalar Electrodynamics

Consider Scalar Electrodynamics, that is the gauge theory of interactions of photons with
charged scalar particles.

1. Write the Lagrangian for this theory.
2. Derive the Feynman rules.
3. Identify the divergent diagrams.

4. Do the on-shell renormalization for the self-energies of the photon and charged scalar
particle.

Student: Sofia Freitas



6 Renormalization of the Wess-Zumino Model

Consider the Wess-Zumino model described by the Lagrangian

L = 10,A0"A+10,B0"B + %%M ) — 1m2A? — L2 B — Iy

2

~Z (A4 B?) - m—\/;A (A*+ B?) — %AM) - %B%E,w (1)

where the fermion v is a Majorana particle and A and B are real scalar fields.
1. Derive the Feynman rules. Do not forget that the fermion is a Majorana fermion.
2. Identify the divergent diagrams.

3. Evaluate the self-energy of the scalar fields and show that the quadratic divergences
cancel.

4. To renormalize this model it is necessary a counter-term Lagrangian of the form,

1 1 o
AL = 50Za0,A0"A+ S8250,B0"B + %m@w D)

1 1 1 _
—§m2(25Zm +8Z4)A* — 5m2(25Zm +87Z5)B* — 5m(<szm + 6 Zy )b

A2 A2
—Z(z(szA +2074)A* — T

2
—2%(25@ + 6724+ 07Zp)A’B?

(2075 +20Z5)B*

mA 3 3 MA 1 9
- \/5(52,” +0Z\+ 25ZA)A — \/é(azm + 07y + 25ZA +0Zp)AB
A 1 — I\ 1 _

Show that the six renormalization constants are related and that there is only one
independent, the wave function renormalization. to show this evaluate the renor-
malization constants in Minimal Subtraction.

Student: Miguel Levy



7 Unitarity in Non-Abelian Gauge Theories

Consider the theory that describes the interactions of quarks with gluons (QCD) given
by the Lagrangian:

1 " N
‘CQCD = —_ [ prra + ZQ/JZ (Zp— ma)l-jwj
a=1

4 m
where
a a a abc Ab Apc
Fi, = 0,A, — 0,A; +>\gf A4,
(Dp)ij = 0ij0u — 19 <§) AL
ij
The index a = 1,2, ..., n denotes the different quark flavours (up,down,...,top). In order
to quantize the theory use the linear gauge condition,
Lop = 1 (0 A““)2
GF 25 “w )

that gives the following Lagrangian for the ghosts,
Le = 0,w"0"w" + gf“bcauw“Ach
1. Verify the expression for L.
2. Show explicitly that the action is BRS invariant.

Consider now the amplitudes

b1 k1 4! k1
'Tab = w, a ’Tab =
L Ky v, b - b
P2 kﬁz P2 k2

3. Evaluate T SB at tree level. Verify that, for off-shell gluons, we have kf Tﬁﬁ # 0.
What happens for on-shell gluons?

4. Verity, at tree level, the Ward identities
kK T = ki T

5. Use the above results to explicitly prove unitarity at one-loop level, showing that
the optical theorem holds in this case.

Student:



8 Feynman Rules for QED using the Path Integral
The generating functional for the Green functions in QED is given by,
200 ) = [ D(Ay,7) i) Cartbor s auimoin @)
where

Loep = - E, M+ (i — m)y

4
Lar = ——5(8 A)
D, =0, +1ieA,

a) Determine Zy[J*,n, 7|
b) Show that

) ) )
Z[J*,n,m :exp{ —1ie /d4x ) o = }Z Jm,ml . 3
Sl =ew ) [, G O Sy s, § 2 )
c¢) Expand
Z=Zy[1+ (—ie)Zy + (—ie)*Zy + - - | (4)
where we have subtracted the vacuum-vacuum amplitudes in Z;, that is, Z;[0] = 0 —

Z[0] = 1. Show that

Zy= =72

A
N
o

fv@-\/\, (6)
d) Discuss the numerical factors and signs of the previous diagrams.
e) Evaluate in lowest order

837
1070 (2)1075(y)i0J ()
and verify that it coincides with the Feynman rules for the vertex

(0] TA*(2)1h5(y) v (2) |0) =

9



f) Determine the amplitude for the Compton scattering in lowest order, that is,

(0] TA" () A” (y)s(2)1ha (w) |0) = mna(w)iaﬁ;(zz)wu(y)iwu

and verify that it reproduces the result obtained from the usual Feynman rules.
Student: Miguel Bento
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9 [ Function in a general SU(N) gauge theory

9.1 Definitions

We define here the theory to have all conventions consistent. Notice that some of these
conventions differ from the textbook.

Classical Theory
Consider the non-abelian SU(N) gauge theory defined by its classical Lagrangian,

1 — .
Lsvw = — Fu ™ + bi(iD— mp)i; + (Dud) D — miole; 9)
where
Fﬁy = 0,47 — 8,,AZ — gf“bcAZA,‘i (10)
(Du)ij = 5ij8u +1ig (Ta)ij AZ . (11)

and T} are the generators in the representation to which the fermion and scalar belong

(possibly different ones). To quantify the theory we have to introduce the gauge fixing
term, that we choose to be of the form,

Lop = —% (9, 4")? | (12)

for which we have the following ghost Lagrangian,
Lg = 0,w"0"w® — gf“bcﬁ“w“Ach . (13)

Counterterm Lagrangian

To renormalize the theory we need the following counterterm Lagrangian

AL = _i(ZA —1) (9, AL — 8,,AZ)2 + (Zaan — 1)gf™0, A2 A AV
_EQQ(ZAAAA — 1) foefateAd AG AR AV 4 (Zp — 1)ig 7 Ot — mip(Zim, — 1)t
—~(Zypa = Vg0 (T ¥ A5 + (Za — 1)8,0°0"w* — (Zaaa — 1)g f0"0" Apw*
H(Zs = 10,0000 — mA(Zs — 1)656s — (Zssa— 1) [ig Ao T50"6; — ig 20" 61T

+(Zssan — )G oI TLd; ALS Y dm A™ .
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Feynman Rules

For completeness we give here the Feynman rules for this theory.
e Propagators:

i) Gauge bosons

Nk, )

15
k2 + ie (15)

i 179 (k2 + ie)?

p T g™ Bk
CL\IV\NVVVVVVVVVVWb _Zéab|: 9 1 :| = 04

where, for future use, we have defined the numerator of the propagator in an arbitrary
Re¢ gauge as,

i _ i krEY
N (€)= — |~ (1-8) (16)
ii) Ghosts
(Uoenverenenennnsnnrereaennnneens b : S 17
E kQ + 7€ ab ( )
e Vertices:
i)Triple gauge boson vertex
p,c
1 gf™l g"(pr — p2)’ + g""(p2 — pa)*
3
2 N +9”(ps — p1)"] = Lyl (1, p2, pa) (18)
Wy a ! v, b
prtpe+p3=0
ii) Quartic gauge boson vertex
o.d p,c _192 feabfecd(g“pgya - g,u,ogl/p)
p} @3 "'_feat:fedb(g“agpy - gMVgPU)
Py NG + feaafere(9" 97 — g“”g””)] = Dlped
1y @ v, b
pr+p2+ps+ps=0
(19)
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iii) Ghost-Gauge boson interaction

€
D3 abec M —
§l —g F = T ()
& (20)
aPt Ty p1 Ap2+p3=0

iv) Fermion-Gauge boson interaction

—ig(7") 8o T3 (21)

v) Scalar-Gauge boson interaction: Cubic term

TP?,
§ NG —ig(p1 — p2)"T}; = V& (p1, p2) T3 (22)
'%1 A

N
N,

i J

vi) Scalar-Gauge boson interaction: Quartic term

i9° 9 {T* "} (23)

Notice that in the definition of T*”(py, pa, p3) in Eq. (18) all the momenta are outgoing,.

abc

This explains the different sign when comparing with Ref.[1].

Group factors

We summarize here some useful formulas for dealing with some group theory factors. Our
generators obey the defining commutation relations,

[Ta’Tb] — j fabere (24)
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where the structure constants of the Lie group GG are completely antisymmetric, and the
generators in a representation R of G are normalized as follows,

Tr[T*T"] = Tré™ (25)

The structure constants obey the Jacobi identity

fabdfdce + fbcdfdae + fcadfdbe =0 (26)

and we define the two Casimir invariants

pobd pdve _ v gad oo _ x| (27)

Useful relations are,
Trr=dg Cx (28)
Te[TTT) — Te[T°T°T®) = i T f° (29)
abed | qpabde | qpacds | padeh _ orachd _ grpadse _ o, ( fode pbee | face fbde) ’ (30)

where 7 is the dimension of G, dy the dimension of the representation R of G and 7% =
Te[T*T*T°T?). For SU(N) we have,

9.2

r— N2 1 dy = N (31)
1 N2 -1

T = — — 2

N Ov="3x (32)

Ca=Tag =N : (33)

Calculate the g function

The S function can be obtained in many ways. Here use as starting point

Zy=Zann 2, (34)

In all calculations consider the gauge with £ = 1 and evaluate the counter-terms using
the MS scheme (just consider the coefficient of the pole).

1.
2.
3

4.
d.

Calculate the pure gauge contribution to Z4 at one loop.

Calculate the pure gauge contribution to Z444 at one loop.

. Calculate the fermion contribution to Z4 and Z444 at one loop.

Calculate the scalar contribution to Z4 and Z444 at one loop.

Finally evaluate the g function for this theory. Check that you recover Eq. 7.179 of
the textbook.

Student:
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