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Appendix D

Feynman Rules for the Standard
Model

D.1 Introduction

To do actual calculations it is very important to have all the Feynman rules with consistent
conventions. In this Appendix we will give the complete Feynman rules for the Standard
Model in the general R, gauge.

D.2 The Standard Model

One of the most difficult problems in having a consistent set of of Feynman rules are the
conventions. We give here those that are important for building the SM. We will separate
them by gauge group.

D.2.1 Gauge Group SU(3).

Here the important conventions are for the field strengths and the covariant derivatives.
We have
G4, = 0,G% — 0,G% + gf ™ GhGS, a=1,...,8 (D.1)

where f%¢ are the group structure constants, satisfying
[T“,Tb} — jfabere (D.2)

and T'* are the generators of the group. The covariant derivative of a (quark) field ¢ in
some representation 7% of the gauge group is given by

Dug= (0, —igGiT") q (D.3)

In QCD the quarks are in the fundamental representation and 7% = \%/2 where \* are
the Gell-Mann matrices. A gauge transformation is given by a matrix

U= iT"o" (D.4)
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and the fields transform as

—iT%a

q—e q 0q = —iT%a%q
) 1
GoT* —» UGT U™ — gﬁﬂUU_l 0G), = — - Oua” + fealG, (D.5)
where the second column is for infinitesimal transformations. With these definitions one
can verify that the covariant derivative transforms like the field itself,
6(Dpq) = —iT"a*(Dpuq) (D.6)

ensuring the gauge invariance of the Lagrangian.

D.2.2 Gauge Group SU(2);,
This is similar to the previous case. We have
WS, = 0,We — 0,W + g™ WWs, a=1,...,3 (D.7)

where, for the fundamental representation of SU(2)r, we have T = 0%/2 and €™ is the
completely anti-symmetric tensor in 3 dimensions. The covariant derivative for any field
11, transforming non-trivially under this group is,

DlﬂﬁL = (au —1ig W;fTa) P, (D.S)

D.2.3 Gauge Group U(l)y
In this case the group is abelian and we have
B, =0,B,-90,B, (D.9)
with the covariant derivative given by
Dypp = (0y+1g'Y B,) ¥r (D.10)

where Y is the hypercharge of the field. Notice the different sign convention between
Eq. (D.8) and Eq. (D.9). This is to have the usual definition!

Q=Tz+Y . (D.12)

It is useful to write the covariant derivative in terms of the mass eigenstates A, and
Z,,. These are defined by the relations,

{ Wli" = Z, cos Oy — A, sin Oy { Z, = Wj cos Oy + By, sin Oy, (D.13)

B, = Z,siny + A, cos Oy A, = —W;f sin Oy + B, cos Oy

1For this to be consistent one must also have, under hypercharge transformations, for a field of hyper-
charge Y,

; 1
W =ty B, =B, — —0.ay. (D.11)
g
This is important when finding the ghost interactions. It would have been possible to have a minus sign

in Eq. (D.10), with a definition 8w — 6w + 7. This would also mean reversing the sign in the exponent
of the hypercharge transformation in Eq. (D.11) maintaining the similarity with Eq. (D.5).
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Field | £7 | tr | ve |ur | dp |ug | dr | &7 | ¢°

1 1 1 1 1 1

Ts | =2 0 )2 3 |=2/0 )0 3|3
1 1 1 1 2 1 1 1

YV =5 |-l|-3|5 |6 |5 |3|z2|2
Q | -1|-1|0 |3 |-3]|2|-3|1]0

Table D.1: Values of T. ?f , @ and Y for the SM particles.

For a field v, with hypercharge Y, we get,

D,r, = [au — i% (Wi + W, ) - igfgwj’ - ig’YBM] W, (D.14)
. g Crrr— . . g 73 .
:[a“_lﬁ (T+WJ+7— Wu)—i‘ZeQAu—'Lm <§—QSID2QW> Z/J‘:| wL

where, as usual, 7% = (17 973)/2 and the charge operator is defined by

;+Y 0
Q= 0 B % vl (D.15)
and we have used the relations,
e = gsinfy = ¢ cos Oy, (D.16)
and the usual definition,
Wi FiW?
Wi = LT (D.17)
V2
For a singlet of SU(2)r, ¥ g we have,
D,pr = [0y + ig'Y Bu] ¥R
=0, +ieQA, +i—L—Q sin*0wZ,| vr. (D.18)
cos Oy
We collect in Table D.1 the quantum number of the SM particles.
D.2.4 The Gauge Field Lagrangian
For completeness we write the gauge field Lagrangian. We have
1 a apy 1 a apy 1 Qv
Egauge = _ZGW/G - ZWHVW - ZB[LVB (Dlg)

where the field strengths are given in Egs. (D.1), and (D.9).
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D.2.5 The Fermion Fields Lagrangian

Here we give the kinetic part and gauge interaction, leaving the Yukawa interaction for a
next section. We have

['Fermion = Z @V“Duq + Z M/}_L’YND/LI/)L + Z iq/)_RryuD;ﬂ/}R (D20)
quarks VI, YR

where the covariant derivatives are obtained with the rules in Egs. (D.3), (D.14) and
(D.18).

D.2.6 The Higgs Lagrangian

In the SM we use an Higgs doublet with the following assignments,

¢+
= v+ H+ipy (D.21)
V2
The hypercharge of this doublet is 1/2 and therefore the covariant derivative reads
Db = |9, — it (W 4 wo) =i 4B, | @ (D.22)
H H V2 H H 9 K 9 TH
. g —r— . . g T3 .9
— [Ou - zﬁ (T+W:_T w, ) +ieQA, — ZcosHW (5 — Q@ sin 9W> ZM] o
The Higgs Lagrangian is then
2
Liiggs = (D,®) D, ® + p201® — A (qﬂ@) (D.23)

If we expand this Lagrangian we find the following terms

1 1 1
~g”v*B,B* + —gg v*'WiB" + —g*0*W W H

1
»CHiggs =.-- 4 —92U2W3WM3 + 3 1 1

8
1 1 _ 1 _
+ 3V Moy (g’BM + ng) + §ngu oMt — ing;E)"cp (D.24)

The first three terms give, after diagonalization, a massless field, the photon, and a massive
one, the Z, with the relations given in Eq. (D.13), while the fourth gives the mass to the
charged Wui boson. Using Eq. (D.13) we get,

1 _
Litiggs = + §M§ZMZ“ + My W, Fw

+MzZ,0"p7 + iMw (W,j@“cp* — W;aucp_) (D.25)

where L1 )
—gu = M, D.26
cos Oy ng cos Oy w ( )

1
My = 29V Mz =

By looking at Eq. (D.25) we realize that besides finding a realistic spectra for the gauge
bosons, we also got a problem. In fact the terms in the last line are quadratic in the fields
and complicate the definition of the propagators. We now see how one can use the needed
gauge fixing to solve also this problem.
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D.2.7 The Yukawa Lagrangian

Now we have to spell out the interaction between the fermions and the Higgs doublet that
after spontaneous symmetry breaking gives masses to the elementary fermions. We have,

Lyvukawa = — Y L® g — Y, Q® dp — Y, Q® up + h.c. (D.27)
where sum is implied over generations, L (Q) are the lepton (quark) doublets and,

N v+ H —ipy

B = i0pd* = /2 (D.28)
_w_

D.2.8 The Gauge Fixing

As it is well known, we have to gauge fix the gauge part of the Lagrangian to be able to
define the propagators. We will use a generalization of the class of Lorenz gauges, the
so-called R gauges. With this choice the gauge fixing Lagrangian reads

1 1 1 1
Lop=——F2— —F2_ _F2__F F D.29

where
Fg =0'GS, Fa=0'A,, Fz=0"Z,—¢Mzeyz
Fy ='W, —iéMwe™, F_=0"W, +iEMyp~ (D.30)

One can easily verify that with these definitions we cancel the quadratic terms in Eq. (D.25).

D.2.9 The Ghost Lagrangian

The last piece in writing the SM Lagrangian is the ghost Lagrangian. As it is well known,
this is given by the Fadeev-Popov prescription,

4
O(0F J(0F O(0F: O(0F
Lo =3 [ 205D o OE) o D0F7) D0

Oat tea ot |

i=1

+ ) 50 20FG) (D.31)

where we have denoted by w® the ghosts associated with the SU(3). transformations
defined by,
U=¢e T8 ¢=1,...,8 (D.32)

and by c4,ca, cz the electroweak ghosts associated with the gauge transformations,

U=e T ¢=1,...,3, U=¢Y" (D.33)
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For completeness we write here the gauge transformations of the gauge fixing terms needed
to find the Lagrangian in Eq. (D.31). It is convenient to redefine the parameters as

+ _Oél :Fa2
V2
3

az =a> cos Oy + o sin Oy

s =—a’sin Oy + ot cos Oy (D.34)
We then get

OFG = — 0,6 + g f 5 GE,

OFy = — 0,0

0Fy =0,(0Z") — Mzopz

6Fy =0, (6W,F) — iMyw o™

OF_ =0, (W, ) +iMwép~ (D.35)

Using the explicit form of the gauge transformations we can finally find the missing pieces,

62y = — Ouaz +igcos by (W o~ =W a™) (D.36)
cWVJr =— 0o +ig [at (Z, cosbyw — Ay sinby,) — (az cosby, — aasinby) W;ﬂ
oW, =—0ua” —1g [of (Z,, cos by — Aysinby,) — (az cos By — aysin Oy ) W/;]

and
dpy =— 1g (OFQOJ“ + oﬁ«p*) + Laz(v + H)
2 2 cos Oy
n g , L .gcos20y -
oo =—iZ(v+ H+ipz)a™ —i= praz+iep ay
2 2 cos Oy
b~ =i L0+ H—ipz)a +i 82 o —iega (D.37)
v =i ¢z 2 oo by ¥ 0z T iewan :

D.2.10 The Complete SM Lagrangian

Finally the complete Lagrangian for the Standard Model is obtained putting together all
the pieces. We have,

£SM = 'Cgauge + 'CFermion + »CHiggs + EYukawa + *CGF + *CGhost (D38)

where the different terms were given in Egs. (D.19), (D.20), (D.23), (D.27), (D.29), (D.31).
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D.3 The Feynman Rules for QCD

We give separately the Feynman Rules for QCD and the electroweak part of the Standard
Model.

D.3.1 Propagators

Iy @ \./\./\/\g/\/\./‘ v, —ify, Jpw _ _ (1-¢) by (D.39)
k2 +de (k2)2 ’
w ‘
a 0000000000000 b ab # (D.40)
k2 + ie

D.3.2 Triple Gauge Interactions

p,c
Ips gfeel g"(pr —pa2)’ + g""(p2 — p3)*
P2 +9°"(ps — p1)”]
7
K, a v, b p1+p2+p3=0
(D.41)
D.3.3 Quartic Gauge Interactions
ii) Vértice quartico dos bosoes de gauge
o,d p,C
p} /p3 _ig2 [ feabfecd(gupgua - g/.wgup)
p}« \p2 "‘feacfedb(g;wgpz/ - g/wgpo)
(D.42)
K a v,b +feadfebc(g;wgp0' - gupgz/o)
p1+p2+p3+ps=0
D.3.4 Fermion Gauge Interactions
1
Tps
P2 ig(v") a3 (D.43)
“h

Bi @, j
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D.3.5 Ghost Interactions

e
p3
.T ) g Oabcpﬁb
AW (D.44)
Gy pr +p2+p3=0

D.4 The Feynman Rules for the Electroweak Theory

D.4.1 Propagators

0 kuk
. Juv iy
— —(1-— D.4
M T\ N\N\ NNV ? k2 4 i€ ( 5) (k2)2 ( 5)
w —i
Guv
—_ D.46
U NNNNNAN V k2 — MI%V ¥+ e ( )
7 .
_Zg}tl/
—_ D.47
w NNNNNAN VYV k2 — M% + e ( )
D pT—my + 1€
v (D.49)
----- D oo TT pQ—M,%-i-ie '
_____ Yz ___ ; D.50
D p? —&mZ, + ie (D-50)
+ .
_____ LA ' (D.51)

D p2—£m%/v+ie
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D.4.2 Triple Gauge Interactions

PN\ 4 4 .
A e gag(p — K+ 9pu(k — @)a + Guala — D)s)

Z
(IS
N

9 ig cos 0w [9as(p — k) + 9u(k — @)a + gua(q — p)s]

D.4.3 Quartic Gauge Interactions

W Wy
E —ie” [QQaﬁguu — 9au9pr — gavgﬁu]
A,u, Ay
W Wy
E _igz C052 HW [2ga,6’g/w — Ganudpr — gaugﬁu]
th Z,
Wit Wy
E 2‘eg COs 9W [2ga,6’g;w — 9au9pr — gavgﬁu]
A, Z,

Wit 5
\ 7;92 [QQaugﬂu — 9aBYuv — gaugﬂu]
W T /%
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D.4.4 Charged Current Interaction

% d
’ +
w;

(D.58)
wd,u

D.4.5 Neutral Current Interaction

& Z, , o vy 4,
"cos Oy Tu (gv B gA%) —ieQf Y (D.59)
Yy vy

1 i 1
g‘J; = §T}3 - Qy sin? Oy, g£ = §T}3 . (D.60)

where

D.4.6 Fermion-Higgs and Fermion-Goldstone Interactions

f
h
______ g my
f
f
¢
""" S g—vf; Y5 (D.62)
f

wd,u
""" A (m“P T p > (D.63)
1—= - — .
V2 Uy Bl ~ LR
wu,d
D.4.7 Triple Higgs-Gauge and Goldstone-Gauge Interactions
o™
\\\p+
\\\ A,Ua .
IS —ie (py —p-), (D.64)
,/'/p_

¥®
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v
\\p+
\\‘),\,WWZ“ cos 20y (p -p )
v 2cos Oy K
//p,
=
h N
\\\\p
Wk Lok —
Rasasaas # :FQ 9 (k p)ll«
o
qull
(pZ N
\\\\p
W 91—
,)’VWWV\ ® 2 (k p)ll«
o
qull
h N
\\\\p
Z g _
,)’\I\/\IV\I\I\ ’ 2cos 6 ( p)N
N
vz’
P
\\\ Au
f/w e mw g
W
28
\\\ Z'LL
;vWA —igmy sin® Oy I
W
h \
\\\ W:t

\ H 29 mw Guv
W:F;re:ék/wvw
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. g
v D.72
;;'WW cos 9W mzgu ( )
Zy

D.4.8 Quartic Higgs-Gauge and Goldstone-Gauge Interactions

ho o« Wit
>{i
e WF
ZIN Wi
W .
Yz W
N Z,
>\: {/i % & o (D.75)
N
[ Z,
Yz \\\ Zu
>\: {/i % ﬁ o (D.76)
N
Yz 2 ZI/
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Yz

. Ay

\‘\\‘ “/ 2 ¢? Juv
R

e A,

. Wi

X{\\ / i 92 2sir12 HHW »
/j" \ cos Oy

," Z,

. WF

\:\\ / T 2 2sin2 %W G
/j’l \ COS Uy

," Z,
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AR W

Yz AV

EZRN
\
\
\
\
\
\\ h
—_——————
7
’
)
’
7
7
’
SO_ ’
h’ \
\
\
\
\
\
\\ h
_——————
7
7
;-
’
7
’
’
h ’
LN
\
\
\
\
\
\\ h
—_—————-

+- €9 Guv

cos 260y

—jeqg — M
g cos Oy Juuw

2ng

(D.83)

(D.84)

(D.85)

(D.86)

(D.87)
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D.4.10 Quartic Higgs and Goldstone Interactions

+ —
L2 R
. ’
Y ’
AN i oo omy
N 59 —
/ /x\ 2 mW
’ Y \
’ .
’ Y
’ Y
(p+ 1, \\ 90_
et +h
\\ ,1
. ‘ i m
\\\ ,,/ —_— 92 —h
x 4 %
/ VRN
’ \ \
’ .
’ Y
’ Y
— ’ .
()0 ’ . h
wros Pz
. ’
. ‘ 1 m
\\\ g / L2 T
X 47 m
/ VRN
’ \ \
’ .
’ Y
QO_ /' \\
’ * ¢z
h Y ’ h
Y ’
Y ’
A Y ’ 2
AN 3. oM
N ——19" —
X 4 2
/ VRN w
’ Y \
’ .
’ Y
’ Y
h ,I \\ h
QOZ \\ ,1 h
. ’
Y ’ )
\\ "/ 1 9
/ Ix\ mW
’ \ \
’ .
’ Y
’ Y
’ .
(pZ ’ A h
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Yz Pz
A Y 4
Y 4
\\\ /I/ 3 . 92 m%
x BVRE AR
/,1 \\ \ 4 mW
4 A Y
4 Y
, Y
4 A Y
Yz ¢ A
D.4.11 Ghost Propagators
ca i
k2 + ie
+
¢ i
900000 ROOIOIOIOIOIOIOIOIOIDS ﬁ
k2 —&myy, + e
cz i

00000000 ccccecccce

k2 —EmZ + ic

D.4.12 Ghost Gauge Interactions

c*.
..-\p
-.' -«— A .
o Frepy
.".-/
cE
c*.
\p
A +ig cosOw p,
</
et
c* .
..-\p
Wi
‘s H Fig cosOw py
A

cz~

(D.93)

(D.94)

(D.95)

(D.96)

(D.97)

(D.98)

(D.99)
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ca”

tiep,

Fig cosOw p,

tiep,

D.4.13 Ghost Higgs and Ghost Goldstone Interactions

cz~

 2cos Ow

+=Emw

—%gfmw

ig ¢
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(D.100)

(D.101)

(D.102)

(D.103)

(D.104)

(D.105)
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cz.
. - :F -
it g %gfmz (D.106)
VA
cte
C:t .
o P . cos 20w
bt _ D.1
9 cos by & (D.107)
..../
ez~
c* .
D
:._ ______ ’[/e 5 mW (D.108)
4

ca”



