

2º Teste de Electromagnetismo e Óptica Cursos de Eng^a Química, Lic. em Química, Eng^a Biológica e Eng^a do Ambiente Professores: J. Romão, G. C. Branco e J. Santos 10/12/2004–14 horas

VERSÃO E

Considere uma espira quadrada de lado L e resistência eléctrica R, assente no plano xOy, que se desloca com velocidade v constante no sentido positivo do eixo dos yy. Na região onde se encontra espira existe um campo magnético \vec{B} dado por $\vec{B}(x,y,z) = B_0 \left(1 + y/L\right) \vec{e}_z$. No instante t=0 a espira encontra-se na posição indicada na figura.

- 1. Qual o fluxo $\Phi(t)$ que atravessa a espira no instante de tempo t?
- 2. Determine qual a corrente induzida na espira, indicando graficamente o seu sentido.
- 3. Calcule a força de Laplace que actua na espira.
- 4. Mostre que o trabalho por unidade de tempo $(dW/dt = \vec{F} \cdot \vec{v})$ que é necessário fornecer à espira para que a sua velocidade se mantenha constante é dissipado por efeito de Joule $(P_{Joule} = Ri^2)$.