Partículas Elementares (2015/2016)

3- Special Relativity, Units

Mário Pimenta Lisboa, 09/2015

pimenta@lip.pt

•The laws of physics are the same for all observers in uniform motion relative to one another

•The speed of light in a vacuum is the same for all observers, regardless of their relative motion or of the motion of the source of the light.

Albert Einstein 1879-1955

Special relativity

Invariance of c

The Lorentz transformations

$$x' = (x - v t) / \sqrt{1 - v^2 / c^2}$$

$$y' = y$$

$$z' = z$$

$$t' = (t - v x / c^2) / \sqrt{1 - v^2 / c^2}$$

 $\beta = v / c$ $\tau = c t$ $\gamma = 1 / \sqrt{1 - \beta^2}$ $x' = \gamma (x - \beta \tau)$ y' = yz' = z $\tau' = \gamma (\tau - \beta x)$

The γ factor

Space and time interval are not invariant !

Graphical representation of the Lorentz transformations

Time and space axis are rotated in opposite directions by an angle $\theta = \arctan(\beta)$

Clocks and rulers in S'

$$\Delta x' = L'$$
$$\Delta x = L + \beta \Delta \tau$$
$$L = L' / \gamma$$

 $\tau_0^2 = \tau^2 - (\Delta x)^2$ $\tau = \gamma \tau_0$

"barn-pole" paradox

Can a *pole* that is longer than a *barn* completely fit inside the *barn*?

Muons at Earth surface ! 2.19703±0.00004 10°s c by = 658.65 m !!! Dilatação do tempo AT = 8 AT' = E/M AT m K= 105.658387 ± 0.0000 34 MeV 1.0 X ~ 10 - 10 3 (E ~ 1 - 100 Gev) !!!

Four vectors

Norm of X $X^{2} = (ct)^{2} - (x^{2} + y^{2} + z^{2})$ $X^{2} = g_{\mu\nu}X^{\mu}X^{\nu}$

Minkowski metric

$$g_{\mu\nu} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix}$$

Internal product (four-vectors)

Minkowski metric

$$AB = a^{0}b^{0} - \vec{a}.\vec{b}$$

$$g_{\mu\nu} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix}$$

$$AB = g_{\mu\nu}a^{\mu}b^{\nu}$$

Scalars \rightarrow invariants

Lorentz transformations

$$X^{\mu'} = \Lambda^{\mu}_{\nu} X^{\nu}$$

Space-time interval

is a four vector

s² = $\Delta^2(ct) - (\Delta^2 x + \Delta^2 y + \Delta^2 z)$ is a Lorentz invariant!

Light cone

- $s^2 > 0$ time-like interval
- $s^2 < 0$ space-like interval
- $s^2 = 0$ light interval

if $s^2 > 0$: $\sqrt{(s^2)}$ = proper time (τ_0) If $s^2 < o$: $\sqrt{(-s^2)}$ = rest length (L_0)

Velocity and momentum 4 vectors

$$U = \frac{\Delta X}{\Delta t_0} = \gamma \left[\frac{c \Delta t}{\Delta t}, \frac{\Delta x}{\Delta t}, \frac{\Delta y}{\Delta t}, \frac{\Delta z}{\Delta t} \right]$$
$$= \left[\gamma c, \gamma \vec{u} \right]$$

$$P = m U = \left[\gamma m c, \gamma m \vec{u} \right]$$

$$= \left[\begin{array}{c} E \\ -c \end{array}, \vec{p} \right]$$

Energy and momentum

$$E = \gamma \ m \ c^2$$
$$\vec{p} = \gamma \ m \ \vec{v}$$

m - particle mass

Kinetic energy

$$E_k = \int \frac{d(\gamma \ m \ v)}{dt} \ dx = \gamma \ m \ c^2 - m \ c^2$$

Low $\beta \Longrightarrow E_k = m \ c^2(\gamma - 1) \approx m \ c^2(1 + \frac{v^2}{2c^2} + \dots - 1) \approx \frac{1}{2}m \ v^2$

Energy-momentum Lorentz transformations

Useful relations

h= xmr E = yme2 $h = \begin{bmatrix} E/c \\ \vec{k} \end{bmatrix}$ h2 = (= /2 - | F | 2 = mc2 $E^2 = |\vec{p}|^2 c^2 + m^2 c^4$ $\delta = E/(mc^2)$ N/C= W/(E/C)

sisteme Naturel C=1 $E^2 = P^2 + M^2$ 8 = E/MB = P/E

Two-body Invariant mass

Λ^0 discovery

Natural Units

Two-body center-of-mass energy

Natural Units

[(ELM, 0)]= [(ELLS, ELS)+(M, 0)]2 Ecm = (E+M)2 - PLAS = 2 M2 + 2 E1 M Ecm = V2PLAM

Photon conversion

Consider the conversion of one photon in one electron-positron pair. Determine the minimal energy that the photon has to have in order that this conversion would be possible if the photon is in presence of:

- a) one proton
- b) one electron
- c) no charged particle is around

π^0 decay

Consider the decay of a π^0 into $\gamma\gamma$ (P_{π} = 100 GeV/c).Determine:

- a) The minimal and the maximal angles that the two photons may have in the Laboratory frame (P π^0 = 100 GeV/c).
- b) The probability of having one of the photon with an energy less than E^0 (($E_{\pi}/2$ $P_{\pi}/2$)< E^0 < $E_{\pi}/2$) in the Laboratory frame.
- c) Same as a) but considering now that the decay of the π^0 is into e^+e^- .
- d) The maximum momentum that the π^0 may have in order that the maximal angle in its decay into $\gamma\gamma$ and in e⁺e⁻ would be the same.

π^- decay

Consider the decay of a flying π^- into $\mu^- \overline{\nu}$ and suppose that the $\overline{\nu}$ was emitted along the flight line of the π^- . Determine:

- a) The energy and momentum of the $\mu^{\scriptscriptstyle -}$ and of the $\,\overline{\!\nu}\,$ in the $\pi^{\scriptscriptstyle -}$ frame $\,$
- b) The energy and momentum of the μ^- and of the $\overline{\nu}$ in the Laboratory frame (P π^- = 100 GeV/c).
- c) Same as b) but considering now that was the μ^- that was emitted along the flight line of the π^- .

Mandelstam variables

S
$$(p_1 + p_2)^2$$

 E_{CM}^2

t, q² $(p_1 - p_3)^2$ $\approx -4E_1E_3 \sin^2(\theta/2)$ $\left(\frac{d\sigma}{d\Omega}\right)_{Rutherford} \propto \frac{1}{q^4}$

u

 $(p_1 - p_4)^2$

 $s + t + u = m_1^2 + m_2^2 + m_3^2 + m_4^2$

Units

International system of units (SI) four fundamental units:

- a unit of length (the meter, m)
- a unit of time (the second, s),
- a unit of mass (the kilogram, kg)
- and a unit of charge (the coulomb, C)

Particle Physics scales :

- Length 1 fm $= 10^{-15}$ m
- Charge 1 |e| = 1.60 10⁻¹⁹ C
- Energy 1 MeV = 1.60 10⁻¹³ J
- Mass 1 MeV/c² = 1.78 10⁻³⁰ kg

Two fundamental constants:

- $c \sim 3.00 \ 10^8 \ m \ s^{-1}$
- $-\hbar$ ~ 1.05 10⁻³⁴ J s

New Systems of Units

- c, \hbar , GeV
- Natural Units, NU ($c = \hbar = 1$)

In NU a single unit can be used (the Energy) and all the c and h disappear from the formulas !!!

Conversion factors

$$1 \text{ m} = \frac{1\text{m}}{\hbar c} \simeq 5.10 \times 10^{12} \text{ MeV}^{-1}$$
$$1 \text{ s} = \frac{1\text{s}}{\hbar} \simeq 1.52 \times 10^{21} \text{ MeV}^{-1}$$
$$1 \text{ kg} = 1\text{J}/c^2 \simeq 5.62 \times 10^{29} \text{ MeV}$$

Conversion of Units (SI to NU)

		mks		8	NU
A quantity with dimensions in SI M ^p L ^q T ^r has NU dimension E ^(p-q-r)	Quantity	p	q	r	n
	Mass	1	0	0	1
	Length	0	1	0	-1
	Time	0	0	1	-1
	Action (\hbar)	1	2	-1	0
	Velocity (c)	0	1	-1	0
	Momentum	1	1	-1	1
	Energy	1	2	-2	1

The conversion factors are then:

$$Q_{NU} = Q_{SI} \left(5.62 \ 10^{29} \frac{MeV}{kg} \right)^p \left(5.10 \ 10^{12} \frac{MeV^{-1}}{m} \right)^q \left(1.52 \ 10^{21} \frac{MeV^{-1}}{s} \right)^r$$

Conversion of Units (NU to SI)

In Natural Units all the c and \hbar disappear in the formulas and to recover them it is necessary to perform a dimensional analysis

For instance cross sections are in NU expressed usually in GeV⁻² but physically it is an area and then their dimensions in SI is L^2

$$1 \ GeV^{-2} = \frac{(\hbar c)^2}{(10^9 eV)^2} = 3.89 \ 10^{-32} m^2$$

$$1 \ GeV^{-2} = 0.389 \ mb$$

The unit of length L

$$1 \ GeV^{-1} = \frac{\hbar c}{10^9 eV} = 0.1974 \ fm$$

The unit of time T

$$1 \ GeV^{-1} = \frac{\hbar}{10^9 eV} = 6.582 \ 10^{-25} s$$

Electromagnetism in NU

has in SI the dimension of J.m

is a dimensionless quantity

Lorentz-Heaviside convention

$$\varepsilon_0 = \mu_0 = c = 1$$
$$\alpha = \frac{e^2}{4\pi} = \frac{1}{137}$$

The fine-structure constant

 $e = \sqrt{4\pi\alpha} = 0.303$ A pure number !

Planck scale

Gravity meets Quantum Mechanics

Schwarzschild radius ~ Compton wavelength

$$R_s \approx \lambda_c \longrightarrow \frac{2G_N m_P}{c^2} \approx \frac{h}{mc}$$

$$m_P \approx \sqrt{\frac{\hbar c}{G_N}}$$

$$l_P \approx \frac{h}{\mathcal{M}_P c} \approx \sqrt{\frac{\hbar G_N}{c^3}}$$

$$t_P \approx \frac{l_P}{c} \approx \sqrt{\frac{\hbar G_N}{c^5}}$$

 $m_P \sim 2.18 \ 10^{-8} \text{ Kg}$ $l_P \sim 1.6 \ 10^{-35} \text{ m}$ $t_P \sim 5.4 \ 10^{-44} \text{ s}$

m_P can be derived using dimensional analysis

Units

- 1. Determine in Natural Units
 - a) your own dimensions (height, weight, age)
 - b) The mean lifetime of the muon $(\tau_{\mu}=2.2\ 10^{-6}\ s)$
 - c) the Compton wavelength
- 2. In NU and in SI the expression of the muon life time is given respectively by:

$$\tau_{\mu} = \frac{192 \pi^{3}}{G_{F}^{2} m_{\mu}^{5}} \qquad \tau_{\mu} = \frac{192 \pi^{3} \hbar^{7}}{G_{F}^{2} m_{\mu}^{5} c^{4}}$$

where G_F is the Fermi constant

- a) Is the Fermi constant dimensionless? If not compute its dimension in NU and SI
- b) Obtain the conversion factor for transforming G_F from SI to NU

π^0 decay

٨ ET/ME ESI 8 Mg (1 + B cos 0') 8 = B = PU/ETT 8 MI (1 - B cos 0') EX2 =

MT PEX < E' =

5 GeV/C d min ~ 0.054 Rad BARKEL N PEX (0.5 N 20%

Velocity transformations

$$v_{x} = dx / dt = c dx / d\tau$$
$$v'_{x} = dx' / dt' = c dx' / d\tau'$$
$$\beta = V / c$$

$$x = \gamma (x' + \beta \tau')$$

$$y = y'$$

$$z = z'$$

$$\tau = \gamma (\tau' + \beta x')$$

$$v_{x} = c \frac{\gamma(dx' + \beta \ d\tau')}{\gamma(d\tau' + \beta \ dx')} = \frac{v_{x}' + V}{1 + V \ v_{x}' \ / \ c^{2}}$$

$$v_y = c \frac{dy'}{\gamma(d\tau' + \beta dx')} = \frac{v'_y}{\gamma(1 + V v'_x / c^2)}$$

$$v_z = c \frac{dz'}{\gamma(d\tau' + \beta dx')} = \frac{v'_z}{\gamma(1 + V v'_x / c^2)}$$

 $v'_x = c \rightarrow v_x = c \, !!!$

 $V \cong 0 \rightarrow v = v' + V !!!$

The photon - γ

$$\begin{split} m_{\gamma} &= 0 \\ E_{\gamma} &= p_{\gamma} c \\ E_{\gamma} &= h \nu = h c / \lambda \end{split}$$

Distance (microns)

Compton effect

Energy- momentum conservation

- $hc/\lambda_{i} + m_{e}c^{2} = hc/\lambda_{f} + \sqrt{((m_{e}c^{2})^{2} + (p_{e}c)^{2})}$
- $h/\lambda_i = h/\lambda_f \cos(\theta) + p_e \cos(\Phi)$
 - $0 = h/\lambda_f \sin(\theta) + p_e \sin(\Phi)$

 $\lambda_{\rm f} - \lambda_{\rm i} = {\rm h}/({\rm m_e c}) ~(1 - \cos(\theta))$

GZK threshold

The Cosmic Microwave Background fills the Universe with photons with a peak energy of 0.37 meV and a density of $\rho \sim 10^6 \text{ m}^{-3}$. Determine:

- a) The minimal energy (Known as the GZK threshold) that a proton should have in order that the reaction may occur.
- b) The interaction length of such protons in the Universe considering a mean cross section above the threshold of 0.6 mb.

Production at the Bevatron

The anti-protons were first produced in Laboratory in proton proton fixed target collisions at the Bevatron.

- a) Describe the minimal reaction able to produce in such collisions
- b) Determine the minimal energy that the proton beam had to have in order that were produced considering that the target protons have a Fermi momentum of around 150 MeV.