Teoria de Campo - Problem Series 1

Curso de Engenharia Física Tecnológica - 2017/2018
 Due on the 6/4/2018
 Version of 28/02/2018

1.1 The Poincaré group consists of the Lorentz group plus the translations. If $J_{\mu \nu}$ denote the generators of the Lorentz group and P_{μ} the generators of the translations the commutation relations are,

$$
\begin{align*}
& {\left[J_{\mu \nu}, J_{\rho \sigma}\right]=i\left(g_{\nu \rho} J_{\mu \sigma}-g_{\nu \sigma} J_{\mu \rho}-g_{\mu \rho} J_{\nu \sigma}+g_{\mu \sigma} J_{\nu \rho}\right)} \tag{1}\\
& {\left[P_{\alpha}, J_{\mu \nu}\right]=i\left(g_{\mu \alpha} P_{\nu}-g_{\nu \alpha} P_{\mu}\right)} \tag{2}\\
& {\left[P_{\mu}, P_{\nu}\right]=0}
\end{align*}
$$

Show that

$$
\begin{align*}
& {\left[P^{2}, J_{\mu \nu}\right]=\left[P^{2}, P_{\mu}\right]=0} \tag{3}\\
& {\left[W^{2}, J_{\mu \nu}\right]=\left[W^{2}, P_{\mu}\right]=\left[W^{2}, P^{2}\right]=0}
\end{align*}
$$

where

$$
W_{\mu}=-\frac{1}{2} \varepsilon_{\mu \nu \rho \sigma} J^{\nu \rho} P^{\sigma}
$$

is the Pauli-Lubanski vector operator.
1.2 Consider finite boosts. Define

$$
\omega^{i} \equiv \omega^{0 i} \quad \text { and } \quad \tanh \omega=|\vec{\beta}|
$$

where $\vec{\beta}$ is the relative velocity between the two frames.
a) Show that

$$
S_{L}=e^{-\frac{1}{2} \vec{\omega} \cdot \vec{\alpha}}
$$

b) For finite rotations show that this can be written as

$$
S_{L}(\vec{\omega})=\cosh \frac{\omega}{2}-\hat{\omega} \cdot \vec{\alpha} \sinh \frac{\omega}{2}
$$

where $\hat{\omega}=\frac{\overrightarrow{\vec{B}}}{|\vec{\beta}|}$.
c) Consider now a Lorentz boost along the x axis with relative velocity β_{0}. Show explicitly that

$$
S_{L}\left(\beta_{0}\right) \gamma^{\mu} S_{L}^{-1}\left(\beta_{0}\right) a^{\nu}{ }_{\mu}=\gamma^{\nu}
$$

for finite Lorentz boosts.
1.3 Fill in the entries of the multiplication table for the γ matrices as indicated in Table 1. This is a very useful table in actual calculations. To establish the Table we should note that any product of matrices γ can be written in terms of the 16 independent matrices we discussed in class. Also note that our conventions imply:

$$
\begin{array}{lr}
\varepsilon^{0123}=+1, & \varepsilon_{\alpha \beta_{1} \gamma_{1} \delta_{1}} \varepsilon^{\alpha \beta_{2} \gamma_{2} \delta_{2}}=-\sum_{P}(-1)^{P} g_{\beta_{1}}^{P\left[\beta_{2}\right.} g_{\gamma_{1}}^{\gamma_{2}} g_{\delta_{1}}^{\left.\delta_{2}\right]} \\
\gamma_{5}=i \gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3}=-i \gamma_{0} \gamma_{1} \gamma_{2} \gamma_{3}, & \varepsilon_{\alpha \beta \gamma_{1} \delta_{1}} \varepsilon^{\alpha \beta \gamma_{2} \delta_{2}}=-2\left(g_{\gamma_{1}}^{\gamma_{2}} g_{\delta_{1}}^{\delta_{2}}-g_{\gamma_{1}}^{\delta_{2}} g_{\delta_{1}}^{\gamma_{2}}\right) \\
\varepsilon_{\alpha \beta \gamma \delta_{1}} \varepsilon^{\alpha \beta \gamma \delta_{2}}=-6 g_{\delta_{1}}^{\delta_{2} .} &
\end{array}
$$

	1	γ_{5}	γ^{μ}	$\gamma_{5} \gamma^{\mu}$	$\sigma^{\mu \nu}$
1	1				
γ_{5}					
γ^{α}					
$\gamma_{5} \gamma^{\alpha}$					
$\sigma^{\alpha \beta}$					

Table 1: Multiplication table for γ matrices.

1.4 Starting from the definition

$$
S_{f i}=\lim _{t \rightarrow \varepsilon_{f} \infty} \int d^{3} x \psi_{f}^{\dagger}(x) \Psi_{i}(x)
$$

obtain the central result of Chapter 2, Eq. (2.50),

$$
\begin{equation*}
S_{f i}=\delta_{f i}-i e Q_{e} \varepsilon_{f} \int d^{4} y \bar{\psi}_{f}(y) A(y) \Psi_{i}(y) \tag{4}
\end{equation*}
$$

where $e>0$ e $Q_{e}=-1$. This proof has some subtleties, therefore we go step by step.
a) First show that (Eq. (2.40))

$$
S_{F}\left(x^{\prime}-x\right)=\theta\left(t^{\prime}-t\right) \int \frac{d^{3} p}{(2 \pi)^{3}} \sum_{r=1}^{2} \psi_{p}^{r}\left(x^{\prime}\right) \bar{\psi}_{p}^{r}(x)-\theta\left(t-t^{\prime}\right) \int \frac{d^{3} p}{(2 \pi)^{3}} \sum_{r=3}^{4} \psi_{p}^{r}\left(x^{\prime}\right) \bar{\psi}_{p}^{r}(x)
$$

where

$$
\psi_{p}^{r}(x)=\frac{1}{\sqrt{2 E}} w^{r}(\vec{p}) e^{-i \varepsilon_{r} p \cdot x}
$$

b) Now derive Eqs. (2.47) and (2.48),

$$
\begin{aligned}
& \lim _{t \rightarrow+\infty} \Psi(x)-\psi(x)=\int \frac{d^{3} p}{(2 \pi)^{3}} \sum_{r=1}^{2} \psi_{p}^{r}(x)\left[-i e Q_{e} \int d^{4} y \bar{\psi}_{p}^{r}(y) A(y) \Psi(y)\right] \\
& \lim _{t \rightarrow-\infty} \Psi(x)-\psi(x)=\int \frac{d^{3} p}{(2 \pi)^{3}} \sum_{r=3}^{4} \psi_{p}^{r}(x)\left[+i e Q_{e} \int d^{4} y \bar{\psi}_{p}^{r}(y) A(y) \Psi(y)\right]
\end{aligned}
$$

c) Finally use these results to show Eq. (4).

