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1 Introduction

The discovery of the Higgs boson at the Large Hadron Collider (LHC) by the ATLAS [1]

and CMS [2] collaborations has ignited a very large number of studies in the context of

multi-Higgs models. It is now clear that some features of the Higgs couplings to fermions

and gauge bosons have to be well within the Standard Model (SM) predictions. Also, even

if other heavy scalars are far from being experimentally excluded, there is still no hint of

scalar particles other than the 125 GeV one. However, even if no large deviations from

the SM were found, many of its extension are still in agreement with all experiment data.

Many models provide interesting scenarios that can be probed at the next LHC run while

contributing to solve some of the outstanding problems in particle physics. Such is the

case of the complex two-Higgs double model (C2HDM). The 2HDM was first proposed

by T. D. Lee [3] as an attempt to understand the matter-antimatter asymmetry of the

universe (the 2HDM is described in detail in [4, 5]).

The 2HDM is a simple extension of the SM where the potential is still invariant under

SU(2) × U(1) but is now built with two complex scalar doublets. The complex two-Higgs

doublet model is the version of the model that allows for CP-violation in the potential,

providing therefore an extra source of CP-violation to the theory. The existing experimental

data and in particular the one recently analysed at the LHC has been used in several studies

with the goal of constraining the parameter space of the C2HDM [6–9] or just the Yukawa

couplings [10].

The main purpose of this work is to analyse scenarios in the C2HDM that deviate from

the SM predictions, while being in agreement with all available experimental and theoretical

constraints. These are scenarios where the scalar component of the Higgs coupling to

leptons or to b-quarks vanishes. The respective pseudoscalar component has to be non-zero

which does not necessarily imply a very large CP-violating parameter. Even if the scalar
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component is not exactly zero, there are still Yukawa couplings where the pseudoscalar

component can be much larger than the corresponding scalar component.

We will start by discussing the status of the C2HDM. Presently the processes pp →
h → WW (ZZ), pp → h → γγ and pp → h → τ+τ− are measured with an accuracy of

about 20%. On the other hand pp→ V (h→ bb̄) has been measured at the Tevatron and at

the LHC with an accuracy of about 50% [11, 12] while for pp→ h→ Zγ an upper bound

of the order of ten times the SM expectation at the 95% confidence level was found [13, 14].

In order to understand how the model will perform at the end of the next LHC run we

use the expected precisions on the signal strengths of different Higgs decay modes by the

ATLAS [15, 16] and CMS [17] collaborations (see also [18]) for
√
s = 14 TeV and for 300

and 3000 fb−1 of integrated luminosities. As previously shown in [9], the final states V V ,

γγ and τ+τ− are enough to reproduce quantitatively the effect of all possible final states

in the Higgs decay. Therefore, taking into account the predicted precision for the signal

strength, we will consider the situations where, at 13 TeV, the rates are measured within

either 10% or 5% of the SM prediction. We should note that no difference can be seen in

the plots when the energy is changed from 13 to 14 TeV as discussed in [9].

This paper is organized as follows. In section 2, we describe the complex 2HDM and

the constraints imposed by theoretical and phenomenological considerations including the

most recent LHC data. In section 3 we discuss the present status of the model and in

section 4 we discuss the scenarios where the pure scalar component of the Yukawa coupling

is allowed to vanish. Our conclusions are presented in section 5.

2 The complex 2HDM

The complex 2HDM was recently reviewed in great detail in [9] (see also [6, 19–24]).

Therefore, in this section we will just briefly describe the main features of the complex

two two-Higgs doublet with a softly broken Z2 symmetry φ1 → φ1, φ2 → −φ2 whose scalar

potential we write as [5]

VH = m2
11|φ1|2 +m2

22|φ2|2 −m2
12 φ

†
1φ2 − (m2

12)
∗ φ†2φ1

+
λ1
2
|φ1|4 +

λ2
2
|φ2|4 + λ3|φ1|2|φ2|2 + λ4 (φ†1φ2) (φ†2φ1)

+
λ5
2

(φ†1φ2)
2 +

λ∗5
2

(φ†2φ1)
2. (2.1)

All couplings except m2
12 and λ5 are real due to the hermiticity of the potential. The

complex 2HDM model as first defined in [19], is obtained by forcing arg(λ5) 6= 2 arg(m2
12)

in which case the two phases cannot be removed simultaneously. From now on we will refer

to this model as C2HDM.

We choose a basis where the vacuum expectation values (vevs) are real. Whenever we

refer to the CP-conserving 2HDM, not only the vevs, but also m2
12 and λ5 are taken real.

Therefore, 2HDM refers to a softly broken Z2 symmetric model where all parameters of
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the potential and the vevs are real. Writing the scalar doublets as

φ1 =

 ϕ+
1

1√
2
(v1 + η1 + iχ1)

 , φ2 =

 ϕ+
2

1√
2
(v2 + η2 + iχ2)

 , (2.2)

with v =
√
v21 + v22 = (

√
2Gµ)−1/2 = 246 GeV, they can be transformed into the Higgs

basis by [25, 26] (
H1

H2

)
=

(
cβ sβ

−sβ cβ

)(
φ1

φ2

)
, (2.3)

where tan β = v2/v1, cβ = cosβ, and sβ = sinβ. In the Higgs basis the second doublet

does not get a vev and the Goldstone bosons are in the first doublet.

Defining η3 as the neutral imaginary component of the H2 doublet, the mass eigenstates

are obtained from the three neutral states via the rotation matrix R
h1

h2

h3

 = R


η1

η2

η3

 (2.4)

which will diagonalize the mass matrix of the neutral states via

RM2RT = diag
(
m2

1,m
2
2,m

2
3

)
, (2.5)

and m1 ≤ m2 ≤ m3 are the masses of the neutral Higgs particles. We parametrize the

mixing matrix R as [21]

R =


c1c2 s1c2 s2

−(c1s2s3 + s1c3) c1c3 − s1s2s3 c2s3

−c1s2c3 + s1s3 −(c1s3 + s1s2c3) c2c3

 (2.6)

with si = sinαi and ci = cosαi (i = 1, 2, 3) and

− π/2 < α1 ≤ π/2, −π/2 < α2 ≤ π/2, −π/2 ≤ α3 ≤ π/2. (2.7)

The potential of the C2HDM has 9 independent parameters and we choose as input

parameters v, tanβ, mH± , α1, α2, α3, m1, m2, and Re(m2
12). The mass of the heavier

neutral scalar is then given by

m2
3 =

m2
1R13(R12 tanβ −R11) +m2

2 R23(R22 tanβ −R21)

R33(R31 −R32 tanβ)
. (2.8)

The parameter space will be constrained by the condition m3 > m2.

In order to perform a study on the light Higgs bosons we need the Higgs coupling to

gauge bosons that can be written as [6]

C = cβR11 + sβR12 = cos (α2) cos (α1 − β), (2.9)
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Type I Type II Lepton Flipped

Specific

Up R12
sβ
− icβ R13

sβ
γ5

R12
sβ
− icβ R13

sβ
γ5

R12
sβ
− icβ R13

sβ
γ5

R12
sβ
− icβ R13

sβ
γ5

Down R12
sβ

+ icβ
R13
sβ
γ5

R11
cβ
− isβ R13

cβ
γ5

R12
sβ

+ icβ
R13
sβ
γ5

R11
cβ
− isβ R13

cβ
γ5

Leptons R12
sβ

+ icβ
R13
sβ
γ5

R11
cβ
− isβ R13

cβ
γ5

R11
cβ
− isβ R13

cβ
γ5

R12
sβ

+ icβ
R13
sβ
γ5

Table 1. Yukawa couplings of the lightest scalar, h1, in the form a+ ibγ5.

and the Higgs couplings to a pair of charged Higgs bosons [6]

− λ = cβ
[
s2βλ145 + c2βλ3

]
R11 + sβ

[
c2βλ245 + s2βλ3

]
R12 + sβcβ Im(λ5)R13, (2.10)

where λ145 = λ1 − λ4 − Re(λ5) and λ245 = λ2 − λ4 − Re(λ5). Finally we also need the

Yukawa couplings. In order to avoid flavour changing neutral currents (FCNC) we extend

the Z2 symmetry to the Yukawa Lagrangian [27, 28]. The up-type quarks couple to φ2 and

the usual four models are obtained by coupling down-type quarks and charged leptons to

φ2 (Type I) or to φ1 (Type II); or by coupling the down-type quarks to φ1 and the charged

leptons to φ2 (Flipped) or finally by coupling the down-type quarks to φ2 and the charged

leptons to φ1 (Lepton Specific). The Yukawa couplings can then be written, relative to the

SM ones, as a+ ibγ5 with the coefficients presented in table 1.

From the form of the rotation matrix R (2.6), it is clear that when s2 = 0, the

pseudoscalar η3 does not contribute to the mass eigenstate h1. It is also obvious that when

s2 = 0 the pseudoscalar components of all Yukawa couplings vanish. Therefore, we can state

|s2| = 0 =⇒ h1 is a pure scalar, (2.11)

|s2| = 1 =⇒ h1 is a pure pseudoscalar. (2.12)

There are however other interesting scenarios that could be in principle allowed. We

could ask ourselves if a situation where the scalar couplings aF ≈ 0 (F = U,D,L) is still

allowed after the 8 TeV run. As aU is fixed (the same for all Yukawa types) and given

by aU = R12/sβ = s1c2/sβ , it can only be small if s1 ≈ 0. If instead c2 ≈ 0 the h1V V

coupling C in eq. (2.9) would vanish which is already disallowed by experiment. There is

one other coupling that could also vanish, which is R11/cβ = c1c2/cβ (this is for example

the expression for aD in Type II). Again this scalar part could vanish if c1 ≈ 0. In either

case, s1 ≈ 0 or c1 ≈ 0, the important point to note is that the pseudoscalar component of

the 125 GeV Higgs is not constrained by the choice of α1 because it depends only on s2.

We will discuss these scenarios in detail in section 4.

3 Present status of the C2HDM

We start by briefly reviewing the status of the C2HDM after the 8 TeV run. We will gen-

erate points in parameter space with the following conditions: the lightest neutral scalar is
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m1 = 125 GeV,1 the angles α1,2,3 all vary in the interval [−π/2, π/2], 1 ≤ tanβ ≤ 30,

m1 ≤ m2 ≤ 900 GeV and −(900 GeV)2 ≤ Re(m2
12) ≤ (900 GeV)2. Finally, we con-

sider different ranges for the charged Higgs mass because the constraints from B-physics,

and in particular the ones from b → sγ, affect differently Type II/F and Type I/LS.

In Type II and F the range for the charged Higgs mass is 340 GeV ≤ mH± ≤ 900 GeV

due to b → sγ which forces mH± & 340 GeV almost independently of tan β [31, 32]. In

Type I and LS the range is 100 GeV ≤ mH± ≤ 900 GeV because the constraint from

b → sγ is not as strong. The remaining constraints from B-physics [33, 34] and from the

Rb ≡ Γ(Z → bb̄)/Γ(Z → hadrons) [35–37] measurement have a similar effect on all models

forcing tan β & 1. The choice of the lower bound of 100 GeV is due to LEP searches on

e+e− → H+H− [38] and the latest LHC results on pp → t̄ t(→ H+b̄) [39–43]. Very light

neutral scalars are also constrained by LEP results [44].

Finally we should comment on the effect of the constraints which arise from the LHC

bounds on the heavy scalars. There are two searches that can potentially constrain the

parameter space of the C2HDM, namely pp → φ → W+W−(ZZ) [45, 46] and pp → φ →
τ+τ− [47, 48], where φ is a spin zero particle. The first one does not influence significantly

the allowed parameter space because the results on the light Higgs couplings constrain the

h1W
+W−(ZZ) coupling in such a way that gC2HDM

h1W+W−/g
SM
hW+W− is forced to be close to 1.

Since the other scalars couplings to massive gauge bosons obey a sum rule with the 125 GeV

Higgs, h1, the results on the latter saturate the sum rule such that the remaining two scalar

couplings have to be very small and consequently the respective bounds play a small role

in the result. This is even more true if we ask the signal strengths measured at LHC to

be within 5% of the Standard Model. Regarding the bound coming from pp → φτ+τ− it

affects the very low mass region and high tan β. Since almost all of our allowed points have

low to moderate tan β the results are not affected by this bound. We should note that in

any case the above analysis does not mean that there isn’t a single point affected by the

results on the heavy scalars. The correct statement is that our plots do not change nor in

their form nor in the average density of allowed points.

All points comply to the following theoretical constraints: the potential is bounded

from below [49], perturbative unitarity is enforced [50–52] and all allowed points conform

to the oblique radiative parameters [53–55].

The signal strength is defined as

µhif =
σBR(hi → f)

σSM BRSM(hi → f)
(3.1)

where σ is the Higgs boson production cross section and BR(hi → f) is the branching

ratio of the hi decay into the final state f ; σSM and BRSM(h → f) are the respective

quantities calculated in the SM. The gluon fusion cross section is calculated at NNLO

using HIGLU [56] together with the corresponding expressions for the CP-violating model

in [9]. SusHi [57] at NNLO is used for calculating bb̄→ h, while V h (associated production),

tt̄h and V V → h (vector boson fusion) can be found in [58]. As previously discussed we

1The latest results on the measurement of the Higgs mass are 125.36 ± 0.37 GeV from ATLAS [29] and

125.02 + 0.26 − 0.27 (stat) +0.14 − 0.15 (syst) GeV from CMS [30].
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Figure 1. α2 vs. α1 for Type I (left) and Type II (right). The rates are taken to be within 20%

of the SM predictions. The colours are superimposed with cyan/light-grey for µV V , blue/black for

µττ and finally red/dark-grey for µγγ with a center of mass energy of 8 TeV.

will consider the rates for the processes µV V , µγγ and µττ to be within 20% of the expected

SM value, which at present roughly matches the average precision at 1σ. It was shown

in [9] that taking into account other processes with the present attained precision has no

significant impact in the results.

We start by examining the parameter space for a center of mass energy of
√
s = 8 TeV

corresponding to the end of the first LHC run. The rates are taken at 20% and the

effect of considering each of the rates at a time is shown by superimposing the colours,

cyan/light-grey (µV V ), blue/black (µττ ) and finally red/dark-grey (µγγ). In figure 1 we

present the allowed space for the angles α2 vs. α1 for Type I (left) and Type II (right)

with all theoretical and collider constraints taken into account. The corresponding plots

for the Flipped (Lepton specific) are very similar to the one for Type II (I) and are not

shown. It was expected that α2 would be centred around zero where the pseudoscalar

component vanishes. Also α1 plays the role of α + π/2, where α is the rotation angle in

the CP-conserving case.2 In previous works for the CP-conserving model [59, 60] we have

made estimates for the allowed parameters based on the assumption that the production

is dominated by gluon fusion and that Γ(h1 → bb̄) is to a good approximation the Higgs

total width. Under a similar approximation, we can write for Type I and large tan β (when

tanβ � 1, bi � 1 and we recover the CP-conserving Yukawa couplings)

µIV V ≈ cos2 α2 cos2(β − α1) . (3.2)

Since we are considering a 20% accuracy, it is clear that neither cos α2 nor cos(β−α1) can

be close to zero. In fact, a measurement of µV V with a 20% (5%) accuracy and centred at

the SM expected value implies cos2 α2 & 0.8(0.95) and consequently | sinα2| . 0.45(0.22)

and |α2| . 27◦(13◦). Although the approximations captures the features, the plot does not

reproduce the exact value of the limit, which for a 20% accuracy is slightly below 50◦.

2We can choose a parametrization where the angle α1 is exactly α in that limit. See for example the

definition of the rotation matrix in [7] as compared to our equation (2.6).
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Figure 2. Top: tan β as a function of R11 (left), R12 (middle) and R13 for Type I. Bottom: same

but for Type II. The rates are taken to be within 20% of the SM predictions. The colours are

superimposed with cyan/light-grey for µV V , blue/black for µττ and finally red/dark-grey for µγγ
with a center of mass energy of 8 TeV.

In figure 2 we show tan β as a function of R11 (left), R12 (middle) and R13 (right). The

upper plots are for Type I and the lower plots for Type II. Again the differences of Type

II (I) relative to F (LS) are small and we do not show the corresponding plots. We start

with R13 which is just sinα2, thus measuring the amount of CP-violation for the 125 GeV

Higgs, that is, the magnitude of its pseudoscalar component. The allowed points are centred

around zero where we recover a SM-like Higgs Yukawa coupling for the lightest scalar state.

The differences between the models only occur for large tan β, reflecting the different angle

dependence of the couplings in the various models. We now discuss R12 = sinα1 cosα2.

Using the same approximation for µV V as in eq. (3.2) we can write for large tan β

µIV V ≈ R2
12 , (3.3)

which means that if we take |R2
12| > 0.8 then R12 > 0.89 or R12 < −0.89. These are

exactly the bounds we see in the plots for Type I. Therefore, as already happened for the

CP-conserving case it is mainly µV V that constrains |R12| to be close to 1 especially for

large tan β. Finally R11 = cosα1 cosα2 is only indirectly constrained by the bounds on

α1 and α2. Since the pure scalar part of the coupling relative to the SM is proportional

to R2
11 (1 + tan2 β) it is natural that when R11 increases, tan β decreases. However, the

most important point to note is that R11 = 0 is allowed. Although R11 is never part of

the Yukawa couplings in Type I, it appears in pure scalar couplings for down-type quarks

or/and charged leptons in the remaining types. This in turn implies that scenarios where

aD = 0 and/or aL = 0 are not excluded. Models Type II, F and LS can therefore have

– 7 –
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Figure 3. tanβ as a function of sin(α1 − π/2) with all rates at 20% for Type I (left), Type II

(middle) and LS (right). All angles are free to vary in their allowed range (cyan/light-grey) and we

impose the constraint s2 < 0.1 (blue/black) and s2 < 0.05 (red/dark-grey).

a pure pseudoscalar component for some of its Yukawa couplings. This scenario will be

discussed in detail in the next section.

In figure 3 we present tan β as a function of sin(α1 − π/2) with all rates at 20% for

Type I (left), Type II (middle) and LS (right). All angles are free to vary in their allowed

range and we present scenarios for which s2 < 0.1 and s2 < 0.05. We plot α1−π/2 instead

of α1 to match the usual definition for the CP-conserving model. Since we recover the

CP-conserving h1 couplings when s2 = 0, the red/dark-grey outer layer for Type II and

LS has to match the bounds for the angle α in the CP conserving case which is indeed the

case [5]. If we identify α1 with α+π/2, where α is the rotation angle for the CP-conserving

scenario, we can write the coupling to gauge bosons as

gCPV
hV V = cos (α2) g

CPC
hV V . (3.4)

Hence, for Type I µV V will either give the same bound as in the CP-conserving case or

worse as cos (α2) decreases. However, for Type II, the same approximation that lead to

eq. (3.2) for Type I results for Type II in

µIIV V ≈
cos2 α2 cos2(β − α1)

tan2 β

sin2 α1 cos2 α2 + sin2 α2 cos2 β

cos2 α1 cos2 α2 + sin2 α2 sin2 β
. (3.5)

Again, if s2 = 0 we recover the CP-conserving expression. However, it can be shown that

larger values of s2 together with smaller values of tan β still fulfil the constraints on the

rates. We conclude that in Type I, the allowed parameter space is the same as in the

CP-conserving case while, for the remaining types and for a given α1, the upper bound on

tanβ is the same as in the CP-conserving case. But, now, there is no lower bound on tan β.

4 The zero scalar components scenarios and the LHC run 2

In the previous section we have shown that R11 = 0 is still allowed, which implies that

the pure scalar components of the Yukawa couplings can be zero in some scenarios. This

possibility arises in Type II, F and LS. In particular for Type II we have aD = aL = 0

while in F (LS) only aD = 0 (aL = 0) is possible. For definiteness let us now analyse the

– 8 –
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Figure 4. Left: sgn(C) bD = sgn(C) bL as a function of sgn(C) aD = sgn(C) aL for Type II and

a center of mass energy of 13 TeV with all rates at 10% (blue/black), 5% (red/dark-grey), and 1%

(cyan/light-grey). Right: same, but for sgn(C) bU as a function of sgn(C) aU .

case where aD = 0 in Type II. Since aD = R11/cβ = c1c2/cβ we could in principle have

c1 = 0 or c2 = 0. However, c2 = 0 would mean that the gauge bosons would not couple at

tree level to the Higgs, a scenario that is ruled out by experiment as shown in the previous

section. Setting c1 = 0 we get, in Type II, aD = aL = 0 and

a2U = c22/s
2
β , b2U = s22/t

2
β , b2D = b2L = t2βs

2
2, C2 = s2βc

2
2 . (4.1)

In the left panel of figure 4 we show bD = bL as a function of aD = aL for Type II and

a center of mass energy of 13 TeV with all rates at 10% (blue/black), 5% (red/dark-grey),

and 1% (cyan/light-grey) (in order to avoid the dependence on the phase conventions in

choosing the range for the angles αi, we plot sgn(C) ai (sgn(C) bi) instead of ai (bi) with i =

U,D,L). It is quite interesting to note that this scenario is still possible with the rates at 5%

of the SM value at the LHC at 13 TeV. We have checked that this is still true at 2% and only

when the accuracy reaches 1% are we able to exclude the scenario. So far we have discussed

aD = 0. Another interesting point is that when |aD| → 0, |bD| → 1. The requirement that

|bD| ≈ 1 implies that the couplings of the up-type quarks to the lightest Higgs take the form

a2U = (1− s42) = (1− 1/t4β), b2U = s42 = 1/t4β , (4.2)

while the coupling to massive gauge bosons is now

C2 = (t2β − 1)/(t2β + 1) = (1− s22)/(1 + s22) . (4.3)

In the right panel of figure 4 we now show bU as a function of aU for Type II with the same

colour code. We conclude from the plot that the constraint on the values of (aU , bU ) are

already quite strong and will be much stronger in the future just taking into account the

measurement of the rates.

We would like to understand why aU ∼ 1 and bU ∼ 0, while the bounds are much

looser for aD. We start by noting that the couplings impose different constraints on the

– 9 –
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Figure 5. Left: simulation points on the sgn(C) aD versus sgn(C) bD plane. In cyan/light-grey

(orange/dark-grey; blue/black) we show the points which pass all theoretical constraints (pass, in

addition, the restriction from µV V at 10%; pass, in addition, the restriction from all µ’s at 10%).

Right: same constraints on the sgn(C) aU versus sgn(C) bU plane.

up and down sectors. Indeed, from table 1 and eq. (2.9),

R11 =
C − s2β aU

cβ
; R12 = sβ aU ; R13 = − tanβ bU , (4.4)

for the up sector, while

R11 = cβ aD; R12 =
C − c2β aD

sβ
; R13 = −

cβ
sβ
bD, (4.5)

for the down sector. In the first case, R2
12 +R2

13 < 1 leads to

a2U +
b2U
c2β

<
1

s2β
. (4.6)

Noting that the tan β > 1 constraint forces cβ < 1/
√

2 and sβ > 1/
√

2, we find bU < 1, while

aU <
√

2. This is what we see in the right panel of figure 5, where in cyan we show points

which are subject only to the theoretical constraints. We see that all points lye inside the el-

lipse in eq. (4.6). The constraint from the µV V bound (orange/dark-grey points in the right

panel of figure 5) then places the points on a section of that ellipse close to (aU , bU ) ∼ (0, 1).

The situation is completely different for the down sector. Indeed, a similar analysis

starting from eqs. (4.5) and R2
11 +R2

13 < 1, would lead to

a2D +
b2D
s2β

<
1

c2β
. (4.7)

Since cβ can be very small, this entails no constraint at all, agreeing with the fact that

the cyan/light-grey points in the left panel of figure 5 have no restriction. In contrast, it

is the bound on µV V which constrains the parameter space to the orange/dark-grey circle

centered at (0, 0). But now, the whole circle is allowed.
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Figure 6. Left: sgn(C) bD = sgn(C) bL as a function of sgn(C) aD = sgn(C) aL for Type II and

a center of mass energy of 13 TeV with µV V within 20% (orange/light-grey) and 10% (blue/black)

of the SM.

The constraints from µV V can be understood with simple arguments as follows. It

was shown in [60], in the real 2HDM, that the limits on µV V impose rather non trivial

constraints on the coupling to fermions which, however, can be understood from simple

trigonometry. Following the spirit of that article, we assume that the production is mainly

due to gg → h1 with an intermediate top in the triangle loop, and that the scalar decay

width is dominated by the decay into bb̄. As a result,

µV V ∼ (a2U + 1.5 b2U )
C2

a2D + b2D
, (4.8)

where the approximate factor of 1.5 is what one would obtain either from a naive one-

loop calculation,3 or from a full HIGLU simulation [56]. Applying this formula, we obtain

figure 6, where we have taken µV V within 20% (orange/light-grey) or 10% (blue/black)

of the SM, letting the angles vary freely within their theoretically allowed ranges. The

similarity between the left (right) panes of figures 5 (a full model simulation) and figure 6

(a simple trigonometric exercise) is uncanny.

Further constraints are brought about by a second simple geometrical argument. They

place all solutions close to (a, b) ∼ (1, 0) when C is close to unity. We use eqs. (4.4) to derive

1 = R2
11 +R2

12 +R2
13 =

(C − s2β aU )2

c2β
+ s2β a

2
U + tan2 β b2U , (4.9)

leading to

(aU − C)2 + b2U =
1

tan2 β
[1− C2]. (4.10)

This is a circle centered at (C, 0), which excludes most cyan/light-grey points on the right

panel of figure 5. Since C is close to unity, and appears divided by tan β (which must be

larger than one), the radius is almost zero, forcing aU to lie close to C ∼ 1, and bU close to

3See, for instances, equations (A7)-(A9) and (A14) in [6].
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Figure 7. Left: tan β as a function of sinα2 for Type II and a center of mass energy of 13 TeV

with all rates at 10% (blue/black). In red/dark-grey we show the points with |aD| < 0.1 and

||bD| − 1| < 0.1 and in green |bD| < 0.05 and ||aD| − 1| < 0.05 Right: same, with tan β replaced by

cosα1.

0. Including all channels at 10% restricts the region even further, as seen in the blue/black

points on the right panel of figure 5. It is true that an equation similar to eq. (4.10) can

be found for the down sector:

(aD − C)2 + b2D = tan2 β [1− C2]. (4.11)

However, the different placement of tan β is crucial. For intermediate to large tan β, the

tan2 β factor in eq. (4.11) enhances the radius with respect to that allowed by the cot2 β

factor in eq. (4.10). This explains the difference between the red/dark-grey points on the

two panels in figure 4.

We now turn to the constraints on the sinα2-tanβ plane. When we choose µV V > 0.9

in the exact limit (|aD|, |bD|) = (0, 1), we obtain, using the approximation in eq. (3.5)

tanβ > 4.4. Because we are not in the exact limit, the bound we present in the left plot

of figure 7 for tanβ is closer to 3. The left panel of figure 7 shows tan β as a function of

sinα2 for Type II and a center of mass energy of 13 TeV with all rates at 10% (blue/black).

In red/dark-grey we show the points with |aD| < 0.1 and ||bD| − 1| < 0.1 and in green

|bD| < 0.05 and ||aD|−1| < 0.05. In the right panel, tan β is replaced by cosα1. These two

plots allow us to distinguish the main features of the SM-like scenario, where (|aD|, |bD|) ≈
(1, 0) from the pseudoscalar scenario where (|aD|, |bD|) ≈ (0, 1). In the SM-like scenario

sinα2 ≈ 0, tanβ is not constrained and the allowed values of sinα2 grow with increasing

cosα1. In the pseudoscalar scenario cosα1 ≈ 0, sinα2 and tanβ are strongly correlated and

tanβ has to be above ≈ 3. Clearly, all values of aD and bD are allowed provided a2D+b2D ≈ 1.

In the left panel of figure 8 we show bU as a function of aU for Type I and a center of

mass energy of 13 TeV with all rates at 10% (blue/black) and 5% (red/dark-grey). In Type

I this plot is valid for all Yukawa couplings, because aU = aD = aL and bU = bD = bL. It is

interesting that even at 10% there are points close to (a, b) = (0.5, 0.6) still allowed and no

dramatic changes happen when we move to 5%. In the right plot we show bL as a function

– 12 –
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Figure 8. Left: sgn(C) bU as a function of sgn(C) aU for Type I and a center of mass energy of

13 TeV with all rates at 10% (blue/black) and 5% (red/dark-grey). Right: sgn(C) bL as a function

of sgn(C) aL for LS and a center of mass energy of 13 TeV with all rates at 10% (blue/black) and

5% (red/dark-grey).

of aL for LS with the same colour code. Here again the (aL, bL) = (0, 1) scenario is still

allowed both with 10% and 5% accuracy. However, as was previously shown, the wrong

sign limit is not allowed for the LS model [60, 61]. Nevertheless, in the C2HDM, the scalar

component sgn(C) aL can reach values close to −0.8. Finally, for the up-type and down-

type quarks, the plots are very similar to the one in the right panel of figure 4 for Type II.

4.1 Direct measurements of the CP-violating angle

Although precision measurements already constrain both the scalar and pseudoscalar com-

ponents of the Yukawa couplings in the C2HDM, there is always the need for a direct (and

thus, more model independent) measurement of the relative size of pseudoscalar to scalar

components of the Yukawa couplings. The angle that measures this relative strength, φi,

defined as

tanφi = bi/ai i = U, D, L , (4.12)

could in principle be measured for all Yukawa couplings. The experimental collaborations

at CERN will certainly tackle this problem when the high luminosity stage is reached,

through any variables able to measure the ratio of the pseudoscalar to scalar component of

the Yukawa couplings. There are several proposals for a direct measurement of this ratio,

which focus mainly on the tth and on the τ+τ−h couplings. Measurement of bU/aU were

first proposed for pp → tt̄h in [62] and more recently reviewed in [63–65]. A proposal to

probe the same vertex through the process pp→ hjj [66] was put forward in [67] and again

more recently in [68]. In reference [68] an exclusion of φt > 40◦ (φt > 25◦) for a luminosity

of 50 fb−1 (300 fb−1) was obtained for 14 TeV and assuming φt = 0 as the null hypothesis.

A study of the τ+τ−h vertex was proposed in [69] (see also [70, 71]) and a detailed study

taking into account the main backgrounds [72] lead to an estimate in the precision of ∆φτ
of 27◦ (14.3◦) for a luminosity of 150 fb−1 (500 fb−1) and a center of mass energy of 14 Tev.
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Figure 9. Top: tan β (left), sinα2 (middle) and cosα1 (right) as a function of φU = tan−1(bU/aU )

for Type I with rates at 20% (green) and 5% (red/dark-grey). Bottom: same but for Type II.

Since in the C2HDM the couplings are not universal, one would need in principle three

independents measurements, one for up-type quarks, one for down-type quarks and one

for leptons. The number of independent measurements is of course model dependent. For

Type I one such measurement is enough because the Yukawa couplings are universal. For

all other Yukawa types we need two independent measurements. It is interesting to note

that for model F, since the leptons and up-type quarks coupling to the Higgs are the same,

a direct measurement of the hbb vertex is needed to probe the model. On the other hand,

and again using model F as an example, a different result for φt and φτ would exclude

model F (and also Type I).

Let us first discuss what we can already say about the allowed range for the φU ≡ φt
angle and what to expect by the end of the LHC’s run 2 using only the rates’ measurements.

In figure 9 we show on the top row tan β (left), sinα2 (middle) and cosα1 (right) as

a function of φU = tan−1(bU/aU ) for Type I, with rates within 20% (green) and 5%

(red/dark-grey) of the SM prediction. In the bottom row we present the same plots but for

Type II. The green points are a good approximation for the allowed region after run 1, while

the red/dark-grey points are a good prediction for the allowed space with the run 2 high

luminosity results. The most striking features of the plots are the following. For Type I the

angle φU = φD = φL is between −75◦ and 75◦ and this interval will be reduced to roughly

−45◦ and 45◦ provided the measured rates are in agreement with the SM predictions. For

Type II only φU is constrained; we get |φU | < 30◦ and the prediction of roughly |φU | < 15◦

when rates are within 5% of the SM predictions. Since the Higgs couplings to top quarks

are the same for all models, the angle that relates scalar and pseudoscalar components for

– 14 –



J
H
E
P
0
6
(
2
0
1
5
)
0
6
0

Figure 10. Left: cosα1 as a function of tan−1(bD/aD) for Type II and a center of mass energy

of 13 TeV with all rates at 10% (blue/black). In red/dark-grey we show the points with |aD| < 0.1

and ||bD| − 1| < 0.1 and in green |bD| < 0.05 and ||aD| − 1| < 0.05. Right: same, with cosα1

replaced by sgn(C) aD.

this vertex is related to the lightest Higgs CP-violating angle α2 by

tanφt = −cβ/s1 tanα2 ⇒ tanα2 = −s1/cβ tanφt . (4.13)

The parameter space is restricted in such a way that high tan β implies low α2. Since s1
cannot be too small, it is clear from equation (4.13) that large tan β necessarily implies a

small φt. This is clearly seen in the left top and bottom plots of figure 9 where for large

tanβ the pseudoscalar component of the up-type quarks Yukawa coupling is very close

to zero. Interestingly, for both Type I and Type II the values of tan β ∼ O(1) are the

ones for which the angle φt is less constrained. These are exactly the values for which

the the coupling tth has a maximum value (already considering the remaining constraints

that disallow values of tan β below 1). Therefore, a direct measurement of φt could still be

competitive with the rates measurement in Type I.

Let us now move to the Yukawa versions that can have a zero scalar component not

only at the end of run 1, but also at the end of run 2, if only the rates are considered. For

definiteness we focus on Type II. As previously discussed, a direct measurement involving

the vertex hτ+τ− [69, 72] could lead to a precision in the measurement of φτ , ∆φτ , of 27◦

(14.3◦) for a luminosity of 150 fb−1 (500 fb−1) and a center of mass energy of 14 Tev. In

figure 10 (left) we show cosα1 as a function of tan−1(bD/aD) for Type II and a center of

mass energy of 13 TeV with all rates at 10% (blue/black). In red/dark-grey we show the

points with |aD| < 0.1 and ||bD|−1| < 0.1 and in green |bD| < 0.05 and ||aD|−1| < 0.05. In

the right panel cosα1 is replaced by sgn(C) aD. It is clear that the SM-like scenario sgn(C)

(aD, bD) = (1, 0) is easily distinguishable from the (0, 1) scenario. In fact, a measurement

of φτ even if not very precise would easily exclude one of the scenarios. Obviously, all other

scenarios in between these two will need more precision (and other measurements) to find

the values of scalar and pseudoscalar components. The τ+τ−h angle is related to α2 as

tanφτ = −sβ/c1 tanα2 ⇒ tanα2 = −c1/sβ tanφτ (4.14)
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and therefore a measurement of the angle φτ does not directly constrain the angle α2. In

fact, the measurement gives a relation between the three angles. A measurement of φt and

φτ would give us two independent relations to determine the three angles.

4.2 Constraints from EDM

Models with CP violation are constrained by bounds on the electric dipole moments

(EDMs) of neutrons, atoms and molecules. Recently the ACME Collaboration [73] im-

proved the bounds on the electron EDM by looking at the EDM of the ThO molecule.

This prompted several groups to look again at the subject. For what concerns us here, the

complex 2HDM, several analyses have been performed recently [7, 10, 74–77]. In ref. [7] it

was found that the most stringent limits are obtained from the ThO experiment, except

in cases where there are cancellations among the neutral scalars. These cancellations were

pointed out in [76, 77] and arise due to orthogonality of the R matrix in the case of almost

degenerate scalars [9]. So far, there is no complete scan of EDM in the C2HDM; only some

benchmark points have been considered, making it difficult to see when these cancellations

are present. What can be learned from these studies is that the EDMs are very important

and their effect in the C2HDM has to be taken in account in a systematic way, in the sense

that, for each point in the scan, the EDMs have to be calculated and compared with the

experimental bounds. However, for the purpose of the studies in this work and for the

present experimental sensitivity, this is not paramount. This is because we are looking at

scenarios where the couplings of the up-type sector (top quark) are very close to the SM

and the differences, still allowed by the LHC data, are in the couplings of the down-type

sector; the tau lepton and bottom quark. As was shown in ref. [10], while the pseudoscalar

coupling of the top quark is very much constrained (in our notation |bU | ≤ 0.01), the

corresponding couplings for the b quark and tau lepton are less constrained by the EDMs

than by the LHC data. Since we are taking in account the collider data, our scenarios

are in agreement with the present experimental data. There is however one caveat. Our

scenario also implies a pseudoscalar component in the electron/scalar coupling and this is

also bound by the EDMs.4 This is completely irrelevant in the Flipped model, where the

charged leptons couple as the up-type quarks. Said otherwise, our results apply without

modification to the Flipped model. But the EDM constraints on pseudoscalar component

of the electron/scalar coupling become important in the Type II model. Although a full

scan of this issue is outside the scope of our paper, a few remarks are in order. Ref. [76]

argues that the extraction of the electron EDM from the data is fraught by enough uncer-

tainties that an EDM an order of magnitude larger than that claimed by ACME should be

allowed for. While we are agnostic on this issue, both possibilities should be explored and

compared. Our model has some features that require a dedicated study. On the one hand,

all fermion couplings have potential CP violating phases which for some EDM diagrams (for

example, the Barr-Zee diagram with fermions in the loop) can potentially cancel. On the

other hand, in the C2HDM, the cancellations among the various scalars alluded to above

plays a determinant role. As mentioned in ref. [76], assuming dominance of the lightest

4We are grateful to the referee for raising this point.
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scalar misses the large cancellation present in 2HDMs. In a preliminary scan over the

parameter space we have found points which pass all constraints and which do not change

the qualitative features discussed in this article [78]. As an example, taking the Flipped

C2HDM with mh1 = 125.0GeV, mh2 = 203.8GeV, mh3 = 375.6GeV, mH± = 570.6GeV,

α1 = 1.556, α2 = 0.158, α3 = −1.147, tanβ = 6.05, Re(m2
12) = 1.95v2 sinβ cosβ, obeys

all LHC data on light and heavy Higgs searches, leads to |aD| = 0.0092, |bD| = 0.95, and,

computing only the Barr-Zee diagrams with fermions in the loop, leads to an EDM of

2.4× 10−29, well within the strict ACME constraint.

A dedicated study of the EDM contributions in the Type II C2HDM, where there are

several sources of CP violation and where the partial cancellations of the various scalars is

dully taken into account is in progress [78]. In addition, one should keep in mind that, as

pointed out in ref. [10, 79], the future bounds from the EDMs can have a strong impact.

In the future, the interplay between the EDM bounds and the data from the LHC Run 2

will pose relevant new constraints in the complex 2HDM in general, and in particular for

the scenarios presented in this work.

5 Conclusions

We discuss the present status of the allowed parameter space of the complex two-Higgs

doublet model where we have considered all pre-LHC plus the theoretical constraints on

the model. We have also taken into account the bounds arising from assuming that the

lightest scalar of the model is 125 GeV Higgs boson discovered at the LHC. We have shown

that the parameter space is already quite constrained and recovered all the limits on the

couplings of a CP-conserving 125 GeV Higgs. The allowed space for some variables, as for

example for the tan β parameter, is now increased as a natural consequence of having a

larger number of variables to fit the data as compared to the CP-conserving case.

The core of the work is the discussion of scenarios where the scalar component of the

Yukawa couplings of the lightest Higgs to down-type quarks and/or to leptons can vanish.

In these scenarios, that can occur for Type II, F and LS, the pseudoscalar component

plays the role of the scalar component in assuring the measured rates at the LHC. A direct

measurement of the angle that gauges the ratio of pseudoscalar to scalar components in

the tth vertex, φt, will probably help to further constrain this ratio. However, it is the

measurement of φτ , the angle for the τ+τ−h vertex, that will allow to rule out the scenario

of a vanishing scalar even with a poor accuracy. We have also noted that for the F model

only a direct measurement of φD in a process involving the bbh vertex would be able to

probe the vanishing scalar scenario. Finally a future linear collider [80, 81] will certainly

help to further probe the vanishing scalar scenarios.
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