Teoria do Campo - Problem Series 2

Curso de Engenharia Física Tecnológica - 2015/2016

Due on the 20/5/2016
Version of 30/03/2016
2.1 Show that for the decay, $P \rightarrow q_{1}+q_{2}$, the expression for the total width can be written, in the rest frame of the decaying particle, as

$$
\left.\frac{d \Gamma}{d \Omega}=\left.\frac{1}{32 \pi^{2}} \frac{\left|\vec{q}_{1 \mathrm{~cm}}\right|}{M^{2}}\langle | \mathcal{M}_{f i}\right|^{2}\right\rangle
$$

where $P^{2}=M^{2}$.
2.2 Evaluate the traces necessary for Compton scattering (Eqs. (5.11), (5.12) e (5.13))

$$
\begin{gathered}
\sum_{s, s^{\prime}}\left|\mathcal{M}_{1}\right|^{2}=\operatorname{Tr}\left[\left(\not p^{\prime}+m\right) \Gamma_{1}(\not p+m) \bar{\Gamma}_{1}\right] \\
\sum_{s, s^{\prime}}\left|\mathcal{M}_{2}\right|^{2}=\operatorname{Tr}\left[\left(\not p^{\prime}+m\right) \Gamma_{2}(p p+m) \bar{\Gamma}_{2}\right] \\
\sum_{s, s^{\prime}}\left(\mathcal{M}_{1} \mathcal{M}_{2}^{\dagger}+\mathcal{M}_{1}^{\dagger} \mathcal{M}_{2}\right)=\operatorname{Tr}\left[\left(\not p^{\prime}+m\right) \Gamma_{1}(\not p+m) \bar{\Gamma}_{2}\right]+\operatorname{Tr}\left[\left(\not p^{\prime}+m\right) \Gamma_{2}(\not p+m) \bar{\Gamma}_{1}\right]
\end{gathered}
$$

and show that the final result, Eq. (5.52), can be written as

$$
\frac{1}{4} \sum_{s, s^{\prime}} \sum_{\lambda, \lambda^{\prime}}\left\{\left|\mathcal{M}_{1}\right|^{2}+\left|\mathcal{M}_{2}\right|^{2}+\mathcal{M}_{1} \mathcal{M}_{2}^{\dagger}+\mathcal{M}_{1}^{\dagger} \mathcal{M}_{2}\right\}=2 e^{4}\left[\left(\frac{k}{k^{\prime}}\right)+\left(\frac{k^{\prime}}{k}\right)-\sin ^{2} \theta\right]
$$

Note: These are complicated traces. You should learn how to use FeynCalc to evaluate these traces.
2.3 Consider the process $e^{-}\left(p_{1}\right)+e^{+}\left(p_{2}\right) \rightarrow \mu^{-}\left(p_{3}\right)+\mu^{+}\left(p_{4}\right)$ in the SM.
a) Evaluate the differential cross section in the CM frame, as a function of the center of mass energy, \sqrt{s}, and scattering angle θ defined as the angle between the incoming electron and outgoing muon. Neglect the fermion masses.
b) Make a plot of the total cross section as a function of \sqrt{s}, for $10 \mathrm{GeV}<\sqrt{s}<200$ GeV .
c) Use CalcHEP to evaluate this same process. Superimpose the points from CalcHEP on your plot. Note: You should check that the physical constants are the same in both cases.
2.4 Consider in the SM of electroweak interactions the following processes:
i) $e^{-} e^{+} \rightarrow \nu_{e} \bar{\nu}_{e}$
ii) $e^{-} e^{+} \rightarrow \nu_{\mu} \bar{\nu}_{\mu}$
iii) $e^{-} e^{+} \rightarrow e^{-} e^{+} \gamma$
iv) $e^{-} e^{+} \rightarrow W^{-} W^{+}$
a) Use the program QGRAF to find the diagrams that contribute in lowest order.
b) Draw the diagrams and indicate the relative signs among the diagrams. Do not do any calculations.
2.5 Consider the process $e^{-}+e^{+} \rightarrow \mu^{-}+\mu^{+}$in QED. In class we have discussed the helicity amplitudes in the case of massless fermions. Now do not neglect the masses.
a) Show that

$$
\mathcal{M}(\uparrow, \downarrow ; \uparrow, \downarrow)=-e^{2}(1+\cos \theta)
$$

as in the massless case.
b) Show that

$$
\mathcal{M}(\uparrow, \downarrow ; \uparrow, \uparrow)=-2 e^{2} \frac{m_{\mu} \sin \theta}{\sqrt{s}}, \quad \mathcal{M}(\uparrow, \uparrow ; \downarrow, \downarrow)=4 e^{2} \frac{m_{e} m_{\mu} \cos \theta}{s}
$$

c) Consider the helicity projectors

$$
P(h)=\frac{1+h \gamma_{5} \phi}{2}
$$

where $h= \pm$ for \uparrow, \downarrow, respectively, and the spin vector along the direction of motion of the particle is

$$
s^{\mu}=\left(\gamma \beta, \gamma \frac{\vec{\beta}}{\beta}\right)
$$

Verify that they are projectors, and that we have, for instance,

$$
P(+) u_{\uparrow}(p)=u_{\uparrow}(p), \quad P(-) u_{\uparrow}(p)=0
$$

d) Use the helicity projectors and the trace technique to obtain $|\mathcal{M}(\uparrow, \downarrow ; \uparrow, \uparrow)|^{2}$ and $|\mathcal{M}(\uparrow, \uparrow ; \downarrow, \downarrow)|^{2}$ and check that they are consistent. Note: the traces are long, use FeynCalc.

