

Introduction to Supersymmetry

Jorge C. Romão Instituto Superior Técnico, Departamento de Física & CFTP A. Rovisco Pais 1, 1049-001 Lisboa, Portugal

March 2, 2009

Jorge C. Romão

Introduction to SUSY - 1

IST	Summary
Summary Motivation SUSY Algebra MSSM	 Motivation SUSY Algebra and Representations MSSM
LEP Results LHC Prospects Beyond MSSM Conclusions	 Particle Content Superpotential Masses Couplings
	Bounds: LEP, Tevatron, ···
	 Higgs Chargino, Neutralinos, ··· Dark Matter
	Prospects for LHC

- Beyond the MSSMConclusions

Motivation

Naturalness

SUSY Algebra

MSSM

LEP Results

LHC Prospects

Beyond MSSM

Conclusions

Although there is not yet direct experimental evidence for supersymmetry (SUSY), there are many theoretical arguments indicating that SUSY might be of relevance for physics below the 1 TeV scale.

The most commonly invoked theoretical arguments for SUSY are:

- Interrelates matter fields (leptons and quarks) with force fields (gauge and/or Higgs bosons).
- As local SUSY implies gravity (supergravity) it could provide a way to unify gravity with the other interactions.
- As SUSY and supergravity have fewer divergences than conventional field theories, the hope is that it could provide a consistent (finite) quantum gravity theory.
- SUSY can help to understand the mass problem, in particular solve the naturalness problem (and in some models even the hierarchy problem) if SUSY particles have masses $\leq O(1 \text{TeV})$.

The Naturalness Problem: I

Summary

- Motivation
- Naturalness
- SUSY Algebra
- MSSM
- LEP Results
- LHC Prospects
- Beyond MSSM
- Conclusions

- As the SM is not asymptotically free, at some energy scale Λ , the interactions must become strong indicating the existence of new physics. Candidates for this scale: $M_X \simeq \mathcal{O}(10^{16} \text{ GeV})$ in GUT's or the Planck scale $M_P \simeq \mathcal{O}(10^{19} \text{GeV})$.
- The only consistent way to give masses to the gauge bosons and fermions is through the Higgs mechanism involving at least one spin zero Higgs boson.
- Although the Higgs boson mass is not fixed by the theory, a value much bigger than < H⁰ >~ G_F^{-1/2} ~ 250 GeV would imply that the Higgs sector would be strongly coupled making it difficult to understand why we are seeing an apparently successful perturbation theory at low energies.
 The one loop radiative corrections to the Higgs boson mass

$$\delta m_H^2 = \mathcal{O}\left(\frac{\alpha}{4\pi}\right) \Lambda^2$$

would be too large if Λ is identified with Λ_{GUT} or Λ_{Planck} .

Motivation

Naturalness

SUSY Algebra

MSSM

LEP Results

LHC Prospects

Beyond MSSM

Conclusions

SUSY cures this problem in the following way. If SUSY were exact, radiative corrections to the scalar masses squared would be absent because the contribution of fermion loops exactly cancels against the boson loops.

Therefore if SUSY is broken, as it must, we should have

$$\delta m_H^2 = \mathcal{O}\left(\frac{\alpha}{4\pi}\right) \ \left| m_B^2 - m_F^2 \right|$$

We conclude that

SUSY provides a solution for the the naturalness problem if the masses of the superpartners are below $\mathcal{O}(1 \text{ TeV})$. This is the main reason behind all the phenomenological interest in SUSY.

$$\sigma^{\mu} \equiv (1, \sigma^{i}) \quad ; \quad \overline{\sigma}^{\mu} \equiv (1 - \sigma^{i})$$

and $\alpha, \beta, \dot{\alpha}, \dot{\beta} = 1, 2$ (Weyl 2–component spinor notation).

Motivation

SUSY Algebra

• The Algebra

• Simple Results

• Multipletos

• Superfields

MSSM

LEP Results

LHC Prospects

Beyond MSSM

Conclusions

The commutation relations with the generators of the Poincaré group

$$[P^{\mu}, Q_{\alpha}] = 0 \qquad [J^{\mu\nu}, Q_{\alpha}] = -i \left(\sigma^{\mu\nu}\right)_{\alpha}{}^{\beta} Q_{\beta}$$

One can easily derive that the two invariants of the Poincaré group,

$$P^{2} = P_{\alpha}P^{\alpha} \qquad W^{2} = W_{\alpha}W^{\alpha} \qquad W_{\mu} = -\frac{i}{2}\epsilon_{\mu\nu\rho\sigma}J^{\nu\rho}P^{\sigma}$$
$$P^{2} |m,s\rangle = m^{2} |m,s\rangle \qquad W^{2} |m,s\rangle = -m^{2}s(s+1) |m,s\rangle$$

where W^{μ} is the Pauli–Lubanski vector operator, are no longer invariants of the Super Poincaré group:

$$[Q_{\alpha}, P^2] = 0 \qquad [Q_{\alpha}, W^2] \neq 0$$

Irreducible multiplets will have particles of the same mass but different spin.

Motivation

SUSY AlgebraThe AlgebraSimple Results

Number of Bosons = Number of Fermions

$$Q_{\alpha}|B\rangle = |F\rangle \quad (-1)^{N_F}|B\rangle = |B\rangle$$

 $Q_{\alpha}|F\rangle = |B\rangle \quad (-1)^{N_F}|F\rangle = -|F\rangle$

Multipletos

Superfields

MSSM

LEP Results

LHC Prospects

Beyond MSSM

Conclusions

where $(-1)^{N_F}$ is the fermion number of a given state. Then we obtain

$$Q_{\alpha}(-1)^{N_F} = -(-1)^{N_F} Q_{\alpha}$$

Using this relation we can show that

$$Tr\left[(-1)^{N_F}\left\{Q_{\alpha}, \overline{Q}_{\dot{\alpha}}\right\}\right] = Tr\left[(-1)^{N_F}Q_{\alpha}\overline{Q}_{\dot{\alpha}} + (-1)^{N_F}\overline{Q}_{\dot{\alpha}}Q_{\alpha}\right]$$
$$= Tr\left[-Q_{\alpha}(-1)^{N_F}\overline{Q}_{\dot{\alpha}} + Q_{\alpha}(-1)^{N_F}\overline{Q}_{\dot{\alpha}}\right] = 0$$

But we also have

$$Tr\left[(-1)^{N_F}\left\{Q_{\alpha}, \overline{Q}_{\dot{\alpha}}\right\}\right]$$
$$= Tr\left[(-1)^{N_F} 2\sigma^{\mu}_{\alpha\dot{\alpha}} P_{\mu}\right]$$

Jorge C. Romão

Introduction to SUSY - 8

 $Tr\left[(-1)^{N_F}\right] = \#Bosons - \#Fermions = 0$

If m = 0 then we can choose $P^{\mu} = (E, 0, 0, E)$. In this frame

Summary

Motivation

SUSY Algebra

• The Algebra

• Simple Results

Multipletos

• Superfields

MSSM

LEP Results

LHC Prospects

Beyond MSSM

Conclusions

 $\left\{Q_{\alpha}, \overline{Q}_{\dot{\alpha}}\right\} = M_{\alpha \dot{\alpha}}$ where the matrix M takes the form $M = \begin{pmatrix} 0 & 0 \\ 0 & 4E \end{pmatrix}$ Then $\left\{Q_2, \overline{Q}_2\right\} = 4E$ all others vanish. We have then just **two** states $|\Omega\rangle \; ; \; Q_2 |\Omega\rangle$ If $J_3 | \Omega \rangle = \lambda | \Omega \rangle$ J_3 Eigenvalue State Two states, one fermion one boson separated by $|\Omega\rangle$ one half unit of spin. $Q_2 | \Omega \rangle$

Motivation

SUSY Algebra

MSSM

Content

GaugeLeptons

• Quarks

• Higgs

LEP Results

LHC Prospects

Beyond MSSM

Conclusions

Gauge Fields

We want to have gauge fields for the gauge group $G = SU_c(3) \otimes SU_L(2) \otimes U_Y(1)$. Therefore we will need three vector superfields (or vector supermultiplets) \hat{V}_i with the following components:

$\widehat{V}_1 \equiv (\lambda', W_1^{\mu})$	\rightarrow	$U_Y(1)$		
$\hat{V}_2 \equiv (\lambda^a, W_2^{\mu a})$	\longrightarrow	$SU_L(2)$,	a = 1, 2, 3
$\widehat{V}_3 \equiv (\widetilde{g}^b, W_3^{\mu b})$	\rightarrow	$SU_c(3)$,	$b=1,\ldots,8$

where W_i^{μ} are the gauge fields and λ', λ and \tilde{g} are the $U_Y(1)$ and $SU_L(2)$ gauginos and the gluino, respectively.

Motivation

SUSY Algebra

MSSM

Content

GaugeLeptons

• Quarks

• Higgs

LEP Results

LHC Prospects

Beyond MSSM

Conclusions

Leptons

As each chiral multiplet only describes one helicity state, we will need two chiral multiplets for each charged lepton (We will assume that the neutrinos do not have mass).

Supermultiplet	$SU_c(3) \otimes SU_L(2) \otimes U_Y(1)$
	Quantum Numbers
$\widehat{L}_i \equiv (\widetilde{L}, L)_i$	$(1, 2, -\frac{1}{2})$
$\widehat{R}_i \equiv (\widetilde{\ell}_R, \ell_L^c)_i$	(1, 1, 1)

Each helicity state corresponds to a complex scalar and we have that \hat{L}_i is a doublet of $SU_L(2)$

$$\widetilde{L}_{i} = \begin{pmatrix} \widetilde{\nu}_{Li} \\ \widetilde{\ell}_{Li} \end{pmatrix} \qquad ; \qquad L_{i} = \begin{pmatrix} \nu_{Li} \\ \ell_{Li} \end{pmatrix}$$

Motivation

SUSY Algebra

MSSM

Content

• Gauge

• Leptons

Quarks

• Higgs

LEP Results

LHC Prospects

Beyond MSSM

Conclusions

Quarks

The quark supermultiplets are given in the Table. The supermultiplet \hat{Q}_i is also a doublet of $SU_L(2)$, that is

Supermultiplet	$SU_c(3)\otimes SU_L(2)\otimes U_Y(1)$ Quantum Numbers
$\widehat{Q}_i \equiv (\widetilde{Q}, Q)_i$	$(3, 2, \frac{1}{6})$
$\widehat{D}_i \equiv (\widetilde{d}_R, d_L^c)_i$	$(3,1,rac{1}{3})$
$\widehat{U}_i \equiv (\widetilde{u}_R, u_L^c)_i$	$(3, 1, -\frac{2}{3})$

$$\widetilde{Q}_i = \begin{pmatrix} \widetilde{u}_{Li} \\ \widetilde{d}_{Li} \end{pmatrix} \qquad ; \qquad Q_i = \begin{pmatrix} u_{Li} \\ d_{Li} \end{pmatrix}$$

Motivation

SUSY Algebra

MSSM

- Content
- Gauge
- Leptons
- Quarks
- Higgs
- LEP Results

LHC Prospects

Beyond MSSM

Conclusions

Higgs Bosons

Finally the Higgs sector. In the MSSM we need at least two Higgs doublets. This is in contrast with the SM where only one Higgs doublet is enough to give masses to all the particles. The reason can be explained in two ways. Either the need to cancel the anomalies, or the fact that, due to the analyticity of the superpotential, we have to have two Higgs doublets of opposite hypercharges to give masses to the up and down type of quarks.

Supermultiplet	$SU_c(3)\otimes SU_L(2)\otimes U_Y(1)$
	Quantum Numbers
$\widehat{H}_1 \equiv (H_1, \widetilde{H}_1)$	$(1, 2, -\frac{1}{2})$
$\widehat{H}_2 \equiv (H_2, \widetilde{H}_2)$	$(1, 2, +\frac{1}{2})$

Motivation

MSSM

SUSY Algebra

Superpotential

LEP Results

LHC Prospects

IST

Beyond MSSM

Conclusions

R-Parity

Most discussions of SUSY phenomenology assume R-Parity conservation where,

$$R_P = (-1)^{2J+3B+L}$$

This is the case of the MSSM. It implies:

SUSY particles are pair produced. Every SUSY particle decays into another SUSY particle. There is a LSP that it is stable (E signature).

> But this is just an ad hoc assumption without a deep justification. We will see later what are the consequences of non conservation of R-Parity.

Motivation

SUSY Algebra

MSSM

Superpotential

R-Parity

• Superpotential

• Soft breaking

• CMSSM

LEP Results

LHC Prospects

Beyond MSSM

Conclusions

The MSSM Lagrangian is specified by the R–parity conserving superpotential ${\cal W}$

 $W = \varepsilon_{ab} \left[h_U^{ij} \widehat{Q}_i^a \widehat{U}_j \widehat{H}_2^b + h_D^{ij} \widehat{Q}_i^b \widehat{D}_j \widehat{H}_1^a + h_E^{ij} \widehat{L}_i^b \widehat{R}_j \widehat{H}_1^a - \mu \widehat{H}_1^a \widehat{H}_2^b \right]$

where i, j = 1, 2, 3 are generation indices, a, b = 1, 2 are SU(2) indices, and ε is a completely antisymmetric 2×2 matrix, with $\varepsilon_{12} = 1$. The coupling matrices h_U, h_D and h_E will give rise to the usual Yukawa interactions needed to give masses to the leptons and quarks.

If it were not for the need to break SUSY the number of parameters involved would be less than in the SM.

lî)	IST
-----	-----

SUSY Soft Breaking

The most general SUSY soft breaking is

Summary

Motivation

SUSY Algebra

MSSM

Superpotential

• R-Parity

• Superpotential

Soft breaking

• CMSSM

LEP Results

LHC Prospects

Beyond MSSM

Conclusions

 $-\mathcal{L}_{SB} = M_Q^{ij2} \widetilde{Q}_i^{a*} \widetilde{Q}_j^a + M_U^{ij2} \widetilde{U}_i \widetilde{U}_j^* + M_D^{ij2} \widetilde{D}_i \widetilde{D}_j^* + M_L^{ij2} \widetilde{L}_i^{a*} \widetilde{L}_j^a + M_R^{ij2} \widetilde{R}_i \widetilde{R}_j^*$ $+ m_{H_1}^2 H_1^{a*} H_1^a + m_{H_2}^2 H_2^{a*} H_2^a - \left[\frac{1}{2}M_s \lambda_s \lambda_s + \frac{1}{2}M\lambda\lambda + \frac{1}{2}M'\lambda'\lambda' + h.c.\right]$ $+ \varepsilon_{ab} \left[A_U^{ij} h_U^{ij} \widetilde{Q}_i^a \widetilde{U}_j H_2^b + A_D^{ij} h_D^{ij} \widetilde{Q}_i^b \widetilde{D}_j H_1^a + A_E^{ij} h_E^{ij} \widetilde{L}_i^b \widetilde{R}_j H_1^a - B\mu H_1^a H_2^b\right]$

Parameter Counting

Theory	Gauge Sector	Fermion Sector	Higgs Sector
SM	e, g, α_s	h_U, h_D, h_E	μ^2, λ
MSSM	e, g, α_s	h_U, h_D, h_E	μ
Broken MSSM	e, g, α_s	h_U, h_D, h_E	$\mu, M_1, M_2, M_3, A_U, A_D, A_E, B$
			$m_{H_2}^2, m_{H_1}^2, m_Q^2, m_U^2, m_D^2, m_L^2, m_R^2$

The Constrained MSSM

Summary

Motivation

SUSY Algebra

MSSM

Superpotential

• R-Parity

• Superpotential

• Soft breaking

• CMSSM

LEP Results

LHC Prospects

Beyond MSSM

Conclusions

The number of independent parameters can be reduced if we impose some further constraints. The most popular is the MSSM coupled to N = 1 Supergravity (SUGRA).

$$\begin{aligned} A_t &= A_b = A_\tau \equiv A ,\\ m_{H_1}^2 &= m_{H_2}^2 = M_L^2 = M_R^2 = m_0^2 , \\ M_Q^2 &= M_U^2 = M_D^2 = m_0^2 ,\\ M_3 &= M_2 = M_1 = M_{1/2} \end{aligned}$$

		8
Parameters	Conditions	Free Parameters
h_t , h_b , $h_{ au}$, v_1 , v_2	m_W , m_t , m_b , $m_ au$	$\tan\beta = v_2/v_1$
$A, B, m_0, M_{1/2}, \mu$	$t_i = 0, \ i = 1, 2$	A, m_0 , $M_{1/2}$, $sign(\mu)$
Total = 10	Total = 6	Total = 4+"1"

Parameter Counting

It is remarkable that with so few parameters we can get the correct values for the parameters, in particular $m_{H_2}^2 < 0$. For this to happen the top Yukawa coupling has to be large which we know to be true.

The Chargino Mass Matrices

Summary

Motivation

SUSY Algebra

MSSM

Mass Matrices

● chargino

• Scalar Higgs

• Higgs Mass RC

SleptonsSpectra

LEP Results

LHC Prospects

Beyond MSSM

Conclusions

The charged gauginos mix with the charged higgsinos giving the so-called charginos. In a basis where $\psi^{+T} = (-i\lambda^+, \tilde{H}_2^+)$ and $\psi^{-T} = (-i\lambda^-, \tilde{H}_1^-)$, the chargino mass terms in the Lagrangian are

$$\mathcal{L}_m = -\frac{1}{2}(\psi^{+T}, \psi^{-T}) \begin{pmatrix} \mathbf{0} & \mathbf{M}_C^T \\ \mathbf{M}_C & \mathbf{0} \end{pmatrix} \begin{pmatrix} \psi^+ \\ \psi^- \end{pmatrix} + h.c.$$

where the chargino mass matrix is given by

$$\boldsymbol{M}_{C} = \begin{bmatrix} M_{2} & \frac{1}{\sqrt{2}}gv_{2} \\ \\ \frac{1}{\sqrt{2}}gv_{1} & \mu \end{bmatrix}$$

and M_2 is the SU(2) gaugino soft mass. We can write this as

$$\boldsymbol{M}_{C} = \begin{bmatrix} M_{2} & \sqrt{2}m_{W}\sin\beta \\ \sqrt{2}m_{W}\cos\beta & \mu \end{bmatrix}$$

Neutral Higgs Mass Matrices

Summary

Motivation

SUSY Algebra

MSSM

Mass Matrices

chargino

Scalar Higgs

- Higgs Mass RC
- Sleptons
- Spectra

LEP Results

LHC Prospects

Beyond MSSM

Conclusions

$$\boldsymbol{M}_{S^0}^2 = \begin{pmatrix} \tan\beta & -1 \\ -1 & \cot\beta \end{pmatrix} B\mu + \begin{pmatrix} \cot\beta & -1 \\ -1 & \tan\beta \end{pmatrix} \frac{1}{2}m_Z^2 \sin^2\beta$$

with masses

$$m_{h,H}^2 = \frac{1}{2} \left[m_A^2 + m_Z^2 \mp \sqrt{(m_A^2 + m_Z^2)^2 - 4m_A^2 m_Z^2 \cos 2\beta} \right]$$

$$\boldsymbol{M}_{P^0}^2 = \begin{pmatrix} \tan \beta & -1 \\ -1 & \cot \beta \end{pmatrix} B \mu$$
 with mass $\boldsymbol{M}_A^2 = \frac{B\mu}{\sin 2\beta}$

Sum Rule
$$m_h^2 + m_H^2 = m_A^2 + m_Z^2$$
 $m_h < m_A < m_H$ $m_h < m_Z < m_H$

Motivation

SUSY Algebra

MSSM

Mass Matrices

• chargino

• Scalar Higgs

• Higgs Mass RC

SleptonsSpectra

LEP Results

LHC Prospects

Beyond MSSM

Conclusions

As the top mass is very large there are important radiative corrections to the Higgs boson mass. The most important are:

Introduction to SUSY - 23

Motivation

SUSY Algebra

MSSM

Mass Matrices

• chargino

• Scalar Higgs

• Higgs Mass RC

where

SleptonsSpectra

LEP Results

LHC Prospects

Beyond MSSM

Conclusions

As an example of the sfermion mass matrices we have

$$egin{aligned} M_{oldsymbol{\ell}}^2 &= egin{pmatrix} M_{LL}^2 & M_{LR}^2 \ M_{RL}^2 & M_{RR}^2 \end{pmatrix} \end{aligned}$$

$$6 \times 6 = 4$$
 Blocks 3×3

$$M_{LL}^{2} = \frac{1}{2} v_{1}^{2} h_{E}^{*} h_{E}^{T} + M_{L}^{2} - \frac{1}{2} (2m_{W}^{2} - m_{Z}^{2}) \cos 2\beta$$
$$M_{RR}^{2} = \frac{1}{2} v_{1}^{2} h_{E}^{T} h_{E}^{*} + M_{R}^{2} - (m_{Z}^{2} - m_{W}^{2}) \cos 2\beta$$
$$M_{LR}^{2} = \frac{v_{1}}{\sqrt{2}} A_{E}^{*} - \mu \frac{v_{2}}{\sqrt{2}} h_{E}^{*}$$
$$M_{RL}^{2} = M_{LR}^{2}^{\dagger}$$

🧊 IST

Example of Spectra

Summary	Name	Туре]	Name	Туре	
Motivation	Gauge	VVV		4-Point	VVff	
SUSY Algebra	Self-Interaction	VVVV		Coupling	HHVV	
MSSM	3-Point Gauge	Vff			HGVV	
Couplings	Coupling	$V \tilde{f} \tilde{f}$			GGVV	
 couplings VVV 		$V \tilde{\chi} \tilde{\chi}$			$\tilde{f}\tilde{f}HH$	
• VVV+VVVV		VHH			$\tilde{f}\tilde{f}GH$	
Unification		VGH			<i>ffGG</i>	
I FP Results		VGG			$\tilde{f}\tilde{f}\tilde{f}\tilde{f}$	
LHC Prospects	3-Point Higgs	Hff		Goldstone-Higgs	HHG	
Bevond MSSM	Coupling	$H \widetilde{f} \widetilde{f}$		Interaction	HGG	
Conclusions		$H \tilde{\chi} \tilde{\chi}$			HHHG	
		HVV			HHGG	
	3-Point Goldstone	Gff			HGGG	
	Coupling	$G \tilde{f} \tilde{f}$			GGGG	
		$G ilde{\chi} ilde{\chi}$		Ghost	$\overline{\omega}\omega$ V	
		GVV			$\overline{\omega}\omega$ H	
	Other 3-Point	$ ilde{f}f ilde{\chi}$			$\overline{\omega}\omega$ G	

Motivation

SUSY Algebra

MSSM

Couplings

couplings

• VVV

• VVV+VVVV

• Unification

• New vertices

LEP Results

LHC Prospects

Beyond MSSM

Conclusions

Test of the Triple Vertices

Motivation

```
SUSY Algebra
```

MSSM

- Couplings
- couplings
- VVV
- VVV+VVVV
- Unification
- New vertices
- LEP Results
- LHC Prospects
- Beyond MSSM
- Conclusions

Examples of New Couplings: Conserving R-Parity

Summary

Motivation

SUSY Algebra

MSSM

Couplings

• couplings

• VVV

• VVV+VVVV

• Unification

New vertices

LEP Results

LHC Prospects

Beyond MSSM

Conclusions

Rule: Change any two lines into the superpartners.

Higgs Boson

MSSM

LEP Results

Higgs

• Charginos ...

• Neutralinos

Dark Matter

LHC Prospects

Beyond MSSM

Conclusions

Limits on Neutralinos

Neutralino as Dark Matter

LHC	Ove	rview

The Large Hadron Collider (LHC)

	Beams	Energy	Luminosity
LEP	e+ e-	200 GeV	10 ³² cm ⁻² s ⁻¹
	рр	14 TeV	10 ³⁴
LIIC	Pb Pb	1312 TeV	10 ²⁷

Summary

Motivation

SUSY Algebra

IST

MSSM

LEP Results

LHC Prospects

LHC Overview

- Basic Physics
- H: 2photons
- H: 4Leptons
- SUSY Higgs
- SUSY at LHC
- Sparticles I
- Sparticles II

Beyond MSSM

Conclusions

Basic Physics at LHC

Collisions at LHC

Summary

Motivation

SUSY Algebra

MSSM

LEP Results

LHC Prospects

• LHC Overview

• Basic Physics

• H: 2photons

• H: 4Leptons

• SUSY Higgs

• SUSY at LHC

• Sparticles I

• Sparticles II

Beyond MSSM

Conclusions

Higgs to 2 photons ($M_{H} < 140 \text{ GeV}$)

Motivation

SUSY Algebra

MSSM

LEP Results

LHC Prospects

• LHC Overview

• Basic Physics

• H: 2photons

• H: 4Leptons

• SUSY Higgs

• SUSY at LHC

• Sparticles I

• Sparticles II

Beyond MSSM

Conclusions

 $H^{0} \rightarrow \gamma \gamma$ is the most promising channel if M_{H} is in the range 80 – 140 GeV. The high performance PbWO₄ crystal electromagnetic calorimeter in CMS has been optimized for this search. The $\gamma \gamma$ mass resolution at $M_{\gamma \gamma} \sim 100$ GeV is better than 1%, resulting in a S/B of $\approx 1/20$

Higgs to 4 leptons (140 < M_{H} < 700 GeV)

Summary

Motivation

SUSY Algebra

MSSM

- LEP Results
- LHC Prospects
- LHC Overview
- Basic Physics
- H: 2photons

• H: 4Leptons

- SUSY Higgs
- SUSY at LHC
- Sparticles I
- Sparticles II

Beyond MSSM

Conclusions

In the $M_{\rm H}$ range 130 - 700 GeV the most promising channel is $H^0 \to ZZ^* \to 2\ell^+ 2\ell^-$ or $H^0 \to ZZ \to 2\ell^+ 2\ell^-$. The detection relies on the excellent performance of the muon chambers, the tracker and the electromagnetic calorimeter. For $M_{\rm H} \leq 170$ GeV a mass resolution of ~1 GeV should be achieved with the combination of the 4 Tesla magnetic field and the high resolution of the crystal calorimeter

SUSY Higgs bosons

In the MSSM there are 5 Higgs bosons: h^0 , H^0 , A^0 and H^{\pm} decaying through a variety of decay modes to γ , e^{\pm} , μ^{\pm} , τ^{\pm} and jets in final states. Below left: an example of a SUSY Higgs decay to $\tau \tau$ in CMS. On the right is the reconstructed $\tau \tau$ mass spectrum

Summary

Motivation

SUSY Algebra

MSSM

LEP Results

LHC Prospects

- LHC Overview
- Basic Physics
- H: 2photons
- H: 4Leptons

SUSY Higgs

- SUSY at LHC
- Sparticles I
- Sparticles II

Beyond MSSM

Conclusions

SUSY Higgs: discovery ranges

Summary

Motivation

SUSY Algebra

MSSM

LEP Results

LHC Prospects

- LHC Overview
- Basic Physics
- H: 2photons
- H: 4Leptons
- SUSY Higgs

SUSY at LHC

- Sparticles I
- Sparticles II

Beyond MSSM

Conclusions

🧊 IST

Sparticles at LHC

Summary

Motivation

SUSY Algebra

MSSM

LEP Results

LHC Prospects

- LHC Overview
- Basic Physics
- H: 2photons
- H: 4Leptons
- SUSY Higgs
- SUSY at LHC

• Sparticles I

• Sparticles II

Beyond MSSM

Conclusions

e⁻ $\tilde{\chi}_1^0$ Production of sparticles may reveal itself though some spectacular kinematical spectra, with a

 $\Sigma \widetilde{\chi}_1^0$

a

р

itself though some spectacular kinematical spectra, with a pronounced "edge" in the $\ell^+\ell^-$ mass spectrum reflecting $\chi_2^0 \rightarrow \ell^+\ell^- \chi_1^0$ production and decay. An example of such a spectrum in inclusive $\ell^+\ell^- + E_t^{miss}$ and of a 3 ℓ^{\pm} production event are shown below

Sparticles

3 leptons + 2 Jets signature

Sparticles: discovery ranges

Summary

Motivation

SUSY Algebra

MSSM

LEP Results

LHC Prospects

• LHC Overview

• Basic Physics

• H: 2photons

• H: 4Leptons

• SUSY Higgs

• SUSY at LHC

Sparticles ISparticles II

Beyond MSSM

Conclusions

m₀ GeV

Gluinos and squarks can be searched for in various channels with leptons + E_t^{miss} + jets and discovered for masses up to ~ 2.2 TeV. Sleptons can be discovered for masses up to ~ 350 GeV. The region of parameter space 0.15 < Ω h² < 0.4 where LSP would be the Cold Dark Matter particle is contained well within the explorable region

Sparticles cannot escape discovery at the LHC

Motivation

SUSY Algebra

MSSM

LEP Results

LHC Prospects

Beyond MSSM

The ModelAtm Angle

Solar Angle

Conclusions

Same particle content as the MSSM

The superpotential W is

$$W = \varepsilon_{ab} \left[h_U^{ij} \widehat{Q}_i^a \widehat{U}_j \widehat{H}_u^b + h_D^{ij} \widehat{Q}_i^b \widehat{D}_j \widehat{H}_d^a + h_E^{ij} \widehat{L}_i^b \widehat{R}_j \widehat{H}_d^a \right]$$
$$-\mu \widehat{H}_d^a \widehat{H}_u^b + \epsilon_i \widehat{L}_i^a \widehat{H}_u^b \right]$$

where i, j = 1, 2, 3 are generation indices, a, b = 1, 2 are SU(2) indices. The set of soft supersymmetry breaking terms are

 $V_{soft} = V_{soft}^{\mathsf{MSSM}} + \varepsilon_{ab} \ B_i \epsilon_i \widetilde{L}_i^a H_u^b$

M.A. Diaz, JCR, J.W.F. Valle, Nucl.Phys.B524:23-40,1998

Conclusions

Summary

Motivation

SUSY Algebra

MSSM

LEP Results

LHC Prospects

Beyond MSSM

Conclusions

Although there is not yet direct experimental evidence for supersymmetry (SUSY), there are many theoretical arguments indicating that SUSY might be of relevance for physics below the 1 TeV scale.

We will be waiting for the LHC verdict!

Lots of things to be done by Experimentalists and Theoreticians