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Appendix D

Feynman Rules for the Standard
Model

D.1 Introduction

To do actual calculations it is very important to have all the Feynman rules with consistent
conventions. In this Appendix we will give the complete Feynman rules for the Standard
Model in the general Rξ gauge.

D.2 The Standard Model

One of the most difficult problems in having a consistent set of of Feynman rules are the
conventions. We give here those that are important for building the SM. We will separate
them by gauge group.

D.2.1 Gauge Group SU(3)c

Here the important conventions are for the field strengths and the covariant derivatives.
We have

Gaµν = ∂µG
a
ν − ∂νG

a
µ + gfabcGbµG

c
ν , a = 1, . . . , 8 (D.1)

where fabc are the group structure constants, satisfying

[
T a, T b

]
= ifabcT c (D.2)

and T a are the generators of the group. The covariant derivative of a (quark) field q in
some representation T a of the gauge group is given by

Dµq =
(
∂µ − i g GaµT

a
)
q (D.3)

In QCD the quarks are in the fundamental representation and T a = λa/2 where λa are
the Gell-Mann matrices. A gauge transformation is given by a matrix

U = e−iT
aαa (D.4)
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and the fields transform as

q → e−iT
aαaq δq = −iT aαaq

GaµT
a → UGaµT

aU−1 − i

g
∂µUU

−1 δGaµ = −1

g
∂µα

a + fabcαbGcµ (D.5)

where the second column is for infinitesimal transformations. With these definitions one
can verify that the covariant derivative transforms like the field itself,

δ(Dµq) = −i T aαa(Dµq) (D.6)

ensuring the gauge invariance of the Lagrangian.

D.2.2 Gauge Group SU(2)L

This is similar to the previous case. We have

W a
µν = ∂µW

a
ν − ∂νW

a
µ + gǫabcW b

µW
c
ν , a = 1, . . . , 3 (D.7)

where, for the fundamental representation of SU(2)L we have T a = σa/2 and ǫabc is the
completely anti-symmetric tensor in 3 dimensions. The covariant derivative for any field
ψL transforming non-trivially under this group is,

DµψL =
(
∂µ − i g W a

µT
a
)
ψL (D.8)

D.2.3 Gauge Group U(1)Y

In this case the group is abelian and we have

Bµν = ∂µBν − ∂νBµ (D.9)

with the covariant derivative given by

DµψR =
(
∂µ + i g′ Y Bµ

)
ψR (D.10)

where Y is the hypercharge of the field. Notice the different sign convention between
Eq. (D.8) and Eq. (D.9). This is to have the usual definition1

Q = T3 + Y . (D.12)

It is useful to write the covariant derivative in terms of the mass eigenstates Aµ and
Zµ. These are defined by the relations,

{
W 3
µ = Zµ cos θW −Aµ sin θW

Bµ = Zµ sin θW +Aµ cos θW
,

{
Zµ = W 3

µ cos θW +Bµ sin θW

Aµ = −W 3
µ sin θW +Bµ cos θW

. (D.13)

1For this to be consistent one must also have, under hypercharge transformations, for a field of hyper-
charge Y ,

ψ′ = e+iY αY ψ, B′
µ = Bµ − 1

g′
∂µαY . (D.11)

This is important when finding the ghost interactions. It would have been possible to have a minus sign
in Eq. (D.10), with a definition θW → θW + π. This would also mean reversing the sign in the exponent
of the hypercharge transformation in Eq. (D.11) maintaining the similarity with Eq. (D.5).
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Field ℓL ℓR νL uL dL uR dR φ+ φ0

T3 −1
2 0 1

2
1
2 −1

2 0 0 1
2 −1

2

Y −1
2 −1 −1

2
1
6

1
6

2
3 −1

3
1
2

1
2

Q −1 −1 0 2
3 −1

3
2
3 −1

3 1 0

Table D.1: Values of T f3 , Q and Y for the SM particles.

For a field ψL, with hypercharge Y , we get,

DµψL =

[
∂µ − i

g√
2

(
τ+W+

µ + τ−W−µ
)
− i

g

2
τ3W

3
µ + ig′Y Bµ

]
ψL (D.14)

=

[
∂µ − i

g√
2

(
τ+W+

µ + τ−W−µ
)

+ ieQAµ − i
g

cos θW

(τ3
2

−Q sin2 θW

)
Zµ

]
ψL

where, as usual, τ± = (τ1 ± iτ2)/2 and the charge operator is defined by

Q =




1
2 + Y 0

0 −1
2 + Y


 , (D.15)

and we have used the relations,

e = g sin θW = g′ cos θW , (D.16)

and the usual definition,

W±µ =
W 1
µ ∓ iW 2

µ√
2

. (D.17)

For a singlet of SU(2)L, ψR we have,

DµψR =
[
∂µ + ig′Y Bµ

]
ψR

=

[
∂µ + ieQAµ + i

g

cos θW
Q sin2 θWZµ

]
ψR . (D.18)

We collect in Table D.1 the quantum number of the SM particles.

D.2.4 The Gauge Field Lagrangian

For completeness we write the gauge field Lagrangian. We have

Lgauge = −1

4
GaµνG

aµν − 1

4
W a
µνW

aµν − 1

4
BµνB

µν (D.19)

where the field strengths are given in Eqs. (D.1), and (D.9).
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D.2.5 The Fermion Fields Lagrangian

Here we give the kinetic part and gauge interaction, leaving the Yukawa interaction for a
next section. We have

LFermion =
∑

quarks

iqγµDµq +
∑

ψL

iψLγ
µDµψL +

∑

ψR

iψRγ
µDµψR (D.20)

where the covariant derivatives are obtained with the rules in Eqs. (D.3), (D.14) and
(D.18).

D.2.6 The Higgs Lagrangian

In the SM we use an Higgs doublet with the following assignments,

Φ =




φ+

v +H + iϕZ√
2


 (D.21)

The hypercharge of this doublet is 1/2 and therefore the covariant derivative reads

DµΦ =

[
∂µ − i

g√
2

(
τ+W+

µ + τ−W−µ
)
− i

g

2
τ3W

3
µ + i

g′

2
Bµ

]
Φ (D.22)

=

[
∂µ − i

g√
2

(
τ+W+

µ τ
−W−µ

)
+ ieQAµ − i

g

cos θW

(τ3
2

−Q sin2 θW

)
Zµ

]
Φ

The Higgs Lagrangian is then

LHiggs = (DµΦ)†DµΦ + µ2Φ†Φ − λ
(

Φ†Φ
)2

(D.23)

If we expand this Lagrangian we find the following terms

LHiggs = · · · +
1

8
g2v2W 3

µW
µ3 +

1

8
g′2v2BµB

µ +
1

4
gg′v2W 3

µB
µ +

1

4
g2v2W+

µ W
−µ

+
1

2
v ∂µϕZ

(
g′Bµ + gW 3

µ

)
+
i

2
gvW−µ ∂

µϕ+ − i

2
gvW+

µ ∂
µϕ− (D.24)

The first three terms give, after diagonalization, a massless field, the photon, and a massive
one, the Z, with the relations given in Eq. (D.13), while the fourth gives the mass to the
charged W±µ boson. Using Eq. (D.13) we get,

LHiggs = · · · +
1

2
M2
ZZµZ

µ +M2
WW

+
µ W

−µ

+MZZµ∂
µϕZ + iMW

(
W−µ ∂

µϕ+ −W+
µ ∂

µϕ−
)

(D.25)

where

MW =
1

2
gv, MZ =

1

cos θW

1

2
gv =

1

cos θW
MW (D.26)

By looking at Eq. (D.25) we realize that besides finding a realistic spectra for the gauge
bosons, we also got a problem. In fact the terms in the last line are quadratic in the fields
and complicate the definition of the propagators. We now see how one can use the needed
gauge fixing to solve also this problem.
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D.2.7 The Yukawa Lagrangian

Now we have to spell out the interaction between the fermions and the Higgs doublet that
after spontaneous symmetry breaking gives masses to the elementary fermions. We have,

LYukawa = − Yl LΦ ℓR − YdQΦ dR − YuQ Φ̃ uR + h.c. (D.27)

where sum is implied over generations, L (Q) are the lepton (quark) doublets and,

Φ̃ = i σ2Φ∗ =



v +H − iϕZ√

2
−ϕ−


 (D.28)

D.2.8 The Gauge Fixing

As it is well known, we have to gauge fix the gauge part of the Lagrangian to be able to
define the propagators. We will use a generalization of the class of Lorenz gauges, the
so-called Rξ gauges. With this choice the gauge fixing Lagrangian reads

LGF = − 1

2ξ
F 2
G − 1

2ξ
F 2
A − 1

2ξ
F 2
Z − 1

ξ
F−F+ (D.29)

where

F aG =∂µGaµ, FA = ∂µAµ, FZ = ∂µZµ − ξMZϕZ

F+ =∂µW+
µ − iξMWϕ

+, F− = ∂µW−µ + iξMWϕ
− (D.30)

One can easily verify that with these definitions we cancel the quadratic terms in Eq. (D.25).

D.2.9 The Ghost Lagrangian

The last piece in writing the SM Lagrangian is the ghost Lagrangian. As it is well known,
this is given by the Fadeev-Popov prescription,

LGhost =

4∑

i=1

[
c+
∂(δF+)

∂αi
+ c−

∂(δF+)

∂αi
+ cZ

∂(δFZ )

∂αi
+ cA

∂(δFA)

∂αi

]
ci

+

8∑

a,b=1

ωa
∂(δF aG)

∂βb
ωb (D.31)

where we have denoted by ωa the ghosts associated with the SU(3)c transformations
defined by,

U = e−iT
aβa , a = 1, . . . , 8 (D.32)

and by c±, cA, cZ the electroweak ghosts associated with the gauge transformations,

U = e−iT
aαa , a = 1, . . . , 3, U = eiY α

4
(D.33)
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For completeness we write here the gauge transformations of the gauge fixing terms needed
to find the Lagrangian in Eq. (D.31). It is convenient to redefine the parameters as

α± =
α1 ∓ α2

√
2

αZ =α3 cos θW + α4 sin θW

αA = − α3 sin θW + α4 cos θW (D.34)

We then get

δF aG = − ∂µβ
a + gsf

abcβbGcµ

δFA = − ∂µαA

δFZ =∂µ(δZµ) −MZδϕZ

δF+ =∂µ(δW+
µ ) − iMW δϕ

+

δF− =∂µ(δW−µ ) + iMW δϕ
− (D.35)

Using the explicit form of the gauge transformations we can finally find the missing pieces,

δZµ = − ∂µαZ + ig cos θW
(
W+
µ α
− −W−µ α

+
)

(D.36)

δW+
µ = − ∂µα

+ + ig
[
α+ (Zµ cos θW −Aµ sin θw) − (αZ cos θw − αA sin θW )W+

µ

]

δW−µ = − ∂µα
− − ig

[
α− (Zµ cos θW −Aµ sin θw) − (αZ cos θw − αA sin θW )W−µ

]

and

δϕZ = − 1

2
g
(
α−ϕ+ + α+ϕ−

)
+

g

2 cos θW
αZ(v +H)

δϕ+ = − i
g

2
(v +H + iϕZ)α+ − i

g

2

cos 2θW
cos θW

ϕ+αZ + ie ϕ+αA

δϕ− =i
g

2
(v +H − iϕZ)α− + i

g

2

cos 2θW
cos θW

ϕ−αZ − ie ϕ−αA (D.37)

D.2.10 The Complete SM Lagrangian

Finally the complete Lagrangian for the Standard Model is obtained putting together all
the pieces. We have,

LSM = Lgauge + LFermion + LHiggs + LYukawa + LGF + LGhost (D.38)

where the different terms were given in Eqs. (D.19), (D.20), (D.23), (D.27), (D.29), (D.31).
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D.3 The Feynman Rules for QCD

We give separately the Feynman Rules for QCD and the electroweak part of the Standard
Model.

D.3.1 Propagators

−iδab
[

gµν
k2 + iǫ

− (1 − ξ)
kµkν
(k2)2

]
(D.39)µ, a ν, b

g

δab
i

k2 + iǫ
(D.40)

ω
a b

D.3.2 Triple Gauge Interactions

gfabc[ gµν(p1 − p2)
ρ + gνρ(p2 − p3)µ

+gρµ(p3 − p1)
ν ]

p1 + p2 + p3 = 0
(D.41)

µ, a ν, b

ρ, c

p1

p2

p3

D.3.3 Quartic Gauge Interactions

ii) Vértice quártico dos bosões de gauge

−ig2
[

feabfecd(gµρgνσ − gµσgνρ)

+feacfedb(gµσgρν − gµνgρσ)

+feadfebc(gµνgρσ − gµρgνσ)
]

p1 + p2 + p3 + p4 = 0

(D.42)
µ, a ν, b

ρ, cσ, d

p1 p2

p3p4

D.3.4 Fermion Gauge Interactions

ig(γµ)βαT
a
ij (D.43)

µ, a

α, jβ, i
p1

p2

p3
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D.3.5 Ghost Interactions

g Cabcpµ1

p1 +p2 + p3 = 0
(D.44)

µ, c

a b
p1

p2

p3

D.4 The Feynman Rules for the Electroweak Theory

D.4.1 Propagators

−i
[

gµν
k2 + iǫ

− (1 − ξ)
kµkν
(k2)2

]
(D.45)µ ν

γ

−igµν
k2 −M2

W + iǫ
(D.46)µ ν

W

−igµν
k2 −M2

Z + iǫ
(D.47)µ ν

Z

i(p/+mf )

p2 −m2
f + iǫ

(D.48)
p

i

p2 −M2
h + iǫ

(D.49)
p

h

i

p2 − ξm2
Z + iǫ

(D.50)
p

ϕZ

i

p2 − ξm2
W + iǫ

(D.51)
p

ϕ±
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D.4.2 Triple Gauge Interactions

−ie [gαβ(p − k)µ + gβµ(k − q)α + gµα(q − p)β] (D.52)
p q

k

W−α

W+
β

Aµ

ig cos θW [gαβ(p − k)µ + gβµ(k − q)α + gµα(q − p)β] (D.53)
p q

k

W−α

W+
β

Zµ

D.4.3 Quartic Gauge Interactions

−ie2 [2gαβgµµ − gαµgβν − gανgβµ] (D.54)

W+
α

Aµ

W−β

Aν

−ig2 cos2 θW [2gαβgµν − gαµgβν − gανgβµ] (D.55)

W+
α

Zµ

W−β

Zν

ieg cos θW [2gαβgµν − gαµgβν − gανgβµ] (D.56)

W+
α

Aµ

W−β

Zν

ig2 [2gαµgβν − gαβgµν − gανgβµ] (D.57)

W+
α W−β

W+
µ W−ν
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D.4.4 Charged Current Interaction

i
g√
2
γµ

1 − γ5
2

(D.58)

ψd,u

ψu,d
W±µ

D.4.5 Neutral Current Interaction

(D.59)

ψf

ψf

ψf

ψf

Zµ Aµ
i

g

cos θW
γµ

(
gfV − gfAγ5

)
−ieQfγµ

where

gfV =
1

2
T 3
f −Qf sin2 θW , gfA =

1

2
T 3
f . (D.60)

D.4.6 Fermion-Higgs and Fermion-Goldstone Interactions

−i g
2

mf

mW
(D.61)

h

f

f

−g T 3
f

mf

mW
γ5 (D.62)

ϕZ

f

f

i
g√
2

(
mu

mW
PR,L − md

mW
PL,R

)
(D.63)

ϕ∓

ψd,u

ψu,d

D.4.7 Triple Higgs-Gauge and Goldstone-Gauge Interactions

−i e (p+ − p−)µ (D.64)
Aµ

ϕ+

ϕ−
p−

p+
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i g
cos 2θW
2 cos θW

(p+ − p−)µ (D.65)
Zµ

ϕ+

ϕ−
p−

p+

∓ i

2
g (k − p)µ (D.66)W±µ

h

ϕ∓
k

p

g

2
(k − p)µ (D.67)W±µ

ϕZ

ϕ∓
k

p

g

2 cos θ
(k − p)µ (D.68)Zµ

h

ϕZ

k

p

−iemW gµν (D.69)

Aµ

W±ν

ϕ∓

−ig mZ sin2 θW gµν (D.70)

Zµ

W±ν

ϕ∓

ig mW gµν (D.71)
W±µ

W∓ν

h
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i
g

cos θW
mZ gµν (D.72)

Zµ

Zν

h

D.4.8 Quartic Higgs-Gauge and Goldstone-Gauge Interactions

i

2
g2 gµν (D.73)

h

h

W±µ

W∓ν

i

2
g2 gµν (D.74)

ϕZ

ϕZ

W±µ

W∓ν

i

2

g2

cos2 θW
gµν (D.75)

h

h

Zµ

Zν

i

2

g2

cos2 θW
gµν (D.76)

ϕZ

ϕZ

Zµ

Zν
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2i e2 gµν (D.77)

ϕ+

ϕ−

Aµ

Aν

i

2

(
g cos 2θW

cos θW

)2

gµν (D.78)

ϕ+

ϕ−

Zµ

Zν

i

2
g2 gµν (D.79)

ϕ+

ϕ−

W+
µ

W−ν

−i g2 sin2 θW
2 cos θW

gµν (D.80)

ϕ∓

h

W±µ

Zν

∓ g2
sin2 θW
2 cos θW

gµν (D.81)

ϕ±

ϕZ

W∓µ

Zν

− i

2
eg gµν (D.82)

ϕ±

h

W∓µ

Aν
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±1

2
eg gµν (D.83)

ϕ∓

ϕZ

W±µ

Aν

−i eg cos 2θW
cos θW

gµν (D.84)

ϕ+

ϕ−

Zµ

Aν

D.4.9 Triple Higgs and Goldstone Interactions

− i

2
g
m2
h

mW
(D.85)

ϕ−

ϕ+

h

−3

2
i g

m2
h

mW
(D.86)

h

h

h

− i

2
g
m2
h

mW
(D.87)

ϕZ

ϕZ

h
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D.4.10 Quartic Higgs and Goldstone Interactions

− i

2
g2

m2
h

m2
W

(D.88)

ϕ+

ϕ+

ϕ−

ϕ−

− i

4
g2

m2
h

m2
W

(D.89)

ϕ+

ϕ−

h

h

− i

4
g2

m2
h

m2
W

(D.90)

ϕ+

ϕ−

ϕZ

ϕZ

−3

4
i g2

m2
h

m2
W

(D.91)

h

h

h

h

− i

4
g2
m2
h

m2
W

(D.92)

ϕZ

ϕZ

h

h
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−3

4
i g2

m2
h

m2
W

(D.93)

ϕZ

ϕZ

ϕZ

ϕZ

D.4.11 Ghost Propagators

i

k2 + iǫ
(D.94)

cA

i

k2 − ξm2
W + iǫ

(D.95)
c±

i

k2 − ξm2
Z + iǫ

(D.96)
cZ

D.4.12 Ghost Gauge Interactions

∓ie pµ (D.97)
Aµ

c±

c±
p

±ig cos θW pµ (D.98)
Zµ

c±

c±
p

∓ ig cos θW pµ (D.99)
W±µ

c±

cZ

p
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± ie pµ (D.100)
W±µ

c±

cA

p

∓ ig cos θW pµ (D.101)
W∓µ

c±

cZ
p

± ie pµ (D.102)
W∓µ

c±

cA
p

D.4.13 Ghost Higgs and Ghost Goldstone Interactions

± g

2
ξ mW (D.103)

ϕZ

c±

c±

− i

2
g ξ mW (D.104)

h

c±

c±

− ig

2 cos θW
ξ mZ (D.105)

h

cZ

cZ
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i

2
g ξ mZ (D.106)

ϕ∓

c±

cZ

−ig cos 2θW
2 cos θW

ξ mW (D.107)
ϕ±

c±

cZ

ie ξ mW (D.108)
ϕ±

c±

cA


