Teoria de Campo - Problem Series 1

Curso de Engenharia Física Tecnológica - 2015/2016
 Due on the $7 / 4 / 2017$
 Version of 22/02/2017

1.1 Consider spinors obeying the Dirac equation and take the Dirac representation for the γ matrices.
a) Show that (we define $\hat{p}=\vec{p} /|\vec{p}|$):

$$
\left(1-\frac{\vec{\sigma} \cdot \vec{p}}{E+m}\right)=\left(1-\frac{|\vec{p}|}{E+m}\right) \frac{1+\vec{\sigma} \cdot \hat{p}}{2}+\left(1+\frac{|\vec{p}|}{E+m}\right) \frac{1-\vec{\sigma} \cdot \hat{p}}{2}
$$

b) Consider a fermion field with mass with left chirality, given by

$$
\psi_{L}=\frac{1-\gamma_{5}}{2} \psi
$$

where ψ is a positive energy spinor. Show that we can write

$$
\psi_{L}=N\left[\begin{array}{c}
\left(\alpha_{P} \frac{1+\vec{\sigma} \cdot \hat{p}}{2}+\alpha_{N} \frac{1-\vec{\sigma} \cdot \hat{p}}{2}\right) \chi \\
-\left(\alpha_{P} \frac{1+\vec{\sigma} \cdot \hat{p}}{2}+\alpha_{N} \frac{1-\vec{\sigma} \cdot \hat{p}}{2}\right) \chi
\end{array}\right] e^{-i p \cdot x}
$$

where N is the normalization and χ a two component spinor. Determine α_{P} and α_{N} (modulo the normalization). What is the meaning of these coefficients?
c) We define the polarization of the chiral fermion ψ_{L} as

$$
P=\frac{\left|\alpha_{P}\right|^{2}-\left|\alpha_{N}\right|^{2}}{\left|\alpha_{P}\right|^{2}+\left|\alpha_{N}\right|^{2}}
$$

Show that $P=-|\vec{p}| / E=-\beta$. Discuss the limit when $|\vec{p}| \gg m$. Comment the result.
1.2 Consider finite rotations. Define

$$
\left(\theta^{1}, \theta^{2}, \theta^{3}\right) \equiv\left(\omega^{2}{ }_{3}, \omega^{3}{ }_{1}, \omega^{1}{ }_{2}\right) \quad \text { and } \quad\left(\Sigma^{1}, \Sigma^{2}, \Sigma^{3}\right) \equiv\left(\sigma^{23}, \sigma^{31}, \sigma^{12}\right)
$$

a) Show that

$$
S_{R}=e^{\frac{i}{2} \vec{\theta} \cdot \vec{\Sigma}}
$$

b) For finite rotations show that this can be written as

$$
S_{R}(\vec{\theta})=\cos \frac{\theta}{2}+i \hat{\theta} \cdot \vec{\Sigma} \sin \frac{\theta}{2}
$$

where $\theta=\sqrt{\vec{\theta} \cdot \vec{\theta}}$ and $\hat{\theta}=\frac{\vec{\theta}}{\theta}$.
c) Consider now a rotation around the z axis by a finite angle θ_{0}. Show explicitly that

$$
S_{R}\left(\theta_{0}\right) \gamma^{\mu} S_{R}^{-1}\left(\theta_{0}\right) a^{\nu}{ }_{\mu}=\gamma^{\nu}
$$

1.3 Consider the scattering $1+2 \rightarrow 3+4$ in center of mass frame (CM). Do not neglect the mass but consider $m_{1}=m_{2}, m_{3}=m_{4}$. Consider the quantity

$$
P(h, s)=\frac{1+h \gamma_{5} \phi}{2}
$$

where $h= \pm$ and $s=(\gamma \beta, \gamma \vec{\beta} / \beta)$ is the spin 4 -vector for a particle with velocity $\vec{\beta}$.
a) Show that it satisfies the requirements to be a projector, that is,

$$
P(+, s)+P(-, s)=1, P(+, s) P(-, s)=0, P(\pm, s) P(\pm, s)=P(\pm, s)
$$

b) Use the helicity spinors for particle $1(\theta=0, \phi=0)$ and particle $4(\theta \rightarrow \pi-\theta, \phi=\pi)$, to show explicitly that the quantity

$$
P\left(h_{i}, s_{i}\right)=\frac{1+h_{i} \gamma_{5} \phi_{i}}{2}
$$

where $s_{i}=\left(\gamma_{i} \beta_{i}, \gamma_{i} \vec{\beta}_{i} / \beta_{i}\right)$ and $i=1,4$ for particle 1 and 4 , respectively, is a projector for the helicity of those particles, that is,

$$
\begin{aligned}
& P\left(+, s_{1}\right) u_{\uparrow}\left(p_{1}\right)=u_{\uparrow}\left(p_{1}\right), P\left(-, s_{1}\right) u_{\uparrow}\left(p_{1}\right)=0 \\
& P\left(+, s_{1}\right) u_{\downarrow}\left(p_{1}\right)=0, P\left(-, s_{1}\right) u_{\downarrow}\left(p_{1}\right)=u_{\downarrow}\left(p_{1}\right)
\end{aligned}
$$

and similarly for particle 4.
1.4 Fill in the entries of the multiplication table for the γ matrices as indicated in Table 1. This is a very useful table in actual calculations. To establish the Table we should note that any product of matrices γ can be written in terms of the 16 independent matrices we discussed in class. Also note that our conventions imply:

$$
\begin{aligned}
& \varepsilon^{0123}=+1 \\
& \gamma_{5}=i \gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3}=-i \gamma_{0} \gamma_{1} \gamma_{2} \gamma_{3}, \\
& \varepsilon_{\alpha \beta \gamma \delta_{1}} \varepsilon^{\alpha \beta \gamma \delta_{2}}=-6 g_{\delta_{1}}^{\delta_{2}} .
\end{aligned}
$$

$$
\varepsilon_{\alpha \beta_{1} \gamma_{1} \delta_{1}} \varepsilon^{\alpha \beta_{2} \gamma_{2} \delta_{2}}=-\sum_{P}(-1)^{P} g_{\beta_{1}}^{P\left[\beta_{2}\right.} g_{\gamma_{1}}^{\gamma_{2}} g_{\delta_{1}}^{\left.\delta_{2}\right]}
$$

$$
\varepsilon_{\alpha \beta \gamma_{1} \delta_{1}} \varepsilon^{\alpha \beta \gamma_{2} \delta_{2}}=-2\left(g_{\gamma_{1}}^{\gamma_{2}} g_{\delta_{1}}^{\delta_{2}}-g_{\gamma_{1}}^{\delta_{2}} g_{\delta_{1} \gamma_{2}}^{\gamma_{2}}\right.
$$

	1	γ_{5}	γ^{μ}	$\gamma_{5} \gamma^{\mu}$	$\sigma^{\mu \nu}$
1	1				
γ_{5}					
γ^{α}					
$\gamma_{5} \gamma^{\alpha}$					
$\sigma^{\alpha \beta}$					

Table 1: Multiplication table for γ matrices.
1.5 Starting from the definition

$$
S_{f i}=\lim _{t \rightarrow \varepsilon_{f} \infty} \int d^{3} x \psi_{f}^{\dagger}(x) \Psi_{i}(x)
$$

obtain the central result of Chapter 2, Eq. (2.50),

$$
\begin{equation*}
S_{f i}=\delta_{f i}-i e Q_{e} \varepsilon_{f} \int d^{4} y \bar{\psi}_{f}(y) \not A^{A}(y) \Psi_{i}(y) . \tag{1}
\end{equation*}
$$

where $e>0$ e $Q_{e}=-1$. This proof has some subtleties, therefore we go step by step.
a) First show that (Eq. (2.40))

$$
S_{F}\left(x^{\prime}-x\right)=\theta\left(t^{\prime}-t\right) \int \frac{d^{3} p}{(2 \pi)^{3}} \sum_{r=1}^{2} \psi_{p}^{r}\left(x^{\prime}\right) \bar{\psi}_{p}^{r}(x)-\theta\left(t-t^{\prime}\right) \int \frac{d^{3} p}{(2 \pi)^{3}} \sum_{r=3}^{4} \psi_{p}^{r}\left(x^{\prime}\right) \bar{\psi}_{p}^{r}(x)
$$

where

$$
\psi_{p}^{r}(x)=\frac{1}{\sqrt{2 E}} w^{r}(\vec{p}) e^{-i \varepsilon_{r} p \cdot x}
$$

b) Now derive Eqs. (2.47) and (2.48),

$$
\begin{aligned}
\lim _{t \rightarrow+\infty} \Psi(x)-\psi(x) & =\int \frac{d^{3} p}{(2 \pi)^{3}} \sum_{r=1}^{2} \psi_{p}^{r}(x)\left[-i e Q_{e} \int d^{4} y \bar{\psi}_{p}^{r}(y) A(y) \Psi(y)\right] \\
\lim _{t \rightarrow-\infty} \Psi(x)-\psi(x) & =\int \frac{d^{3} p}{(2 \pi)^{3}} \sum_{r=3}^{4} \psi_{p}^{r}(x)\left[+i e Q_{e} \int d^{4} y \bar{\psi}_{p}^{r}(y) \mathcal{A}(y) \Psi(y)\right]
\end{aligned}
$$

c) Finally use these results to show Eq. (1).

