Homework of Teoria de Campo
 Curso de Física Tecnológica - 2016/2017
 Hand in until 5/6/2017 at 18:00

The problems are in the framework of the Standard Model (SM). The couplings are in the book. The masses and widths can be found in the Particle Data Group (PDG) at http://pdg.lbl.gov/.

I

Consider the process

$$
e^{-}\left(p_{1}\right)+e^{+}\left(p_{2}\right) \rightarrow Z\left(p_{3}\right)+Z\left(p_{4}\right)
$$

In this question do not neglect the electron mass.
a) Use the program qgraf to find the diagrams that contribute at tree level and write the amplitudes for each of the diagrams.
b) Consider that the Z bosons are longitudinally polarized, that is, in the frame where the Z moves with velocity $\vec{\beta}$, the longitudinal polarization vector can be written as

$$
\varepsilon_{L}^{\mu}(k)=(\gamma \beta, \gamma \hat{\beta})
$$

Show that this definition satisfies the required properties $\varepsilon_{L}(k) \cdot \varepsilon_{L}(k)=-1 \mathrm{e} \varepsilon_{L}(k) \cdot k=0$, where $\vec{\beta}=\vec{k} / E, \gamma^{-1}=\sqrt{1-\beta^{2}}$ and $\hat{\beta}=\vec{\beta} / \beta$.
c) At high energy, $\sqrt{s} \gg M_{Z}$, unitarity tells us that the total amplitude cannot grow with the energy. However, at high energy we have

$$
\bar{v}\left(p_{2}\right) u\left(p_{1}\right) \propto \sqrt{s}, \quad p_{i} \propto \sqrt{s}, \quad \varepsilon_{L}^{\mu}\left(p_{i}\right) \propto \frac{\sqrt{s}}{M_{Z}}
$$

Using these relations show that at high energy we have, for any of the amplitudes, \mathcal{M}_{i},

$$
\mathcal{M}_{i} \propto s, \text { or } \propto m_{e} \sqrt{s}
$$

d) By making an appropriate expansion in powers of $1 / x$, where $x=s / 4 M_{Z}^{2}$, show explicitly that the bad behavior cancels, for any scattering angle, when we add all the amplitudes. Note that you have to make a consistent expansion in $1 / x$ including all the terms, for instance,

$$
\begin{aligned}
s & =4 M_{Z}^{2} x, \\
t & =M_{Z}^{2}+m_{e}^{2}-2 M_{Z}^{2} x\left(1-\sqrt{1-\frac{1}{x}} \sqrt{1-\frac{m_{e}^{2}}{M_{Z}^{2}} \frac{1}{x}} \cos \theta\right) \\
u & =M_{Z}^{2}+m_{e}^{2}-2 M_{Z}^{2} x\left(1+\sqrt{1-\frac{1}{x}} \sqrt{1-\frac{m_{e}^{2}}{M_{Z}^{2}} \frac{1}{x}} \cos \theta\right) \\
\beta_{Z} & =\sqrt{1-\frac{1}{x}}, \quad \beta_{e}=\sqrt{1-\frac{m_{e}^{2}}{M_{Z}^{2}} \frac{1}{x}}
\end{aligned}
$$

Consider again the process

$$
e^{-}\left(p_{1}\right)+e^{+}\left(p_{2}\right) \rightarrow Z\left(p_{3}\right)+Z\left(p_{4}\right)
$$

In this question neglect the electron mass.
a) Using the method of your choice determine $\left.\left.\langle | \mathcal{M}\right|^{2}\right\rangle$ and the differential cross section in the CM frame, $d \sigma / d \Omega$.
b) Make a plot of the total cross section, $\sigma\left(e^{-} e^{+} \rightarrow Z Z\right)$, in $p b$ for $\sqrt{s} \in[182.5,2000] \mathrm{GeV}$.
c) Use the program CalcHEP to evaluate the same process and superimpose the points obtained with CalcHEP on your previous plot. Make sure that you use the same constants in both cases.
d) In one plot compare the total cross section with the t-channel, u-channel and interference in the smaller interval $\sqrt{s} \in[182.5,300] \mathrm{GeV}$. Use linear scales.
e) In the same plot compare your results for the total cross section with those of CalcHEP in the same smaller interval $\sqrt{s} \in[182.5,300] \mathrm{GeV}$. Use linear scales.

NOTES

1. In the web page http://porthos.ist.utl.pt/CTQFT/ you can find useful examples.
2. On any of the questions you can use all the available software, on the condition that you present the codes used.
