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1.1 Suppose that for a particle at rest the polarization vector is

a)

st =(0,7) com qj-i=1

Show that in the reference frame where the particle moves with velocity E the
polarization vector is given by
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Show that it satisfies s> = —1 and s -p = 0 with p = m(, 75)

Show that the longitudinal polarization vector, that is, 57, || 5, is given by,
s, = (76,76/6) (1)

Show that

1
st = %ﬂ(p, MY vsu(p, N)

where u(p,\) is a spinor with mass m and polarization A, is a good polarization
vector, that is, s2 = —1 and s - p = 0.

Hint: For the difficult part (s> = —1) consider the helicity basis, that is, take the
helicity spinor u(p, h) with helicity h moving in an arbitrary direction as we have
seen in class.

1.2 For the scattering 14+ 2 — 3 + 4 we can define in center of mass frame (CM),

Powi = (v5,0) = p1 +p2 = p3 + s

where /s is the total energy in the CM. Show that,

P = STy, s hmy
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‘pl‘CM = 2—\/57 ‘p3‘CM = 2\/5

where

Mz, y,2) = \/(x2 —y? — 22)2 — 4y?2?

Note: This a very important problem as we will be using these results quite often.
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1.3 Consider the scattering 1+ 2 — 3 + 4 in center of mass frame (CM). Do not neglect
the mass but consider m; = msy, m3 = my4. Consider the quantity

P(h,s) 5

where h = &+, s = (76,75/6) for a particle with velocity 3 (see Eq. (1))

a) Show that it satisfies the requirements to be a projector, that is,

P(+,s)+ P(—,s) =1,P(+,s)P(—,s) =0, P(x,s)P(%,s) = P(+, s)

b) Use the helicity spinors for particle 1 (§# = 0,¢ = 0) and particle 3 (0,¢ = 0), to
show explicitly that the quantity

P(h,l, Si) = %’m

where s; = (v:/i, ~:Bi /Bi) and i = 1,3 for particle 1 and 3, respectively, is a projector
for the helicity of those particles, that is,

P(+, s1)ur(p1) = up(p1), P(—, s1)up(p1) =0
P(+,s1)uy(p1) = 0, P(—, s1)uy(p1) = uy(p1)

and similarly for particle 3.

1.4 Fill in the entries of the multiplication table for the v matrices as indicated in Table
1. This is a very useful table in actual calculations. To establish the Table we should note
that any product of matrices v can be written in terms of the 16 independent matrices
we discussed in class. Also note that our conventions imply:
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Table 1: Multiplication table for v matrices.



1.5 Starting from the definition

Sy = lim [ dx @Z)}(x)llfl(:p)
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obtain the central result of Chapter 2, Eq. (2.50),

Sy = 8y~ ieQuzy [ 'y T,) A W), )
where e > 0 e (). = —1. This proof has some subtleties, therefore we go step by step.

a) First show that (Eq. (2.40))

Sp(a’ —x) = 0(t' — 1) d_pg Sy (x) — 6t — t') @y 2> () (x)
(2m) = (2)

where
1
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b) Now derive Egs. (2.47) and (2.48),

Jim W(a) — () = / gjﬁ; iw;(x) {—ieQe / d'y @;(y)éi(y)‘l’(y)}
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c) Finally use these results to show Eq. (2).



