INSTITUTO SUPERIOR TÉCNICO

Exame de Teoria do Campo

Curso de Física Tecnológica - 2009/2010 (17/7/2010)

I (4 valores)

- a) Considere a colisão $K^+ + p \to X + p$, no referencial do laboratório, onde o protão está em repouso. Sabendo que o momento do K^+ inicial é 200 GeV/c e que o momento do protão final, na mesma direcão que o K^+ inicial, é 50 GeV/c, determine a massa da partícula X. Dados: $m_{K^+} = 493$ MeV, $m_p = 938$ MeV.
- b) Verifique que o spinor (escrito na representação de Dirac),

$$u(p) = N \begin{bmatrix} p_z + |\vec{p}| \\ p_+ \\ (p_z + |\vec{p}|) \frac{|\vec{p}|}{E + m} \end{bmatrix}, \quad \text{com} \quad N = \sqrt{\frac{E + m}{2|\vec{p}|}} \frac{1}{\sqrt{|\vec{p}| + p_z}}$$
$$p_+ \frac{|\vec{p}|}{E + m}$$

onde $p_+ = p_x + ip_y$, satisfaz a equação de Dirac para spinores de energia positiva, $(\not p - m)u(p) = 0$, é um estado próprio do operador helicidade $\Sigma \cdot \vec{p}/|\vec{p}|$ com valor próprio +1 e está correctamente normalizado, isto é, $\overline{u}(p)u(p) = 2m$.

Os problemas II, III, IV e V situam-se no quadro do Modelo Standard. Os vértices relevantes para os problemas estão no final do enunciado.

Desenhe o(s) diagrama(s) de Feynman para os seguintes processos:

a)
$$e^- + e^+ \rightarrow \nu_e + \overline{\nu}_e$$
 b) $W^- \rightarrow e^- + \nu_e + \gamma$ c) $H \rightarrow t + \overline{b} + W^-$

Não é para calcular nada, só desenhar os diagramas.

Considere o decaimento do bosão de Higgs, $H \to W^- + W^+$ neste modelo.

- a) Escreva a amplitude invariante para o processo.
- b) Qual a velocidade do bosão W^+ no referencial em que o Higgs está em repouso?
- c) Calcule a expressão da largura de decaimento $\Gamma(H\to W^-+W^+)$ em função dos parâmetros do modelo.
- d) Sabendo que o vector de polarização longitudinal do bosão W, no referencial em que ele se move com velocidade $\vec{\beta}$ é dado por $\varepsilon_L^{\mu} = (\gamma \beta, \gamma \vec{\beta}/\beta)$, mostre que a fracção dos decaimentos em que os dois W estão polarizados longitudinalmente é,

$$F_L(x) = \frac{4 + x^2(x^2 - 4)}{12 + x^2(x^2 - 4)}$$

onde $x = M_H/M_W$. Como interpreta o valor $F_L(2) = 1/3$? Consegue explicar a razão porque $F_L(x) \to 1$ quando $x \gg 1$?

Considere o processo $Z(p) \to e^-(q_1) + e^+(q_2) + \gamma(k)$ no quadro do modelo acima descrito.

- a) Escreva a amplitude para o processo.
- b) Mostre que a amplitude é invariante de gauge, isto é, se $\mathcal{M} \equiv \epsilon^{\mu}(k) \mathcal{M}_{\mu}$ onde k é o 4-momento do fotão, então temos $k^{\mu}\mathcal{M}_{\mu} = 0$.

$$V$$
 (4.5 valores)

Considere o processo $\nu_{\mu}+e^{-}\rightarrow e^{-}+\nu_{\mu}$ no quadro do Modelo Padrão das interações electrofracas.

- a) Considere que todas as energias são muito inferiores à massa do Z. Escreva a expressão para a amplitude nessa aproximação.
- b) Calcule a secção eficaz diferencial $d\sigma/d\Omega$ no referencial do centro de momento (CM), no limite em que se desprezam todas as massas dos fermiões (mas sendo ainda válida a aproximação da alínea anterior). Os ângulos em $d\Omega$ são os que faz no CM a direcção do e^- difundido com a direcção do ν_{μ} incidente.
- c) Calcule a secção eficaz total σ no CM. Exprima o resultado em picobarn para $\sqrt{s}=5~{\rm GeV}.$

Dados

- $M_W = 80.4 \text{ GeV}, M_Z = 91.2 \text{ GeV}, G_F = 1.166 \times 10^{-5} \text{ GeV}^{-2}, g^2 = 8G_F M_W^2 / \sqrt{2}$.
- $\hbar = c = 1$ implica, $1 = 3 \times 10^8 \text{m s}^{-1}$, 1 = 197.327 Mev fermi, 1fermi = 10^{-15} m.
- 1 barn = 10^{-24} cm².
- $\varepsilon^{0123} = +1$, $\gamma_5 = i \gamma^0 \gamma^1 \gamma^2 \gamma^3$.
- No referencial do CM temos:

$$\frac{d\Gamma}{d\Omega} = \frac{1}{32\pi^2} \frac{|\vec{p}_{\rm CM}|}{m^2} |\overline{M}|^2, \qquad \frac{d\sigma}{d\Omega} = \frac{1}{64\pi^2 s} \frac{|\vec{p}_{\rm 3CM}|}{|\vec{p}_{\rm 1CM}|} |\overline{M}|^2$$

respectivamente para uma partícula de massa m que decai, e para um processo $p_1+p_2 \rightarrow p_3+p_4$.

Vértices