
Apêndice A

How to do Calculations in Particle
Physics

A.1 Introduction

In particle physics most of the experimental results are either cross sections or decay
widths. So it is very important do learn how to go from theory (the Lagrangian) to
these quantities to be able to compare with the experiment.

In this course we have learned how to do these calculations in some cases. As
these are dispersed in various chapters it might be useful to collect here all the
information. We follow the conventions, methods and notation of Chapters 2, 4, 7
and 9 and of the recommended book for this course by Mark Thomson [5].

A.2 Fermi Golden Rule

The decay rates and cross sections are given in Eq. (2.12) for the decays

Γ =
1

2m1
S

∫
|M|2 (2π)4δ4(p1 −

n∑

i=2

pi)

n∏

j=2

d3pj
(2π)32p0j

(A.1)

and in Eq. (2.27) for the cross section

σ =
1

4
√

(p1 · p2)2 −m2
1m

2
2

S

∫
|M|2 (2π)4δ4(p1 + p2 −

n∑

i=3

pi)
n∏

j=2

d3pj
(2π)32p0j

(A.2)

A.3 The CM Reference Frame

In this course we have considered only decays 1 → 2 + 3 in the rest frame of the
decaying particle and cross sections for processes of the type

1 + 2 → 3 + 4 (A.3)
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in the CM frame, that is with the kinematics,

θ

~p1 ~p2

~p3

~p4

Figura A.1: CM kinematics

In this case Eqs. (A.1) and (A.2) simplify and we get (see Eq. (2.25) and
Eq. (2.39)),

Γ =
S

8πm2
1

|~p2| |M|2 (A.4)

and
dσ

dΩ
=

S

64π2s

|~p3|
|~p1|

|M|2 (A.5)

where |~p2|, |~p1| |~p3| can be easily obtained in the CM frame, see for instance, Eq. (2.47).
In these equations the factor S is a symmetry factor for identical particles in the
final state. For instance, for the decay A→ B +B it would be

S =
1

2!
(A.6)

A.4 Feynman Rules

These are the rules to write the invariant amplitude M. We will not repeat them
here, they were given for the model ABC with scalars fields in Sec. 2.5 and for
a model with spin 1/2 particles, like in QED, in Sec. 4.4. We will give here only
the Feynman rules for the propagators and vertices of the standard model that we
will use in our calculations. A complete description of the Feynman rules for the
standard model can be found in Romão and Silva [35].

A.4.1 Propagators

−igµν
k2

(A.7)µ ν
γ

−i
gµν − kµkν

M2
W

k2 −M2
W

(A.8)µ ν
W
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−i
gµν − kµkν

M2
Z

k2 −M2
Z

(A.9)µ ν
Z

i(p/+mf )

p2 −m2
f

(A.10)p

i

p2 −M2
H

(A.11)
p

H

A.4.2 Vertices

Charged Current

−i g√
2
γµ

1− γ5
2

(A.12)

ψd,u

ψu,d
W±

µ

Neutral Current

(A.13)

ψf

ψf

ψf

ψf

Zµ Aµ
−i g

cos θW
γµ

(
gfV − gfAγ5

)
−ieQfγµ

where

gfV =
1

2
T 3
f −Qf sin

2 θW , gfA =
1

2
T 3
f . (A.14)

Higgs Interactions

−i g
2

mf

MW

(A.15)H

f

f

igMW gµν (A.16)W±
µ

W∓
ν

H
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i
g

cos θW
MZ gµν (A.17)Zµ

Zν

H

A.5 Results for the Helicity Currents

When we have particles with spin we have to sum over all the polarizations in
the final state and take the average in the initial sate (for unpolarized beams).
The general procedure to do this is known as the Casimir’s trick and leads to the
calculation of traces of the Dirac γ matrices. This lies beyond the scope of this
course1. Here we just discuss a particular case when all fermions (spin 1/2) are
massless. In this case we have shown in Sec. 4.6 that we can use helicity amplitudes to
evaluate the fermionic currents. We summarize here the results. In the expressions
below, θ is the angle between particle 3 and 1 in the CM as given in Fig. A.1.

A.5.1 s-channel

Ju1v2(↑, ↓) =
√
s (0,−1,−i, 0) (A.18)

p1

p2

Ju1v2(↓, ↑) =
√
s (0,−1, i, 0) (A.19)

p1

p2

Ju3v4(↑, ↓) =
√
s (0,− cos θ, i, sin θ) (A.20)

p3

p4

Ju3v4(↓, ↑) =
√
s (0,− cos θ,−i, sin θ) (A.21)

p3

p4

1For a complete discussion of this general case see Ref. [2].
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A.5.2 t-channel

Ju1u3(↑, ↑) =
√
s

(
cos

θ

2
, sin

θ

2
, i sin

θ

2
, cos

θ

2

)
(A.22)

Ju1u3(↓, ↓) =
√
s

(
cos

θ

2
, sin

θ

2
,−i sin θ

2
, cos

θ

2

)
(A.23)

Jv1v3(↑, ↑) =
√
s

(
cos

θ

2
, sin

θ

2
, i sin

θ

2
, cos

θ

2

)
(A.24)

Jv1v3(↓, ↓) =
√
s

(
cos

θ

2
, sin

θ

2
,−i sin θ

2
, cos

θ

2

)
(A.25)

Ju2u4(↑, ↑) =
√
s

(
cos

θ

2
,− sin

θ

2
, i sin

θ

2
,− cos

θ

2

)
(A.26)

Ju2u4(↓, ↓) =
√
s

(
cos

θ

2
,− sin

θ

2
,−i sin θ

2
,− cos

θ

2

)
(A.27)

Jv2v4(↑, ↑) =
√
s

(
cos

θ

2
,− sin

θ

2
, i sin

θ

2
,− cos

θ

2

)
(A.28)

Jv2v4(↓, ↓) =
√
s

(
cos

θ

2
,− sin

θ

2
,−i sin θ

2
,− cos

θ

2

)
(A.29)

p1 p3

p1 p3

p1 p3

p1 p3

p2 p4

p2 p4

p2 p4

p2 p4

A.5.3 u-channel

Ju1u4(↑, ↑) =
√
s

(
sin

θ

2
,− cos

θ

2
,−i cos θ

2
, sin

θ

2

)
(A.30)

Ju1u4(↓, ↓) =
√
s

(
− sin

θ

2
, cos

θ

2
,−i cos θ

2
,− sin

θ

2

)
(A.31)

Ju2u3(↑, ↑) =
√
s

(
− sin

θ

2
,− cos

θ

2
, i cos

θ

2
, sin

θ

2

)
(A.32)

Ju2u3(↓, ↓) =
√
s

(
sin

θ

2
, cos

θ

2
, i cos

θ

2
,− sin

θ

2

)
(A.33)

Jv1v4(↑, ↑) =
√
s

(
− sin

θ

2
, cos

θ

2
, i cos

θ

2
,− sin

θ

2

)
(A.34)

Jv1v4(↓, ↓) =
√
s

(
sin

θ

2
,− cos

θ

2
, i cos

θ

2
, sin

θ

2

)
(A.35)

Jv2v3(↑, ↑) =
√
s

(
sin

θ

2
, cos

θ

2
,−i cos θ

2
,− sin

θ

2

)
(A.36)
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Jv2v3(↓, ↓) =
√
s

(
− sin

θ

2
,− cos

θ

2
,−i cos θ

2
, sin

θ

2

)
(A.37)

A.6 Simple Examples

In this section we collect all the calculations that we did in Chapters 4, 7 and 9. We
will not repeat the discussion just the calculations.

A.6.1 e− + e+ → µ− + µ+ in QED

This process was studied in Sec. 4.6. For low energy (
√
s ≪ MZ) we can neglect

the diagram with a Z boson and then we have only one Feynman diagram, shown
in Fig. A.2. The amplitude for this process is

 
µ−

µ+e−

e+

p1

p2 p3

p4

Figura A.2: e− + e+ → µ− + µ+ scattering in QED.

M =i v(p2)(ieγ
µ)u(p1)

−i gµν
(p1 + p2)2

u(p3)(ieγ
ν)v(p4) (A.38)

=− e2

s
v(p2)γ

µu(p1) u(p3)γµv(p4) . (A.39)

Due to the chirality properties of the QED interaction, instead of sixteen possible
spin combinations we have only four non- zero currents, two for the initial state and
two for the final state. These were already given in Eqs. (A.18)-(A.21) (and also em
Sec. 4.6). Therefore we get,

M(↑↓; ↑↓) =− e2

s
Ju1v2(↓, ↑) · Ju3v4(↑, ↓)

=− e2

s

[√
s(0,−1,−i, 0)

]
·
[√
s(0,− cos θ, i, sin θ)

]

=
e2

s
s (1 + cos θ) ≡ 4πα (1 + cos θ) (A.40)

Similarly

|M(↑↓; ↑↓)|2 = |M(↓↑; ↓↑)|2 = (4πα)2 (1 + cos θ)2 (A.41)
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|M(↑↓; ↓↑)|2 = |M(↓↑; ↑↓)|2 = (4πα)2 (1− cos θ)2 (A.42)

and

〈
|Mfi|2

〉
=
1

4
(4πα)2

[
2(1 + cos θ)2 + 2(1− cos θ)2

]
(A.43)

= (4πα)2 (1 + cos2 θ) (A.44)

Finally for the cross section, using Eq. (A.5), we get

dσ

dΩ
=

1

64π2s

〈
|M|2

〉
=
α2

4s
(1 + cos2 θ) (A.45)

and the total cross section is obtained after integration in the angles to give,

σ =
4πα2

3s
(A.46)

A.6.2 Bhabha scattering

The process e− + e+ → e− + e+ is known as Bhabha scattering. For this process
we have, in QED, the two diagrams of Fig. A.3 where there is relative a minus sign

e−e−

e+e+

p1

p2

p3

p4

e−e−

e+e+

p1

p2

p3

p4

−

Figura A.3: Diagrams for Bhabha

between the two diagrams (rule 10 in the Feynman rules for QED, Sec. 4.4). We
have only six possible helicity combinations shown below,

M(↑, ↓; ↑, ↓) = (A.47)−

M(↑, ↓; ↓, ↑) = (A.48)

M(↓, ↑; ↑, ↓) = (A.49)

M(↓, ↑; ↓, ↑) = (A.50)−
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M(↑, ↑; ↑, ↑) = (A.51)

M(↓, ↓; ↓, ↓) = (A.52)

The general amplitude for Bhabha scattering can then be written in the form

M(h1, h2; h3, h4) = −e
2

s
Ju1v2(h1, h2) · Ju3v4(h3, h4) +

e2

t
Ju1u3(h1, h3) · Jv2v4(h2, h4)

(A.53)
Using Eqs. (A.22) and (A.22) and summing the six non-zero helicity amplitudes we
get finally

〈
|M|2

〉
=2e4

[
t2 + (s+ t)2

s2
+
s2 + (s+ t)2

t2
+ 2

(s+ t)2

st

]
(A.54)

=2e4
[
1 + cos4(θ/2)

sin4(θ/2)
− 2 cos4(θ/2)

sin2(θ/2)
+

1 + cos2 θ

2

]
(A.55)

where

t = −s
2
(1 + cos θ) = −s cos2 θ

2
, u = −s

2
(1− cos θ) = −s sin2 θ

2
(A.56)

Using Eq. (A.5), we get for the differential cross section,

dσ

dΩ
=
α2

2s

[
1 + cos4(θ/2)

sin4(θ/2)
− 2 cos4(θ/2)

sin2(θ/2)
+

1 + cos2 θ

2

]
. (A.57)

A.6.3 Decay Z → ff

Consider now the decay of Z → ff . The Feynman diagram is given in Fig. A.4.

Z0

f

f

Figura A.4: Z decay into f .

Applying the Feynman rules we get for the amplitude

M = gZ ǫµ(k, λ) u(p3)γ
µ
(
gfV − gfAγ5

)
v(p4) (A.58)
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where we have defined the shorthand notation,

gZ =
g

cos θW
. (A.59)

In order to simplify matters and also because it is a very good approximation,
(MZ ≫ mf), we will neglect all the fermion masses, and use the techniques of
the helicity amplitudes explained in Chapter 4. The Z boson is a spin 1 particle
with mass, and therefore has three polarizations. In the rest frame of the Z the
polarization vectors for these three cases can be written as

ǫµ+ =− 1√
2
(0, 1, i, 0), Sz = +1, h = +1

ǫµ− =
1√
2
(0, 1,−i, 0), Sz = −1, h = −1

ǫµL =(0, 0, 0, 1), Sz = 0, h = 0 (A.60)

On the other hand we can write

gfV − gfAγ5 =
(
gfV − gfAγ5

)
(PL + PR)

=(gfV + gfA)PL + (gfV − gfA)PR ≡ gfLPL + gfRPR (A.61)

with
gfL ≡ gfV + gfA, gfR ≡ gfV − gfA (A.62)

As in the massless limit chirality equals helicity, this means that we can have only
two possible helicity combinations,

Ju3v4(↑, ↓) =
√
s (0,− cos θ, i, sin θ) (A.63)

p3

p4

Ju3v4(↓, ↑) =
√
s (0,− cos θ,−i, sin θ) (A.64)

p3

p4

We therefore obtain (
√
s =MZ)

M(+; ↑, ↓) =gZ gfR ǫ+ · Ju3v4(↑, ↓) = gZ g
f
R MZ

1√
2
(1 + cos θ) (A.65)

M(−; ↑, ↓) =gZ gfR ǫ− · Ju3v4(↑, ↓) = gZ g
f
R MZ

1√
2
(1− cos θ) (A.66)

M(L; ↑, ↓) =gZ gfR ǫL · Ju3v4(↑, ↓) = gZ g
f
R MZ sin θ (A.67)
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M(+; ↓, ↑) =gZ gfL ǫ+ · Ju3v4(↓, ↑) = −gZ gfL MZ
1√
2
(1− cos θ) (A.68)

M(−; ↓, ↑) =gZ gfL ǫ− · Ju3v4(↓, ↑) = −gZ gfL MZ
1√
2
(1 + cos θ) (A.69)

M(L; ↓, ↑) =gZ gfL ǫL · Ju3v4(↓, ↑) = gZ g
f
L MZ sin θ (A.70)

Therefore we get,

〈
|M|2

〉
=
1

3

∑

spins

|M|2 (A.71)

=
1

3

[
|M(+; ↑, ↓)|2 + |M(−; ↑, ↓)|2 + |M(L; ↑, ↓)|2

+|M(+; ↓, ↑)|2 + |M(−; ↓, ↑)|2 + |M(L; ↓, ↑)|2
]

=
2

3
g2Z

(
gfR

2 + gfL
2
)

=
4

3

(
g

cos θW

)2

M2
Z

[
gfV

2 + gfA
2
]

(A.72)

For the total width we get

Γ =
MZ

12π

(
g

cos θW

)2 [
gfV

2 + gfA
2
]

(A.73)

This result is normally presented in terms of the Fermi constant,

GF√
2
=

g2

8M2
W

=

(
g

cos θW

)2
1

8M2
Z

(A.74)

where we have used the standard model relation for the W and Z masses,

MW =MZ cos θW (A.75)

Therefore we get

Γ =
2GFM

3
Z

3
√
2π

[
gfV

2 + gfA
2
]
. (A.76)

A.6.4 Scattering e−νe → µ−νµ

As another example we consider the e−νe → µ−νµ scattering in the CM. In low-
est order in perturbation theory we have the Feynman diagram of Fig. A.5. The
amplitude is given by,

M =i

(
ig√
2

)2

v(p2)γ
µ1− γ5

2
u(p1)

−igµν + qµqν
M2

W

q2 −M2
W + iMWΓW

u(p3)γ
ν 1− γ5

2
v(p4) (A.77)
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W

p1

p2

p3

p4

e µ

νe νµ

Figura A.5: scattering e−νe → µ−νµ.

where q = p1 + p2 and ΓW is the day width of the W . Using the fact that we are
neglecting the fermion masses the term in the numerator of theW boson propagator
proportional to the momenta vanishes after application of the Dirac equation, see
Sec. 9.6.2. Making use of the relation GF/

√
2 = g2/8M2

W , we further simplify the
expression

M =− 4GF√
2

M2
W

s−M2
W + iMWΓW

v(p2)γ
µPLu(p1)u(p3)γ

µPLv(p4) . (A.78)

From the structure of Eq. (A.78) we immediately see that the only non-zero helicities
are those shown in Fig. A.6 Therefore we get only one helicity combination,

W

e µ

νe νµ

Figura A.6: Helicities for e−νe → µ−νµ.

M(↓, ↑; ↓, ↑) =− 4GF√
2

M2
W

s−M2
W + iMWΓW

Ju1v2(↓, ↑) · Ju3v4(↓, ↑)

=− 4GF√
2

M2
W

s−M2
W + iMWΓW

√
s(0,−1, i, 0) · √s(0,− cos θ,−i, sin θ)

=− 4GF√
2

M2
W

s−M2
W + iMWΓW

s (1 + cos θ) . (A.79)

Now we obtain

〈
|M|2

〉
=
1

2
|M(↓, ↑; ↓, ↑)|2

=4G2
F

M4
W

(s−M2
W )2 +M2

WΓ2
W

s2(1 + cos θ)2 (A.80)
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We get therefore for the differential cross section in the CM frame

dσ

dΩ
=
G2

F s

16π2

M4
W

(s−M2
W )2 +M2

WΓ2
W

(1 + cos θ)2 (A.81)

After integration over the angles we get finally,

σ =
1

3

G2
F s

π

M4
W

(s−M2
W )2 +M2

WΓ2
W

(A.82)

In Sec. 9.6.2 we discussed the low and high energy limit of this result.

A.6.5 Scattering µ−νµ → e−νe

This process was considered in Sec. 7.5.2 in the context of the current-current V-A
theory. The process is described by the Feynman diagram of Fig. A.7 to which

e−µ−

νµ νe

Figura A.7: Diagram para µ− + νµ → e− + νe.

corresponds the amplitude

M =
4GF√

2
v(p2)γ

µPLu(p1) u(p3)γµPLv(p4) (A.83)

This is exactly equal to Eq. (A.78) in the limit
√
s≪MW . Therefore the result for

the cross section will be the same in the same limit.


