Teoria do Campo - Série 1

Curso de Engenharia Física Tecnológica – 2008/2009 Versão de 13/02/2009

- **1.1** Um feixe de electrões com energia $E_e = 50 \text{ GeV}$, colide frontalmente com um feixe dum laser com energia $E_{\gamma} = 1 \text{ eV}$. Qual é a energia dos fotões que são difundidos para trás, isto é, na direcção do feixe de electrões?
- **1.2** Livro 1.3
- 1.3 Considere o tensor do campo electromagnético $F_{\mu\nu} = \partial_{\mu}A_{\nu} \partial_{\nu}A_{\mu}$. A partir deste tensor define-se o chamado tensor dual

$$\mathcal{F}^{\mu\nu} = \frac{1}{2} \, \epsilon^{\mu\nu\rho\sigma} \, F_{\rho\sigma} \ .$$

O lagrangeano para a interacção do campo electromagnético com uma corrente carregada J^{μ} é dado por (no sistema com $\hbar = c = 1$)

$$\mathcal{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} - J^{\mu} A_{\mu}$$

1. Mostre que as equações de movimento são

$$\partial_{\mu}F^{\mu\nu} = J^{\nu}$$

e que estas reproduzem as leis de Gauss e Ampère (incluindo a corrente de deslocamento introduzida por Maxwell).

2. Mostre que se tem

$$\partial_{\mu}\mathcal{F}^{\mu\nu}=0$$

Verifique que esta equação contém as chamadas equações de Maxwell homogéneas, isto é, $\nabla \cdot \vec{B} = 0$, e $\nabla \times \vec{E} = -\partial \vec{B}/\partial t$. Verifique que aquela relação é equivalente à forma mais ususal (identidade de Bianchi)

$$\partial_{\mu}F_{\nu\rho} + \partial_{\nu}F_{\rho\mu} + \partial_{\rho}F_{\mu\nu} = 0$$

- 3. Exprima os invariantes $F_{\mu\nu}F^{\mu\nu}$, $F_{\mu\nu}\mathcal{F}^{\mu\nu}$ e $\mathcal{F}_{\mu\nu}\mathcal{F}^{\mu\nu}$ em termos dos campos \vec{E} e \vec{B} .
- 4. Mostre que se \vec{E} e \vec{B} são perpendiculares num dado referencial, então são perpendiculares em todos os referenciais de inércia.
- 5. Considere um referencial S onde se tem $\vec{E} \neq 0$ e $\vec{B} = 0$. será posível encontrar um referencial S' onde $\vec{E} = 0$ e $\vec{B} \neq 0$? Justifique.
- **1.4** Livro 1.11
- **1.5** Livro 1.14
- **1.6** Livro 1.21