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We list the basic principles of QM:

❐ For a given state of the system there is state function |Φ〉 that contains all the
possible information about the system

◆ In many cases we deal with the representation of |Φ〉 in terms of the
coordinates and time, the so-called wave function Ψ(qi, si, t).

◆ |Ψ(qi, si, t)|2 ≥ 0 has an interpretation in terms of the probability density
for finding the particle in a given state with coordinates qi, internal
quantum numbers si at time t

❐ The physical observables are represented by hermitian operators

pi → −ih̄ ∂

∂qi
, E → ih̄

∂

∂t

❐ The state |Φn〉 is an eigenstate of the operator Ω if

Ω |Φn〉 = ωn |Φn〉

where |Φn〉 is the eigenstate that corresponds to the eigenvalue ωn. If Ω is
hermitian then the ωn are real.
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❐ For a complete set of operators that commute among themselves,
{Ω1,Ω2, . . .}, there exist a complete set of simultaneous eigenfunctions Ψn.
An arbitrary state (or wave function) can be expanded in this basis as

Ψ =
∑

n

anΨn

❐ The result of a measurement of the observable Ω is any of its eigenvalues ωn

with probability |an|2. The average value of an observable is

< Ω >Ψ=
∑

s

∫

dq1...Ψ
∗(qi, si, t)ΩΨ(qi, si, t) =

∑

n

|an|2ωn

❐ The time evolution of the system is given by

ih̄
∂Ψ

∂t
= HΨ (The Hamiltonian H is a linear and hermitian operator)

❐ The linearity implies the superposition principle and the hermiticity leads to the
conservation of probability,

d

dt

∑

s

∫

dq1 · · ·Ψ∗Ψ =
i

h̄

∑

s

∫

dq1 · · · [(HΨ)∗Ψ−Ψ∗(HΨ)] = 0
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❐ Schrödinger equation in 3 dimensions

ih̄
∂Ψ(~r, t)

∂t
=

[

− h̄2

2m
∇2 + V (~r)

]

Ψ(~r, t),

∫

d3r|Ψ|2 = 1

❐ Spherical symmetry

∇2 =
∂2

∂r2
+

2

r

∂

∂r
− L2

h̄2r2

where ~L = ~r × ~p is the angular momentum operator.

❐ The eigenfunctions of the operator L2 are the spherical harmonics

L2Ylm(θ, φ) =h̄2 l(l + 1)Ylm(θ, φ)

LzYlm(θ, φ) =h̄mYlm(θ, φ) .

The spherical harmonics are simultaneous eigenfunctions of the operators Lz

and L2, as these commute.
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❐ For the case of spherical symmetry V (~r) = V (r), the Schrödinger equation can
be separated in the three variables r, θ and φ,

ψ(r, θ, φ) = R(r) Ylm(θ, φ)

where the radial function satisfies

− h̄2

2m

(

d2R

dr2
+

2

r

dR

dr

)

+

[

V (r) +
h̄2

2m

l(l + 1)

r2

]

R = ER

❐ It is sometimes convenient to write R(r) = u(r)/r. The the function u(r)
satisfies

− h̄2

2m

d2u

dr2
+

[

V (r) +
h̄2

2m

l(l + 1)

r2

]

u = Eu

that is a one dimensional equation for a potential that includes the centrifugal
barrier.
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The spherical harmonics are the product of the solutions for the equations for θ
and φ

d

dθ
(sin θ

dΘ

dθ
) + ℓ(ℓ+ 1) sinΘ− m2

ℓ

sin θ
Θ = 0 .

1

Φ

d2Φ

dϕ2
= −m2

ℓ ,

conveniently normalized,

Yℓmℓ
(θ, ϕ) ≡ Nℓmℓ

Pmℓ

ℓ (θ)eimℓϕ

Nℓmℓ
= (−1)m

[

2 ℓ+ 1

4π

(ℓ−mℓ)!

(ℓ+mℓ)!

]1/2

,

where Pmℓ

ℓ (θ) are the associated Legendre polynomials and the normalization is
conventional
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❐ In our simplified study we consider the proton fixed with the electron orbiting
around

❐ The potential energy of the electron in the field of the proton is

V (r) = − 1

4πε0

e2

r

where r is the distance between the proton and electron.

❐ As we are dealing with a potential with spherical symmetry (central potential)
the solutions are of the general form,

ψn,l,m(r, θ, φ) = Rnl(r) Ylm(θ, φ)

where the radial equation is

1

r2
d

dr
(r2

dR

dr
)− 2m

h̄2

[

V (r) +
ℓ(ℓ+ 1)h̄2

2mr2

]

R+
2mE

h̄2
R = 0 .

❐ The spherical harmonics are the eigenfunctions of L2 and Lz. θ e φ
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❐ The only solutions that satisfy the proper boundary conditions in φ are those
for which ml is an integer,

ml = 0,±1,±2, . . .

❐ The only solutions finite everywhere (for all the θ′s) are those where,

ℓ = 0, 1, 2 . . . , ℓ ≥ |mℓ|

❐ When we solve the radial equation for R(r) the only solutions finite everywhere
(0 ≤ r ≤ ∞) are those for which

En = −1

2

(

e2

4πε0

)2
m2

h̄2
1

n2
; n = 1, 2, 3, ... ℓ < n

❐ The restrictions for mℓ and ℓ can be written as,

mℓ = 0,±1,±2, ...,±ℓ e ℓ = 0, 1, 2, ..., n− 1 .
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❐ The most important fact about these results is that the energy of the atom is
quantized. This originates from physical requirements on the wave function.

❐ The second fact is that the expression for the energy is exactly the one found
in the Bohr atom. The energy depends on the integer n, the principal
quantum number.

❐ As for each value of n there are several values of ℓ and mℓ, it is possible for
the electron to have different characteristics and have the same energy
(degenerate states).

Degree of degenerescency =

n−1
∑

ℓ=0

+ℓ
∑

mℓ=−ℓ

1 =

n−1
∑

ℓ=0

(2ℓ+ 1) = n2 .

.
❐ The physical observable that distinguishes among these states is the angular

momentum. One can show that the square of the angular momentum, L2,

L2 ≡ L2
x + L2

y + L2
z , [L2, Lz] = 0, [L2, H] = 0, [Lz, H] = 0

and Lz, commute simultaneously with the Hamiltonian

❐ Therefore the eigenfunctions ψnℓmℓ
should be simultaneous eigenfunctions of

H,L2 and Lz.
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❐ To solve the contradictions in the observed spectra for hydrogen atom in a
magnetic field, the so-called Zeeman effect, G. Uhlenbeck and S. Goudsmit
proposed that the electron had an intrinsic angular momentum called spin, ~S.

❐ This word in QM just means this property, the electron is not really spinning.

❐ More precisely, in Quantum Mechanics, ~S is an hermitian operator that obeys
the angular momentum algebra,

[Sx, Sy] = ih̄Sz, [Sy, Sz] = ih̄Sx, [Sz, Sx] = ih̄Sy

❐ The eigenvalues are

S2 = ~S · ~S = s(s+ 1)h̄2 com s = 1
2

Sz = msh̄ ; ms = ± 1
2

That is, it takes half-integers values.
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❐ Associated to the spin ~S there exists a magnetic moment ~µs given by,

~µs = −|e|
m
~S.

❐ Sometimes we write in an equivalent form

~µs = − |e|
2m

g ~S ; g = 2

where g is the so-called gyro-magnetic ratio. The value g = 2 for the electron
was determined experimentally to explain the spectra of the atoms.

❐ At the level of the Schrödinger equation the spin is an additional quantum
number and the factor g experimentally determined. The spin only appears
naturally in the context of the relativistic equation of Dirac, that predicts the
value g = 2 for the electron.

❐ The state of the electron is then specified by the quantum numbers n, ℓ,mℓ e
ms (has s = 1/2 always). Note that [~L, ~S] = 0 as ~L and ~S act on different
spaces. This explains why it is possible to have simultaneous eigenfunctions of
~L and ~S.
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❐ We saw that the state of the electron can be described by two angular
momenta, ~L (orbital angular momentum) and ~S (spin).

❐ In many applications it is important to define the so-called total angular

momentum,

~J ≡ ~L+ ~S .

❐ ~J is an angular momentum has it obeys the usual algebra

[Jx, Jy] = ih̄Jz [Jy, Jz] = ih̄Jx [Jz, Jx] = ih̄Jy ,

❐ What are the possible values for ~J? It is outside this introduction to explain all
the details.

❐ The results are however simple and are important in the applications. We will
present them in the form of theorems without demonstration.
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❐ Theorem 1

Let ~J be an operator with the angular momentum algebra. Then the
eigenvalues of J2 = ~J · ~J and Jz are

J2 = j(j + 1)h̄2, Jz = mj h̄

where j is an integer or half-integer and mj takes the (2 j + 1) values

mj = −j,−j + 1, ..., j − 1, j .

❐ Particular cases for this theorem are the cases where ~J = ~L where j = ℓ =
integer and ~J = ~S where j = s = 1

2 = half-integer.

❐ Theorem 2

Let ~J = ~J1 + ~J2 be the angular momenta corresponding to the sum of two
angular momenta with values j1 e j2. Then the value j that corresponds to ~J
can take the values

|j1 − j2| ≤ j ≤ j1 + j2 .
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❐ Theorem 3

Let ~J = ~J1 + ~J2. Then the number of possible values for mj obeys the relation

j1+j2
∑

|j1−j2|

(2 j + 1) = (2 j1 + 1) (2 j2 + 1) .

❐ Example: Table for the possible values of j and mj for an electron (s = 1/2)
with orbital angular momentum ℓ = 0, 1 and 2.

ℓ j mj

0 1
2 − 1

2 ,
1
2

1
2 − 1

2 ,
1
2

1
3
2 − 3

2 ,− 1
2

1
2 ,

3
2

3
2 − 3

2 ,− 1
2

1
2 ,

3
2

2
5
2 − 5

2 ,− 3
2 − 1

2 ,
1
2 ,

3
2 ,

5
2
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❐ A state |J,M〉 where ~J = ~J1 + ~J2 can be expressed in terms of the eigenstates

of ~J1 and ~J2, denoted by |j1,m1〉 and |j2,m2〉, respectively.
❐ This relation is normally written in the form,

|J,M〉 =
m1=j1
∑

m1=−j1

m2=j2
∑

m2=−j2

|j1,m1〉 ⊗ |j2,m2〉 〈j1j2,m1m2|J,M〉

where m1 +m2 =M and 〈j1j2,m1m2|JM〉 are the Clebsh-Gordon
coefficients.

❐ Their value can be obtained from the rules of the angular momentum operator,
but normally we use tables to read the coefficients.

❐ Normally to obtain the coefficients one has to take the square root, with the
convention that the minus sign is outside the square root. We will give one
example.
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1× 1/2 = 3/2 + 1/2

|3/2, 3/2〉

|3/2, 1/2〉 |1/2, 1/2〉 Orthogonal

|3/2,−1/2〉 |1/2,−1/2〉 Orthogonal

|3/2,−3/2〉

J = 3/2

J = 1/2
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❐ We have (2× 1 + 1)× 2 = (2× 3/2 + 1) + (2× 1/2 + 1) = 6 states.

❐ We get

|3/2, 3/2〉 = |1, 1〉 |1/2, 1/2〉

|3/2, 1/2〉 =
√

1/3 |1, 1〉 |1/2,−1/2〉+
√

2/3 |1, 0〉 |1/2, 1/2〉

|1/2, 1/2〉 =
√

2/3 |1, 1〉 |1/2,−1/2〉 −
√

1/3 |1, 0〉 |1/2, 1/2〉

|3/2,−1/2〉 =
√

2/3 |1, 0〉 |1/2,−1/2〉+
√

1/3 |1,−1〉 |1/2, 1/2〉

|1/2,−1/2〉 =
√

1/3 |1, 0〉 |1/2,−1/2〉 −
√

2/3 |1,−1〉 |1/2, 1/2〉

|3/2,−3/2〉 = |1,−1〉 |1/2,−1/2〉
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❐ In Particle Physics we are normally interested in decay rates and scattering
cross sections. In NRQM we calculate the transition rates using the Fermi’s
golden rule. We will sketch below its derivation.

❐ Let |φk〉 be normalized solutions of the SE for the unperturbed Hamiltonian
H0,

H0 |φk〉 = Ek |φk〉 , 〈φj |φk〉 = δjk

❐ Now consider the time dependent perturbation H ′(~x, t) that can induce
transitions. The SE becomes

ih̄
∂

∂t
|ψ〉 = [H0 +H ′] |ψ〉

❐ |ψ〉 can be expressed in the complete set of unperturbed states

|ψ(~x, t)〉 =
∑

k

ck(t) |φk〉 e−
i
h̄
Ekt

❐ Substituting we have,

ih̄
∑

k

[

dck
dt

|φk〉 e−
i
h̄
Ekt− i

h̄
Ekck |φk〉 e−

i
h̄
Ekt

]

=
∑

k

[ckH0 |φk〉+H ′ck |φk〉] e−
i
h̄
Ekt
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❐ This gives a differential equation for the coefficients ck

ih̄
∑

k

dck
dt

|φk〉 e−
i
h̄
Ekt =

∑

k

H ′ck |φk〉 e−
i
h̄
Ekt

❐ Consider that at t = 0 the initial state is |i〉 = |φi〉 and that ck(0) = δik. If the
perturbation is constant for t > 0 and is small enough that ci(t) ≃ 1 and
ck 6=i(t) = 0, we obtain to first approximation,

ih̄
∑

k

dck
dt

|φk〉 e−
i
h̄
Ekt ≃ H ′ |φi〉 e−

i
h̄
Eit

❐ The differential equation for the coefficient of the transition from an initial
state |i〉 to a final state |f〉 = |φf 〉, is obtained using the orthogonality of the
states |φk〉. We multiply on the left by 〈φf | to get,

dcf
dt

= − i

h̄
〈f |H ′|i〉 e i

h̄
(Ef−Ei)t
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❐ We define the transition matrix element (dimensions of energy)

Tfi = 〈f |H ′|i〉 =
∫

V

d3xφ∗f (~x)H
′φi(~x)

❐ At time t = T the amplitude for transitions to state |f〉 is,

cf (T ) = − i

h̄

∫ T

0

dt Tfie
i
h̄
(Ef−Ei)t = − i

h̄
Tfi

∫ T

0

dte
i
h̄
(Ef−Ei)t

where the last step holds for time-independent perturbing Hamiltonian H ′.

❐ The probability for the transition to the state |f〉 is,

Pfi =c
∗
f (T )cf (T ) = |Tfi|2

1

h̄2

∫ T/2

−T/2

∫ T/2

−T/2

dtdt′e
i
h̄
(Ef−Ei)te

i
h̄
(Ef−Ei)t

′

=|Tfi|2 T 2 1

h̄2
sin2 x

x2

where x =
(Ef−Ei)T

2h̄
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❐ In the figure we show the plot of sin2 x/x2, with x = (Ef − Ei)T/(2h̄)

- 40 - 20 20 40
x

0.2

0.4

0.6

0.8

1.0

sin² H x L� x²

❐ It is peaked at Ef = Ei, that is, energy is conserved within the limits of the
energy-time uncertainty relation

∆E∆t ∼ h̄

❐ This means that we can take one of the integrals as a delta function

lim
T→∞

∫ T/2

−T/2

dt′e
i
h̄
(Ef−Ei)t

′

= 2πh̄δ(Ef − Ei)
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❐ Therefore the transition rate (probability per unit time) will be

dΓfi = lim
T→∞

Pfi

T
=

2π

h̄
|Tfi|2 lim

T→∞

[

1

T

∫ T/2

−T/2

dte
i
h̄
(Ef−Ei)tδ(Ef − Ei)

]

❐ If there are dn accessible final states in the range Ef → Ef + dEf then the
total transition rate is

Γfi =
2π

h̄

∫

|Tfi|2
dn

dEf
lim

T→∞

[

1

T

∫ T/2

−T/2

dte
i
h̄
(Ef−Ei)tδ(Ef − Ei)

]

dEf

=
2π

h̄

∫

|Tfi|2
dn

dEf
δ(Ef − Ei) lim

T→∞

[

1

T

∫ T/2

−T/2

dt

]

dEf

=
2π

h̄

∫

|Tfi|2
dn

dEf
δ(Ef − Ei)dEf

=
2π

h̄
|Tfi|2

∣

∣

∣

∣

dn

dEf

∣

∣

∣

∣

Ei

❐ Fermi Golden Rule: Γfi =
2π
h̄ |Tfi|2ρ(Ei)

Density of States: ρ(Ei) =
∣

∣

∣

dn
dEf

∣

∣

∣

Ei
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Classical derivation:

Kepler Problem

b =
Q1Q2

4πǫ02E0
cot

θ

2



Rutherford Scattering: Classical derivation

Summary

Principles of MQ

Schrödinger Eq.

Hydrogen Atom

Clebsch-Gordon

Fermi GR

Rutherford

Bibliography

Jorge C. Romão FP-2015 – 26

❐ The number of particles in the area between b and b+ db is

dN = 2π b db nbeam

where nbeam is the number of particles/unit area/unit time in the beam.

❐ Therefore

dN

db
= 2π b nbeam = 2π

Q1Q2

4πǫ02E0
cot

θ

2
nbeam

❐ Now

dN

dθ
=
dN

db

db

dθ

=
dN

db

Q1Q2

4πǫ02E0

1

2

1

sin2 θ
2

=π

(

Q1Q2

4πǫ02E0

)2 cos θ
2

sin3 θ
2

nbeam
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❐ In terms of the solid angle Ω,

dΩ = 2π sin θdθ,
dΩ

dθ
= 4π sin

θ

2
cos

θ

2

❐ We get

dN

dΩ
=
dN

dθ

dθ

dΩ

=

(

1

4πǫ0

Q1Q2

2E0

)2
1

4 sin4 θ
2

nbeam

=

(

1

4πǫ0

Q1Q2

4E0

)2
1

sin4 θ
2

nbeam

❐ Finally the differential cross section is

dσ

dΩ
≡

dN
dΩ

nbeam
=

(

1

4πǫ0

Q1Q2

4E0

)2
1

sin4 θ
2

Rutherford cross section
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❐ To derive the Rutherford cross section in non-relativistic QM we start by an
intermediate result for the Fermi Golden Rule,

dΓ =
2π

h̄
|Tfi|2 dNf δ(Ef − Ei)

❐ The cross section for scattering by a potential is obtained dividing by the
incident flux ji, and number of particles in the target, Nt,

dσ ≡ dΓ

jiNt
=
dΓ

ji
=

1

ji

2π

h̄
|Tfi|2 dNf δ(Ef − Ei)

where the last step is just for one particle in the target Nt = 1.

❐ We are going to use plane waves for the incident and outgoing particles. As it
is well known this brings a normalization problem. The solution is to normalize
in a box of volume V . Then we write

φi(~x) =
1√
V
e

i
h̄
~pi·~x, φf (~x) =

1√
V
e

i
h̄
~pf ·~x,

❐ We are going to show that the factors of V cancel out in the cross section and
in the end we can take the limit V → ∞
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❐ We start by evaluating dNf . The normalization of one particle in a box of
volume V = L3, implies that the wave function should satisfy periodic
boundary conditions, that is

φ(x+ L, y, z) = φ(x, y, z), etc

❐ This in turn implies that, for example,

e
i
h̄
pxx = e

i
h̄
px(x+L)

leading to the quantization of the momenta

(px, py, pz) = (Nx, Ny, Nz)
2πh̄

L

where Nx, Ny, Nz are integers.

❐ Each state in momentum space occupies a volume

∆3p = ∆px ∆py ∆pz =

(

2πh̄

L

)3

=
(2πh̄)3

V
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❐ Then the number of states with magnitude of momentum in the interval p and
p+ dp, is obtained dividing the element of volume d3p in momentum space by
the volume occupied by one state

dN =
d3p

∆3p
= V

d3p

(2πh̄)3
= V

dΩp2dp

(2πh̄)3

where in the last expression we used spherical coordinates in momentum space.

❐ The next step is the incident flux. With the normalization we use, the density
of the initial particles is ni = 1/V , and therefore the flux is

ji = nivi =
vi
V
,

1

ji
=
V

vi

where vi is the velocity of the initial particle.

❐ Finally, assuming scattering by a time independent potential H ′ = U(~x)

Tfi =

∫

V

d3xφ∗f (~x)U(~x)φi(~x) =
1

V

∫

d3xU(~x)e
i
h̄
~q·~x ≡ 1

V
Tfi(~q)

where Tfi(~q) is the Fourier transform of the potential, and ~q ≡ ~pi − ~pf
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❐ Putting everything together we get

dσ =
2π

h̄

V

vi

1

V 2
|Tfi(~q)|2 V

dΩp2fdpf

(2πh̄)3
δ(Ef − Ei)

❐ As promised the volume V disappears and we can drop it from now on, and
take V → ∞ in the integrals. The differential cross section is obtained by
integrating in the final momentum using the delta function. From p2 = 2mE
we obtain pdp = mdE and,

dσ

dΩ
=

1

4π2vih̄
4

∫

p2fdpfδ(Ef − Ei)|Tfi(~q)|2

=
1

4π2vih̄
4

∫

pf mdEf δ(Ef − Ei)|Tfi(~q)|2

=
1

4π2vih̄
4 pfm|Tfi(~q)|2

dσ

dΩ
=

p2f

4π2 vivf h̄
4 |Tfi(~q)|

2 Valid for any potential in NRQM
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❐ We are now in position to evaluate the Rutherford cross section in NRQM.
The potential energy is

U(~x) =
Q1Q2

4πǫ0 |~x|

where Q1 is the electric charge of the particle in the beam and Q2 that of the
fixed target.

❐ The evaluation of the Fourier transform of the Coulomb potential is left as
exercise. We get

Tfi(~q) =
Q1Q2

4πǫ0

∫

d3x
e

i
h̄
~q·~x

|~x| =
Q1Q2

4πǫ0

4πh̄2

|~q|2

❐ We get then for the QM Rutherford differential cross section

dσ

dΩ
=

p2f

4π2vivf h̄
4

(

Q1Q2

4πǫ0

)2
(4πh̄2)2

|~q|4 =

(

Q1Q2

4πǫ0

)2
4m2

|~q|4

where we have used pi = pf = mvi = mvf
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❐ To compare with the classical result, we write this in terms of the transfered
momentum ~q = ~pi − ~pf with |~q|2 = 8mE0 sin

2 θ
2

(

dσ

dΩ

)

Ruth

=

(

1

4πǫ0

Q1Q2

4E0

)2
1

sin4 θ
2

=

(

Q1Q2

4πǫ0

)2
4m2

|~q|4

❐ We obtain therefore the important result that the Rutherford cross section has
exactly the same expression in non-relativistic QM as in classical physics.
Notice that the h̄ disappears.
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❐ Mark Thomson, Modern Particle Physics

◆ Chapter 2

◆ Chapter 3, Section 3.1 and 3.2

❐ David Griffiths, Introduction to Elementary Particle

◆ Section 6.1

❐ David Griffiths, Quantum Mechanics

◆ Chapters 1-6 and 9
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