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2Centro de Fı́sica Teórica de Partı́culas, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
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We consider here a manifestly covariant quark model of the nucleon and the �, where one quark is off

shell, and the other two quarks form an on-shell diquark pair. Using this model, we have shown previously

that the nucleon form factors and the dominant form factor for the �N ! � transition (the magnetic

dipole (M1) form factor) can be well described by nucleon and � wave functions with S-state components

only. In this paper, we show that nonvanishing results for the small electric (E2) and Coulomb (C2)

quadrupole form factors can be obtained if D-state components are added to the � valence quark wave

function. We present a covariant definition of these components and compute their contributions to the

form factors. We find that these components cannot, by themselves, describe the data. Explicit pion cloud

contributions must also be added, and these contributions dominate both the E2 and the C2 form factors.

By parametrizing the pion cloud contribution for the transition electric and Coulomb form factors in terms

of the neutron electric form factor, we estimate that the contributions of the � D-state coupled to quark

core spin of 3=2 is of the order of 1%, and the contributions of the � D-state coupled to quark core spin

1=2 is of the order of 4%.
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I. INTRODUCTION

Understanding the internal structure of the baryons is
both an experimental and a theoretical challenge.
Experimentally, the main source of information has been
the electro- and photo- excitation of the nucleon, which
allows to parametrize the baryons internal structure in
terms of their electromagnetic form factors. Very accurate
JLab data [1–3] exist nowadays for the nucleon elastic
form factors. Also, theoretical models for the nucleon
form factors are able to describe this data well [4–9]. The
next step is the description of the nucleon excitations,
starting with the � resonance. In recent years, new precise
data have been collected from MAMI [10,11], LEGS [12],
MIT-Bates [13], and JLab [14,15] in the region Q2 �
6 GeV2 (q2 ¼ �Q2 is the squared momentum transfer).
TheN� electromagnetic transition (�N ! �) has a simple
interpretation in terms of the valence quark structure: the�
results from a spin flip of a single quark in the nucleon. It is
then understandable that the magnetic dipole multipole M1
dominates the transition for lowQ2, and that the electric E2
and the Coulomb C2 quadrupoles give only small contri-
butions, of the order of a few percent. For large Q2 how-
ever, according to perturbative QCD (pQCD) [16,17],
equally important contributions from M1 and E2 are to
be expected, but the scale for the outset of that regime is
not yet known exactly.

Several theoretical descriptions have been proposed for
low, intermediate, as well as for the large transfer momen-
tum Q2 regions. These descriptions involve two ingre-
dients: the valence quark and the nonvalence degrees of
freedom. The nonvalence degrees of freedom are essen-

tially the sea quark contributions, which represent quark-
antiquark states, and are usually called meson cloud ef-
fects. Because of its pseudoscalar character and its low
mass, chiral symmetry assigns a special role to the pion
[18,19], and pion cloud effects are therefore expected to
contribute significantly to the baryon excitations. At low
momentum transfer effective field theory (EFT) models
based on chiral symmetry and perturbation theory (�PT)
[20–23], with nucleon,� and pion degrees of freedom, and
no internal structure considered, work well. EFTs describe
the pion cloud effects at low momenta, but have a limited
range of application, Q2 < 0:25 GeV2. At low Q2, the
large Nc limit [24,25] can be used to establish the main
Q2 dependence of the form factors and derive relations
between the nucleon and the N� form factors [24]. At
large Q2, models within pQCD [16,26] with quarks and
gluons as degrees of the freedom, can be applied. As for the
intermediate momentum region, it may be appropriately
featured by constituent quarks models [19,27–40], and
models based on hadronic degrees of freedom, as the so-
called dynamical models (DM) [41–46]. Quark models
with mixed coupling with pion fields have also been pro-
posed [19,27,47–54]. In the intermediate regime results
from vector meson dominance models [55], QCD sum
rules [56,57] and global parton distributions [58–60],
have been presented as well. Finally, precise calculations
are recently emerging from lattice QCD calculations [61–
64]. For a review of the state-of-the-art in experiments and
theory see Refs. [19,65–67].
There is at present a strong motivation to pursue an

interplay between DM and constituent quark models
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[19,27,43,66]. On one side, constituent quark models
underestimate the result of the transition form factors,
when not combined with explicit pion degrees of freedom
[27,43,65,66,68]. On the other hand, dynamical models are
based on sets of equations coupling electromagnetic ex-
citations to meson (de)excitations of the baryons, and
include pion cloud effects naturally and nonperturbatively.
Examples are the Sato and Lee (SL) [41–43], the Dubna-
Mainz-Taipei (DMT) [44,45] and the (dynamical) Utrecht-
Ohio [46] models. Although very successful in the descrip-
tion of the �N ! � form factors, they need to assume an
initial parametrization for the baryon transition vertex,
interpreted as the bare vertex, where no pion loop is taken.
In a less ad hoc fashion, the bare vertex should therefore be
derived from a quark model [66]. At the same time we can
use the available models to extract the bare vertex. This is
the goal of the EBAC program [43,66,69]. Alternative
descriptions of the pion cloud and its relation to the de-
formations of the baryons were also proposed by
Buchmann et al. [53,70–72]. For an updated review of
the dynamical models see Refs. [43,73,74].

From the literature it is not clear which effects are due to
the valence quarks, and which are related with the pion
cloud, in particular, for the E2 and C2 multipoles. There is
disagreement about those effects, between models based
on different formalisms, such as the dynamical and EFT
models, and even between models based on the same
framework, as effective fields theories [74]. Also in the
experimental sector there are some ambiguities. The form
factors are extracted using multipole analysis based on
unitary isobar models (UIMs) like MAID [75–77], SAID
[78–81], or JLab/Yereven [82,83], each leading to different
results due to the differences in parametrizations of the
background and resonance structures, even considering
dynamical models [41–46] instead of unitary isobar mod-
els [18,43,45,67]. The ambiguities involved in the inter-
pretations of the data are well illustrated by the differences
between the CLAS results [15] and the MAID analysis of
the same data [75], and also the recent preliminary CLAS
data analysis [43,67,84] based on different models. The
results that we obtained here for G�

C in particular, illustrate

well the need to clarify these issues, as we will discuss later
in this paper.

In a previous work [4,5,68] the spectator formalism [85–
87] was applied to the nucleon and to the � baryons,
considering only S-state wave functions. As shown in
that work, with S-waves alone in the baryon wave func-
tions, only the dominant of the three form factors for the
�N ! � transition does not vanish. Therefore, here we
explore for the first time the effects of the D states in the �
wave function within that formalism, and show here that
those components in the � wave function lead to nonzero
contributions for the subleading form factors E2 and C2.
The origin of the D-wave states is well known: in the
pioneering work of Isgur-Karl [28,65] the baryons are

described as a system of confined quarks, where a tensor
color hyperfine interaction is generated by one-gluon-
exchange processes. This tensor interaction leads to SU
(6) symmetry breaking, and allows the transition from the
ground S state to an excited D state.
For each of the three N� electromagnetic transition

form factors, we identified and separated the roles from
the different partial wave components. While the magnetic
dipole form factor G�

M, the dominant contribution, is
mainly due to the transition between the nucleon and the
S state of the �, the electric quadrupole form factor G�

E

proceeds through the transition to a D state of the �
corresponding to a three-quark core spin of 3=2. Finally,
the Coulomb quadrupole form factorG�

C becomes nonzero,

only when the transition to a D state of the� corresponding
to a three-quark core spin 1=2 is switched on. Nevertheless,
and in agreement with other quark models, we conclude
that the valence quark effects are not sufficient to describe
the E2 and C2 data [19,20,27].
Additional mechanisms involving the sea quark states,

mainly the pion cloud effects, are needed to fill the gap
between the theory and the experimental data. The system-
atic and consistent treatment of the pion cloud mechanisms
is out of the scope of this work, which is focused on the D-
state effects, but is planned for a future work. In order to
estimate the magnitude of the D states we considered the
simple parametrization of the pion cloud in terms of the
nucleon (neutron) electric form factor, with no additional
parameters. This parametrization was derived from the
basic properties of the quark models [large Nc limit and
also SU(6) symmetry breaking] and is limited in its range
of application to low Q2. Nevertheless, we need to include
a pion cloud parametrization for a realistic estimate of the
weight of the D-wave components in the � wave function.
This paper is organized as follows: the formalism for the

D-wave components of the�wave function is explained in
Sec. II, the definitions of the form factors and other general
results are introduced in Sec. III, the issue of gauge invari-
ance and how it couples to the orthogonality of the initial
and final state is dealt with in Sec. IV, the formulas for the
form factors within the valence quark model used here are
given in Sec. V. In Sec. VI, we discuss the contributions of
the sea quarks (pion cloud), and in Sec. VII we present the
numerical results for representative models based on va-
lence and sea quarks. A discussion follows in Sec. VIII,
and conclusions are presented in Sec. IX.

FIG. 1. Baryon quark-diquark wave function amplitude.
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II. NUCLEON AND � WAVE FUNCTIONS

In the framework of the spectator theory [85,86] a
baryon with four-momentum P is taken to be a bound state
of a quark-diquark system, with relative four-momentum k,
and is described by a covariant amplitude �ðP; kÞ. The
diquark is taken to be on-mass-shell with an average mass
ms. The 3-quark wave function amplitude depicted in the
diagram of Fig. 1 has S-wave components which, for the
nucleon and the �, were already presented in Refs. [4,68].
Therefore, they will be only very briefly reviewed here,
where the main focus is on the construction of D-wave
components within the same underlying formalism. In the
following, we will use H to denote either the nucleon (N),
with mass mH ¼ mN ¼ m, or the � with mass mH ¼
m� ¼ M.

The antisymmetry for the color part of the baryon wave
function implies that, for S and D waves, the spin-isospin
part of the wave function is symmetric. This in turn implies
that the diquark has positive parity.

A. S-wave components of the nucleon and � wave
functions

The S-wave part of the nucleon wave function has two
components corresponding, respectively, to a diquark of
spin 0-isospin 0 and a diquark of spin 1-isospin 1. Labeling
the polarization of the spin-1 diquark by �, these two terms
for the nucleon amplitude shown in Fig. 1 can be written as

�S
N�n

ðP; kÞ ¼ 1ffiffiffi
2

p ½�0
I uNðP; �nÞ ��1

I "
��
�PU�ðP; �nÞ�

� c S
NðP; kÞ: (2.1)

The isospin states �Id
I (with Id ¼ 0, 1 the diquark isospin)

are, respectively, �0
I ¼ �0��I and �1

I ¼ � 1ffiffi
3

p ð� � �1�Þ�I,

where �0� is the diquark isospin-0 state and �1m� are the
Cartesian components of the isospin-1 state with projec-
tions m ¼ 0;�1, and �I is the nucleon isospin state with
nucleon isospin projection I ¼ �1=2. As explained in
Refs. [4,5], ð� � �1�Þ�I generates the 3-quark isospin state
in terms of the nucleon isospin.

On the Dirac space, the the spin-0 component is simply
uNðP; �nÞ (denoted simply by uðP; �nÞ in our previous
work), where �n is the projection of the nucleon spin along
the z axis. The spin-1 component is a vector product of the
diquark polarization vectors "���P and the Dirac operator

U�ðP; �nÞ ¼ 1ffiffiffi
3

p �5

�
�� � P�

mH

�
uNðP; �nÞ; (2.2)

with (generalizing the definition of uN to uH for an arbi-
trary hadron with mass mH)

uHðP; �HÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EHðPÞ þmH

2mH

s
1

2�HP
EHðPÞþmH

" #
��H

; (2.3)

where EHðPÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

H þ P2
q

. Note that uHðP; �HÞ is inde-

pendent of mH when P ¼ 0.
Note also that U�ðP; �nÞ satisfies the two auxiliary con-

ditions

ðP6 �mÞU�ðP; �nÞ ¼ 0 P�U�ðP; �nÞ ¼ 0: (2.4)

The S-wave component of the � wave function must be
symmetric in spin and isospin. Because the total isospin of
the� is 3=2 the diquark spin 0-isospin 0 component cannot
contribute, and the � wave function can contain only a
diquark spin-1 isospin-1 component. As defined in
Ref. [68], the S-wave component of the � wave function
is written as

�S
�ðP; kÞ ¼ �c S

�ðP; kÞ ~�1
I "

��
�Pw�ðP; ��Þ: (2.5)

In this expression, w�ðP; ��Þ is the Rarita-Schwinger vec-
tor spinor [88,89] satisfying the usual auxiliary conditions

P�w� ¼ 0; ��w� ¼ 0; (2.6)

and the Dirac equation

ðP6 �MÞw�ðP; ��Þ ¼ 0: (2.7)

The function ~�1
I ¼ ðT � �1�Þ~�I is the isospin part of the

state, with T the isospin transition operator, and ~�I the
isospin-3=2 state of projection I.
For a particle of mass mH and three-momentum P in the

z direction, the fixed-axis basis states used in (2.1) and (2.5)
are defined as

"
	
�P ¼ � 1ffiffiffi

2
p ð0; 1;�i; 0Þ

"
	
0P ¼ 1

mH

ðP; 0; 0;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

H þ P2
q

Þ:
(2.8)

These are the diquark fixed-axis polarization states dis-
cussed in great detail in [5]. Here it is sufficient to note that
they satisfy the orthogonality condition P � "�P ¼ 0, and
that

X
�

"	�Pð"
�PÞ� ¼ �g	
 þ P	P


m2
H

: (2.9)

Because of the orthogonality condition, the wave functions
(2.1) and (2.5) satisfy the Dirac equation for the mass mH.
As discussed in [5] the fixed-axis diquark polarization

states introduce no angular dependence in the wave func-
tion, and therefore are convenient to describe S states,
without introducing any extra constraint. We will show
subsequently here that they are also convenient to define
higher angular momentum states.
Finally, for the scalar wave functions c S

N and c S
� in (2.1)

and (2.5), which describe the relative quark-diquark radial
motion, we use the parametrizations
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c S
N ¼ N0

msð�1 þ �NÞð�2 þ �NÞ ; (2.10)

c S
� ¼ NS

msð�1 þ ��Þð�2 þ ��Þ2
; (2.11)

where

�H ¼ ðP� kÞ2 � ðmH �msÞ2
mHms

(2.12)

forH ¼ N,�. This parametrization allows for an interplay
between two different momentum scales in the problem,
quantified by the �1 and �2 parameters for the nucleon,
and �1 and �2 for the �.

The factors N0 and NS are normalization constants fixed
by the condition Z

k
½c S

Hð �P; kÞ�2 ¼ 1; (2.13)

with �P ¼ ðmH; 0; 0; 0Þ and the covariant integral
R
k is

defined in Eq. (4.3) below. The normalization condition
is consistent with the charge constraint

QI ¼ 3
X
�

Z
k

��S
Hð �P; kÞj1ð0Þ�0�S

Hð �P; kÞ; (2.14)

where j1ð0Þ is the isospin part of the quark charge operator,
and QI is the charge of the state with isospin projection I
for either the nucleon (H ¼ N with isospin 1=2) or the �
(H ¼ � with isospin 3=2). See Refs. [4,68] for more
details.

In this paper the�, with total angular momentum 3=2, is
composed of two positive parity subsystems (the spin 1=2
quark and the spin 1 diquark). Wewill refer to the total spin
S of the state as the ‘‘core’’ spin, in order to distinguish if
from the total angular momentum of the state (also called
the ‘‘spin’’ of the particle). If the orbital angular momen-
tum between the quark and diquark is zero, then the core
spin of the � must be 3=2. However, a state of positive
parity and total angular momentum 3=2 can also be con-
structed if the orbital angular momentum of the constitu-
ents is a D wave (L ¼ 2) and the core spin is either
S ¼ 1=2 or S ¼ 3=2. (For the nucleon, in contrast, the
L ¼ 2 orbital state can couple only to the core spin S ¼
3=2.) The next subsections will define these two possible�
D states.

B. The two different spin-core D-wave components of
the � wave function

1. D-wave operator

Turning to the construction of the momentum-space part
of the D-wave components of the wave function of the �,
we start by noting that, in relativity, inner products of three
vectors (and, consequently, magnitudes of angles) are not
Poincaré invariant. Hence, the operatorD�� that generates

a D-wave in the relative momentum variable k, only has the
pure D-wave structure in the baryon rest frame. In any
other (moving) frame the intrinsic D state will generate
components in other partial waves. Therefore, we start by
defining that operator in the rest frame of the �. To find its
form in that frame we exploit the two features that define a
D wave: (i)D�� is bilinear in the 3-momentum vector part
k in the � rest frame, and (ii) the integral of D�� over all
the possible directions of k has to vanish in the rest frame.
It is convenient to introduce a four vector that reduces to

the 3-momentum k in the � rest frame. Defining this
vector for an arbitrary hadron

~k � ¼ k� � P � k
m2

H

P�; (2.15)

where, in the hadron rest frame, ~k ¼ ð0;kÞ and ~k2 ¼ �k2.
In terms of this vector, the two defining properties of D
lead immediately to the operator

D ��ðP; kÞ ¼ ~k�~k� �
~k2

3
~g��; (2.16)

where

~g �� ¼ g�� � P�P�

m2
H

: (2.17)

(In this discussion we suppress the subscript H on both D
and ~k, relying on the reader to infer the correct operator
from the context.) Note the constraint conditions

P�D�� ¼ 0 ¼ D��P�: (2.18)

It is convenient to work with the spherical components
of D, defined to be

D�;�0 ¼ "���PD��ðP; kÞ"��0P: (2.19)

Using the definition (2.8) of the fixed-axis polarization
states, it is easy to see that D is a Hermitian matrix. In
the hadron rest frame the matrix elements of D are related
directly to the spherical harmonics YL

ml
ðkÞ with L ¼ 2. A

representation convenient for later applications is

D�;�0 ¼
ffiffiffiffiffiffiffi
8�

p
3

k2Y2
m‘
ðk̂Þh1�2m‘j1�0i; (2.20)

where the vector coupling or Clebsch-Gordon (GC) coef-
ficients are denoted as

hj1	1j2	2jj12	1 þ	2i ¼ Cðj1j2j12;	1	2Þ: (2.21)

Equation (2.20) shows how the operator D can be inter-
preted as the projection of the incoming direct product
state of orbital angular momentum L ¼ 2 	 a spin-1 vector
"�� , onto an outgoing vector state "��0
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X
��0

"��D�;�0"��0 ¼
ffiffiffiffiffiffiffi
8�

p
3

k2
X
��0

"��0 h1�2m‘j1�0iY2
m‘
ðk̂Þ"�� :

(2.22)

2. Spin-projection operators

To prepare for that construction of the D-wave compo-
nents of the wave function, we recall the definitions of the
spin-projection operators P 1=2 and P 3=2 previously used in

Ref. [68] (and in other works). These are constructed from
the operator (2.17) and the operator

~�� ¼ �� � P6 P�

m2
H

: (2.23)

The operator has the property

~�� ~�� ¼ 3: (2.24)

In terms of these operators, the projection operators can be
written as

ðP 1=2Þ�� ¼ 1

3
~�� ~�� ðP 3=2Þ�� ¼ ~g�� � ðP 1=2Þ��:

(2.25)

For details see Refs. [68,90,91]. We note that P 3=2 can be

cast into the form usually found in the literature,

ðP 3=2Þ�� ¼ g�� � 1

3
���� � 1

3m2
H

ðP6 ��P� þ P���P6 Þ;
(2.26)

and that these spin projectors satisfy the closure and or-
thogonality relations

ðP 1=2Þ�� þ ðP 3=2Þ�� ¼ ~g��

ðP 1=2Þ��ðP 3=2Þ�� ¼ 0 ¼ ðP 3=2Þ��ðP 1=2Þ��:
(2.27)

Denoting the operators (2.25) generically byP S, one easily
sees that

P�ðP SÞ�� ¼ 0; (2.28)

½P6 ;P S� ¼ 0; (2.29)

��P
��
3=2 ¼ 0 ¼ P ��

3=2��: (2.30)

Note also that the state functions previously introduced in
Eqs. (2.1) and (2.5) satisfy the expected eigenvector equa-
tions

ðP 1=2Þ��U� ¼ U� ðP 3=2Þ��w� ¼ w�: (2.31)

3. Construction of the two possible D-state components of
the �

Using the operator D and the spin-projection operators
P S introduced above, we can now construct D-state wave

functions for the �. Just as the S-state wave function is a
matrix element of the � initial state with a final state
consisting of a quark and a diquark in a relative S state,
the D-state wave functions are matrix elements of the �
initial state with a final state consisting of a quark and
diquark in a relative D state. The construction is carried out
in two steps. First, a D-wave dependence is introduced by
contracting the D operator with the elementary S-wave
Rarita-Schwinger wave function w�, giving the state

W �
��
ðP; kÞ ¼ D��ðP; kÞw�ðP; ��Þ: (2.32)

The resulting state W � satisfies the Dirac equation.
Next, using P�D�� ¼ 0 and the completeness relation
Eq. (2.27) we conclude that this W � is actually the sum
(only) of two independent spin components

W �
��
ðP; kÞ ¼ g��W

�
��
ðP; kÞ

¼ ½ðP 1=2Þ�� þ ðP 3=2Þ���W �
��
ðP; kÞ:

(2.33)

This leads to the definition of two independent D-wave �
wave functions

�D2Sð���Þ ¼ �3"���PðP SÞ��W �
��
ðP; kÞ

¼ �3"���PðP SÞ��D��ðP; kÞw�ðP; ��Þ;
(2.34)

where the factor of �3 has been added for convenience,
S ¼ 1=2 or 3=2, and "�� describes the state of the outgoing
diquark, just as in the S-state wave functions Eqs. (2.1) and
(2.5). Equation (2.34) defines the spin part of the two D-
state wave functions only; isospin and radial parts will be
added below. These wave functions satisfy the Dirac Eq.
(2.7).
It is interesting to see how the wave functions (2.34)

have the correct spin structure corresponding to the two
different ðL;SÞ coupling configurations, ð2; 12Þ and ð2; 32Þ,
both giving total J ¼ 3=2. Here we summarize the main
points; details are given in Appendix A. The first step is to
introduce core spin wave functions (direct products of the
spin-1 diquark and a spin-1=2 quark) with S ¼ 1=2 or 3=2.
These core wave functions, denoted generically by VS, are
constructed using CG coefficients

V�
S ðP; �sÞ ¼

X
�

�
1

2
�1�0jS�s

�
"��0Pu�ðP; �Þ; (2.35)

where u� was defined in Eq. (2.3) [with H ! �]. It is easy
to see that the V�

S satisfy the Dirac Eq. (2.7), that P�V
�
S ¼

0, and it can be shown that they are eigenstates of the
projectors P S. The fact that V3=2 also satisfies the special

spin 3=2 constraint ��V
�
3=2 ¼ 0 is shown in Appendix B.
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These wave functions are orthonormal and complete

�V �
S ðP; �ÞVS�ðP; �0Þ ¼ ���0

X
�s

V�
S ðP; �sÞ �V�

S ðP; �sÞ ¼ ðP SÞ��
�
m� þ P6
2m�

�
:

(2.36)

Using the Dirac equation to introduce the projection op-
erator into Eq. (2.34), and then inserting these expansions,
allows us to express the D-state wave functions in the form

�D2Sð�Þ ¼ �3"���P
X
�s

VS�ðP; �sÞ

� f �VS�ðP; �sÞD��w�ðP; ��Þg
¼ ð�1ÞS�ð1=2Þ ffiffiffiffiffiffiffi

4�
p

k2"���P
X
m‘

�
2ml; S�sj 32��

�

� Y2
ml
VS�ðP; �sÞ: (2.37)

This displays the two states as sums over either an S ¼ 1=2
or 3=2 core wave function VS times an orbital angular
momentum L ¼ 2 spherical harmonic function Y2

ml

coupled to a spin 3=2 � state, and is demonstrated in
Appendix A. Using (2.37) and the normalization of the
VS states, the normalization of the �D2S are

1

4�

Z
d�k̂

X
�

j�D2Sð���Þj2 ¼ k4
X
m‘

�
2ml;S�sj 32��

�

¼ k4: (2.38)

Using the definitions (2.34) and adding the isospin factor
and scalar wave function, the complete � D-state wave
functions are

�D1
� ðP; kÞ ¼ �D1ð�Þ ~�1

Ic
D1
� ðP; kÞ

�D3
� ðP; kÞ ¼ �D3ð�Þ ~�1

Ic
D3
� ðP; kÞ;

(2.39)

where the following simple forms were used for the scalar
functions c D1

� and c D3
�

c D1
� ðP; kÞ ¼ ND1

�
1

m3
sð�3 þ ��Þ4Þ

� �D1

m3
sð�4 þ ��Þ4

�
;

(2.40)

c D3
� ðP; kÞ ¼ ND3

m3
sð�5 þ ��Þ4

: (2.41)

The D1 state has two range parameters (�3 and �4) and the
D3 state only one (�5). The three parameters are adjusted
to the data. We anticipate that our numerical results for the
range parameters are consistent with an expected longer
range (in r space) for the D states relative to the S state.
Note that the definition of D guarantees also that the D-
state wave function will go as k2 when k ! 0, as expected
[92], and an additional mass factor m�2

s is introduced to
compensate for the dimensions introduced by this k2 de-
pendence of the D matrix (so that the product of D with

c D1
� or c D3

� have no dimensions). The power 4 in the

denominators of the previous equations was chosen to
reproduce the expected pQCD behavior for largeQ2 (G�

E 

1=Q4, G�

C 
 1=Q6) [16], and also to assure the conver-

gence of the normalization integrals
Combining Eqs. (2.5) and (2.39), the total � wave

function can be written as

�� ¼ N½�S
� þ a�D3

� þ b�D1
� �; (2.42)

where a and b are admixture coefficients. The D1 compo-
nent with core spin 1=2 is orthogonal to both of the other
components because of the orthogonality condition (2.27),
and the two components with core spin 3=2, �D3

� and �S
�,

are orthogonal because the overlap integral is linear inR
k Y20ðzÞ ¼ 0. We will chose to normalize the individual

states to unity, giving N ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2 þ b2

p
for the overall

normalization factor.

C. Normalization and orthogonality condition

The individual D-wave scalar wave function will be
chosen to satisfy the normalization conditionsZ

k
f~k4½c D2S

� ð �P; kÞ�2g ¼ 1: (2.43)

This determines the coefficients ND1 (as a function of �D1)
and ND3.
The two components �S

� and �D3
� are orthogonal to the

nucleon S-state�S
N , but the component�D1

� is, in general,

not orthogonal to the nucleon S state. This happens be-
cause both wave functions have a core spin S ¼ 1=2, and
even though the D1 state depends on Y2

m‘
, it is impossible

for both particles to sit simultaneously in their rest frame,
so the angular integral always has some other angular
dependence that prevents it from being exactly zero. The
orthogonality condition

X
�

Z
k

��D1
� ð �Pþ; kÞ�S

Nð �P�; kÞ ¼ 0; (2.44)

where �Pþ, �P� represent the baryon momenta for Q2 ¼ 0,
must be imposed numerically, and this can be done only at
one value ofQ2. This condition determines �D1. As we will
see below, our treatment of gauge invariance requires that
we impose the condition (2.44) at the point Q2 ¼ 0.
Working in the � rest frame, the momenta �Pþ and �P�
are therefore

�Pþ ¼ ðM; 0; 0; 0Þ
�P� ¼

�
M2 þm2

2M
; 0; 0;�M2 �m2

2M

�
:

(2.45)

To determine the coefficients ND1 and �D1 in the D1
component, we first fix �3 and �4. Then �D1 is determined
by (2.44), and finally the value of ND1 fixed by the nor-
malization condition (2.43).
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D. Properties of the wave functions under a Lorentz
transformation

The form for the wave functions given in Eq. (2.39)
holds only for the case where the particle is moving along

the z direction [with 4-momentum P¼ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

HþP2
q

;0;0;PÞ].
The generic wave function can be obtained from an arbi-
trary Lorentz transformation �

P0	 ¼ �
	

 P
: (2.46)

Under a Lorentz transformation we obtain

"	
P0 ¼�	


 "
P w0
�ðP0Þ ¼��

�Sð�Þw�ðPÞ
u0ðP0Þ ¼ Sð�ÞuðPÞ D��ðP0; k0Þ ¼��

��
�D�ðP;kÞ

S�1ð�ÞðP 0
SÞ��Sð�Þ ¼��

��
�ðP SÞ�; (2.47)

where u0 and w0
� represent the states in the arbitrary frame.

For simplicity, the dependence of the spinor states on the
Wigner rotations acting on the polarization vectors has not
been shown explicitly, and ðP SÞ are the projectors of (2.25)
with ðP 0

SÞ the same projectors with P0 ¼ �P, one obtains
the transformation law

Z 0
�ðP0; k0Þ ¼ Sð�Þ��

�Z�ðP; kÞ (2.48)

for any vector-spinor state Z. Finally, from (2.48) the
transformation laws for the total � wave function follows

�0
�ðP0; k0Þ ¼ Sð�Þ��ðP; kÞ: (2.49)

In conclusion, we may derive the baryon wave function
in any frame, where the four-momentum P is arbitrary, by
means of a Lorentz transformation � on the wave function
defined in the baryon rest frame.

III. FORM FACTORS FOR THE �N ! �
TRANSITION

A. Definitions

The electromagnetic N� transition current is

J	 ¼ �w�ðPþÞ��	ðP; qÞ�5uðP�Þ�I0I; (3.1)

where Pþ (P�) is the momentum of the � (nucleon), I0 (I)
the isospin projection of the � (nucleon), and the operator
��
 can be written in general [93] as

��	ðP; qÞ ¼ G1q
��	 þG2q

�P	 þG3q
�q	 �G4g

�	:

(3.2)

Although we have omitted the helicity indices for these
states, the transition current depends on both the helicities
of the final and initial baryons and on the photon helicity.
The variables P and q are, respectively, the average of
baryon momenta and the absorbed (photon) momentum

P ¼ 1

2
ðPþ þ P�Þ q ¼ Pþ � P�: (3.3)

The form factors Gi, i ¼ 1; . . . ; 4 are functions of Q2 ¼
�q2 exclusively. Because of current conservation,
q	�

�	 ¼ 0, only three of the four form factors are inde-

pendent. In particular, we can writeG4 in terms of the other
three form factors as

G4 ¼ ðMþmÞG1 þM2 �m2

2
G2 �Q2G3; (3.4)

and adopt the structure originally proposed by Jones and
Scadron [93]. Alternatively (see below), we can writeG3 in
terms of the other three

G3 ¼ 1

Q2

�
ðMþmÞG1 þM2 �m2

2
G2 �G4

�
: (3.5)

The parametrization (3.2) in terms of the form factorsGi

is not the most convenient one for comparison with the
experimental data. More convenient are the magnetic di-
pole (M), electric quadrupole (E), and Coulomb quadru-
pole (C) form factors. These can be defined directly in
terms of helicity amplitudes [16,93]. Note that the form
factor G3 does not enter directly into the expressions for

the helicity amplitudes because �	�
� q	 ¼ 0 for all �. But, if

we use the constraint (3.4) to eliminate G4, G3 appears in
these expressions and we obtain

G�
MðQ2Þ ¼ �

�
½ð3MþmÞðMþmÞ þQ2�G1

M

þ ðM2 �m2ÞG2 � 2Q2G3

	
; (3.6)

G�
EðQ2Þ ¼ �

�
ðM2 �m2 �Q2ÞG1

M
þ ðM2 �m2ÞG2

� 2Q2G3

	
; (3.7)

G�
CðQ2Þ ¼ �f4MG1 þ ð3M2 þm2 þQ2ÞG2

þ 2ðM2 �m2 �Q2ÞG3g; (3.8)

where

� ¼ m

3ðMþmÞ : (3.9)

These three form factors G�
a (a ¼ M, E, C) are, respec-

tively, the magnetic, electric and Coulomb (or scalar)
multipole transition form factors.
As G�

M dominates at low momentum Q2, the following
ratios are useful

REMðQ2Þ ¼ � G�
EðQ2Þ

G�
MðQ2Þ ; (3.10)

and

RSMðQ2Þ ¼ � jqj
2M

G�
CðQ2Þ

G�
MðQ2Þ ; (3.11)
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where q is the photon 3-momentum in the � rest frame

jqj ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
dþd�

p
2M

; (3.12)

with

d� ¼ ðM�mÞ2 þQ2: (3.13)

The analysis of the transition at large Q2 in the pQCD
regime (where quarks and gluons are the appropriate de-
grees of freedom) gives G�

M ’ �G�
E 
 1=Q4 and G�

C 

1=Q6 [16].

B. The G1, G2, G3 set versus the G1, G2, G4 set

The representation of the electromagnetic current in
terms of the 3 independent ðG1; G2; G3Þ form factors, as
proposed by Jones and Scadron [93], is not the most
convenient choice that can be made. As mentioned above,
the form factor G3 is not part of the helicity transition
amplitudes given by the operator "	ðqÞJ	, due to the

condition " � q ¼ 0. For this reason it seems natural to
replace the set ðG1; G2; G3Þ by ðG1; G2; G4Þ. On this basis,
G�

M, G
�
E, and G�

C are given by

G�
M ¼ �

�
2G4 þ dþ

G1

M

	
; (3.14)

G�
E ¼ �

�
2G4 � dþ

G1

M

	
; (3.15)

G�
C ¼ �

Q2
f2ðM�mÞdþG1 þ dþd�G2

� 2ðM2 �m2 �Q2ÞG4g; (3.16)

where d� were defined in Eq. (3.13). Note that the multi-
pole form factors G�

M and G�
E do not depend on G2.

Equation (3.16) for G�
C presents an apparent singularity

when Q2 ¼ 0. The presence of this apparent singularity is
the historical reason for choosing G1, G2, G3 to be the
independent form factors; this choice gives finite form
factors under any circumstances. However, if the theory
conserves current, with a G3 that is finite at Q2 ¼ 0 (a
required feature of any consistent model), then the singu-
larity disappears as Q2 ! 0, since, using the current con-
servation condition (3.5), the numerator (at Q2 ¼ 0) is
proportional to�

ðMþmÞG1 þM2 �m2

2
G2 �G4

�
¼ Q2G3; (3.17)

which, if G3 is finite, approaches zero as Q2 ! 0.
We prefer the independent choice G1, G2, G4 because it

enables us to discuss the restrictions imposed by current
conservation in a more transparent way. Many models do
not automatically conserve current (this is true for our D1
component, as we will discuss below). If we start with a
model that does not naturally conserve current, we prefer

to impose current conservation by modifying the current in
the following way:

J	 ! J	 þ ðq � JÞ
Q2

q	: (3.18)

This way of imposing current conservation is, of course,
not unique, but has the nice property that the additional
term added is proportional to q	, and hence makes no
additional contributions to any observables obtained by
contracting the current with another conserved current or
with a photon polarization vector, always orthogonal to q	

(in the Lorentz gauge, our choice). In the application
discussed in this paper, the modification (3.18) will only
alter the G3 form factor, and when we use the expressions
(3.14), (3.15), and (3.16) we see that they are unchanged by
any modification of G3. Hence, our method allows us to
choose G3 to satisfy current conservation, without chang-
ing the basic predictions of the theory.
However, current conservation is like the Cheshire cat,

while the consequences of imposing it seem to have van-
ished, a ‘‘smile’’ still remains. What remains is the require-
ment that there is no singularity in G�

C as Q2 ! 0. This
requirement is satisfied by modifying the form factors in
such a way that the linear combination (3.17) is zero at
Q2 ¼ 0. Implementation of this requirement will be dis-
cussed below.

C. Simple relation for G�
C

In the following discussion we will work in the rest
frame of the outgoing �, where the four-momenta (3.3)
become

q	 ¼ ð!; 0; 0; jqjÞ P	 ¼
�
2M�!

2
; 0; 0;�jqj

2

�
;

(3.19)

where jqjwas given in Eq. (3.12), and the photon energy!
can be written in terms of the nucleon energy ! ¼ M�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ jqj2p

, or

! ¼ Pþ � q
M

¼ M2 �m2 �Q2

2M
: (3.20)

In this frame the photon moves in the þẑ direction, with
polarization vectors

�	�q ¼ � 1ffiffiffi
2

p ð0; 1;�i; 0Þ �	0q ¼
1

Q
ðjqj; 0; 0; !Þ:

(3.21)

Note that the transverse states (� ¼ �1) are identical to
those defined in Eq. (2.8), but that the longitudinal state is
very different. All of these satisfy the constraint q	�

	
� ¼ 0,

and because qz > 0 are identical to helicity states. While
we will work out the explicit relations in this rest frame, all
relations that are derived from four-vector scalar products
are, of course, independent of the frame.
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Introduce the photon helicity amplitudes of the electro-
magnetic transition current (3.1) (for a general discussion
of helicity amplitudes see Refs. [16,93])

�
	
�qJ	 ¼ J �; (3.22)

where the polarizations of the N and � will remain un-
specified. Note immediately that G3 does not contribute to
any of these amplitudes, and because P � �� ¼ 0, the
transverse amplitudes do not depend on G2. The only
amplitude that depends on G2 is the longitudinal J 0.
Using the relations

�
	
0qP	 ¼ jqjM

Q
� 1

aP
�
	
0q ¼ aqq

	 þ aPP
	;

aq ¼ M2 �m2

2jqjQM
;

(3.23)

we can reduce the terms 6�0q and ��0q that occur when using
(3.1) to evaluate J 0, and obtain

J 0 s0s ¼ Rs0s
ðMþmÞ

2m

3Qffiffiffiffiffiffiffiffiffiffiffiffi
dþd�

p G�
C; (3.24)

where s and s0 are, respectively, the nucleon and � spin
projections along the z-axis, and

R s0s ¼ �w�ðPþ; s0Þq��5uðP�; sÞ

¼ �ss0 ð2sÞ
ffiffiffiffiffiffiffiffiffiffiffi
2dþ
3mM

s
d�
4M

: (3.25)

We emphasize that, provided we use Eq. (3.16) to define
G�

C, this relation holds for all models, even those that do

not conserve current. Note that R � 0 only if the spin
projections are equal (s ¼ s0). Wemay conclude thatG�

C �
0 only if (for example) J 0 ð1=2Þð1=2Þ � 0, and using Eq.

(3.24) we obtain

J 0 ð1=2Þð1=2Þ ¼ ðMþmÞ
4m

ffiffiffiffiffiffiffiffiffiffiffi
3d�
2mM

s �
Q

M

�
G�

C: (3.26)

IV. THE ELECTROMAGNETIC CURRENTWITHIN
THE SPECTATOR MODEL

In this section we study how the electromagnetic current
can be constructed within the constituent quark model
(CQM) for the baryon structure presented in Sec. II.

In any CQM model the quarks making up the baryons
are not point particles, but composite valence quarks,
dressed by their gluon and sea quark structure. Here we
use the covariant spectator theory and assume the baryon is
a quark-diquark system, as explained in Sec. II.

The on-shell diquark massms scales out from the elastic
form factor, which turns out to be independent of the
diquark mass [4]. This mass does not scale out of the
deep inelastic results and the qualitative description of
deep inelastic results leads to the estimate of ms ’ 0:8m,

allowing a natural interplay between low and high energy
phenomenology. This interplay is needed since the facto-
rization into low and high energy scales does not apply
exactly.
In the following, we will explain how gauge invariance

conveniently constrains the current, when the internal
structure of the quarks is parametrized in terms of phenom-
enologically fixed wave functions.

A. Implications of the choice of current

1. Simple current

Constituent quarks are dressed particles with a complex
effective structure, an effective charge, and magnetic mo-
ment. Therefore, their current consists of a Dirac and a
Pauli term, and can be written as

j	Ia ¼ j1�
	 þ j2

i	
q

2m

: (4.1)

(The subscript ‘‘a’’ on the current will be dropped in
subsequent discussion, and will be used only when we
need to distinguish this current from the modified current
discussed in the next subsection.) The form factors j1 and
j2 are normalized in order to describe the nucleon charge
and magnetic moments (as functions of the quark isospin I)
as discussed in Ref. [4]. The explicit formulas are defined
by the Eqs. (4.15) and (7.1) below. The quark current (4.1)
is not of the most general form. In the next subsection we
will consider a more generic case, in light of the discussion
on gauge invariance that unfolds immediately here as
consequence of (4.1).
To start this discussion, given the quark current (4.1) and

the nucleon (�N) and� (��) wave functions, we write the
transition current between these states. With a positive
parity axial diquark the only allowed states for the nucleon
and� are S and D states, since P states are ruled out (unless
they are associated with the lower relativistic components,
not discussed so far in this series of papers).
To simplify the formulas we will exclude the isospin

from the discussion (later in this paper we show how to
include the isospin explicitly). In impulse approximation
[4,68,94–97] the transition current takes the form

J	 ¼ 3
X
�

Z
k

���j
	
I �N; (4.2)

where all momenta and spin projections (s0 for the � and s
for the nucleon) have been suppressed. The factor 3 sums
up the contributions of the three quarks, the sum is over all
intermediate polarizations � of the diquark, and

Z
k
�
Z d3k

ð2�Þ32Es

(4.3)

is the covariant integral with Es ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

s þ k2
p

as the di-
quark on-mass-shell energy. The initial and final momen-
tum dependence are not explicitly included for simplicity.
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As discussed in ,Eq. (4.2), for the states �� and �N

defined here, goes beyond the scope of the relativistic
impulse approximation shown diagrammatically in
Fig. 2, and includes some effective two-body currents.

Since both the final and initial states satisfy the Dirac
equation P6 þ�� ¼ M�� and P6 ��N ¼ m�N, the Pauli
current can be simplified using the Gordon decomposition

X
�

Z
k

���

i	
q

2m

�N ¼ Mþm

2m

X
�

Z
k

����
	�N

� ðPþ þ P�Þ	
2m

X
�

Z
k

����N:

(4.4)

The last term is proportional to (inserting the spin projec-
tions for clarity)

�s0sðQ2Þ � X
�

Z
k

���s0�Ns: (4.5)

With this definition (dropping references to s0 and s again),
we can use the Gordon decomposition to write the current
(4.2) as

J	 ¼ 3jv
X
�

Z
k

����
	�N � 3j2

P	

m
�ðQ2Þ; (4.6)

where

jv ¼ j1 þMþm

2m
j2: (4.7)

These equations hold in any frame.
Next, using Eq. (4.6), the relations (3.23), and the Dirac

equation, we find an alternative form for the longitudinal
current

J 0 ¼ 3jv
X
�

Z
k

��� 6�0q�N � 3j2
jqjM
Qm

�ðQ2Þ

¼ 3

Q

ffiffiffiffiffiffi
d�
dþ

s
ðMþmÞjC�ðQ2Þ; (4.8)

where

jC ¼ j1 � j2
Q2

2mðMþmÞ : (4.9)

Both the current J 0 and the factor � depend on the spin
projections s0 and s, suppressed so far. Taking the spin
projections s ¼ s0 ¼ 1

2 and combining this result with Eq.

(3.26) gives G�
C in terms of �ð1=2Þð1=2Þ

G�
CðQ2Þ ¼ 4mM

Q2

ffiffiffiffiffiffiffiffiffiffiffi
6Mm

dþ

s
jC�ð1=2Þð1=2ÞðQ2Þ: (4.10)

This result holds in any frame.
Now, we connect some of these results to the divergence

of the simple current (4.1). Noting that the Pauli term,
proportional to j2, is automatically conserved, the diver-
gence of current depends only on the behavior of the Dirac
term, proportional to j1. Evaluating the divergence gives

q � J ¼ 3j1
X
�

Z
k

���q6 �N ¼ 3ðM�mÞj1�ðQ2Þ: (4.11)

Because the masses are different (M � m) this (frame
independent) result shows that the simple current (4.1)
will be conserved for an electromagnetic transition from
a state �N to a state �� if and only if �ðQ2Þ ¼ 0. We
showed in Ref. [68] that this term will vanish identically
(for all values of Q2) if the core spins of the two states are
different. This is true for the nucleon S state to � S-state
transition, and also for the transition from the nucleon S
state to the � D3 state. It is not true for the transition to the
D1 state, as discussed briefly above, and in more detail
below.
Combining Eqs. (4.10) and (4.11) gives the following

interesting connection

q � Jð1=2Þð1=2Þ ¼ 3ðM�mÞ j1
jC

ffiffiffiffiffiffiffiffiffiffiffi
dþ
6mM

s
Q2

4mM
G�

C: (4.12)

The consequence of this equation is that the simple
current (4.1) will be conserved if and only if G�

C ¼ 0.
Alternatively, since transitions to the � S and D3 states
conserve the current (4.1), these cannot give a nonzero G�

C.

To build a model in whichG�
C � 0 we must find a different

current, and this leads us to the next subsection.

2. Modified current

Following a previous work [4] we replace the quark
current (4.1) by

j	I ¼ j1

�
�	 � q6 q	

q2

�
þ j2

i	
q

2m

¼ j	Ia þ�j	I : (4.13)

It is easy to evaluate the additional term

�j	I ¼ 3ðM�mÞ q
	

Q2
�ðQ2Þ: (4.14)

This shows that all the good properties of the previous
current remain intact; when � ¼ 0 for all Q2 values, the
Dirac current j1�

	 is conserved and the correction term
vanishes identically. The advantage of the current (4.13) isFIG. 2. Relativistic impulse approximation.
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that current conservation is guaranteed, even when �ðQ2Þ
does not vanish identically.

The only possible problem with the new current is that it
might be singular at Q2 ¼ 0. This singularity must be
removed by imposing the requirement that �ðQ2Þ ! Q2

as Q2 ! 0. Since �0q � q ¼ 0, Eqs. (4.8) and (4.10) are

unchanged, and this requirement also means that G�
C is

finite at Q2 ¼ 0, guaranteeing that the apparent singularity
in Eq. (3.16) does indeed cancel.

The condition that guarantees that � ¼ 0 at Q2 ¼ 0 was
already introduced above in Sec. II C, Eq. (2.44). The
importance of this orthogonality condition was empha-
sized in Ref. [98]; imposing it ensures that the current
(4.13) is well defined and conserved for all Q2.

To summarize, in the present model the orbital angular
momentum states are not derived from an underlying
Hamiltonian. Therefore, the � state with ðL;SÞ ¼ ð2; 12Þ,
with the same core spin quantum numbers as the nucleon
state, even though carrying the correct spin-isospin sym-
metries, does not have a spacial scalar part c D1

� that is

ab initio orthogonal to a nucleon state. The orthogonality is
imposed by a judicious choice of the parameter �D1 in Eq.
(2.40).

B. Isospin dependence of the current

For simplicity, we did not include isospin in the discus-
sion in the previous subsection. It is included in the defi-
nition of the current subsection through the following
isoscalar and isovector decomposition, as in Ref. [4]:

ji ¼ 1

6
fiþðQ2Þ þ 1

2
fi�ðQ2Þ�3; (4.15)

where i ¼ 1, 2 and f1� and f2� were adjusted by the
charge and magnetic form factors of the nucleon and
were normalized to f1�ð0Þ ¼ 1, f2�ð0Þ ¼ ��. Only the
isovector form factors, fi� contribute to the �N ! �
transitions.

The overall isospin factor can be calculated separately,
and was worked out in Ref. [68]. This factor is

CI0I � ~�1
I0
�3
2
�1

I ¼ � 1ffiffiffi
3

p X
i

�y
�I0T

i �3
2
�i�NI

¼ �
ffiffiffi
2

p
3

�I0I ¼ C0�I0I: (4.16)

All formulas derived in the previous sections are still valid
if we replace

ji ! C0fi�: (4.17)

V. VALENCE QUARK CONTRIBUTION FOR THE
FORM FACTORS

The impulse approximation for �N ! � transitions
from the nucleon S state to each of the � states can be
written, using Eq. (2.42)

J	 ¼ N½J	S þ aJ	D3 þ bJ	D1�; (5.1)

where the index identifies the � state. From this we can
calculate the form factors G1, G2, and G4 defined in Eqs.
(3.1) and (3.2), and using the definitions given in Eqs.
(3.14), (3.15), and (3.16) calculate the multipole transition
form factors G�

M;G
�
E and G�

C.

A. Transition to the � S state

The transition current from the nucleon S state for the �
S state was already evaluated in Ref. [68]. Using the upper
index S to indicate the � state, the results are

GS
MðQ2Þ ¼ 8

3
ffiffiffi
3

p m

Mþm
fvIS; (5.2)

GS
EðQ2Þ ¼ 0 GS

CðQ2Þ ¼ 0; (5.3)

where jv is the analogue of (4.7)

fv ¼ f1� þMþm

2m
f2�; (5.4)

and

I S ¼
Z
k
c S

�ðPþ; kÞc S
NðP�; kÞ (5.5)

is the overlap integral of the radial (scalar) wave functions.
Asymptotically, we have GS

M 
 1=Q4, as showed in
Ref. [68].
According to Eqs. (3.15) and (3.16), GS

E and GS
C vanish

because the terms involving G1, G2, and G4. cancel
exactly.

B. Transitions to the � D states

The transition currents to the D states are

J
	
D2S ¼ 3

X
�

Z
k

��D2S
� ðPþ; kÞj	I �NðP�; kÞ

¼ �w�ðPþÞ��	
D2SðP; qÞ�5uNðP�Þ�I00I; (5.6)

where we suppress all reference to the spins of the nucleon
and �. Substituting for �N using Eq. (2.1), �D2S

� using

Eqs. (2.34) and (2.39), and using the general reduction (4.6)
gives

��	
D2SðP; qÞ ¼ �3

ffiffiffi
3

2

s
C0

Z
k

�
D��0 ðPþ; kÞðPSÞ�0�0

X2
i¼1

O	
i

���0�
�
�� þ ðP�Þ�

m

�	
c D2S

� c S
N; (5.7)

where ��� is the sum over the fixed-axis diquark polar-
izations (previously derived in Refs. [5,68])
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��0� ¼ X
�

"�
0

�Pþ"
��
�P�

¼ �
�
g�

0� � P�0
�P�þ
b

�
þ a

�
P�0
� � b

M2
P�0
þ
�

�
�
P�þ � b

m2
P��

�
; (5.8)

with

a ¼ � Mm

bðMmþ bÞ b ¼ Pþ � P�; (5.9)

and the two current operators emerging from the reduction
(4.6) are

O 	
1 ¼ fv�

	 O	
2 ¼ �f2�

P	

m
: (5.10)

Using the conditions (2.4), (2.6), and (2.28), the part of the
expression for �D2S in curly brackets fg reduces to

�
�	
D2SðP; qÞ ¼ � ffiffiffi

3
p Z

k

�
D��0 ðPþ; kÞðPSÞ�0�

X2
i¼1

O	
i

�
�
�� � P��½P6 þ �M�

mMþ b

�	
c D2S

� c S
N: (5.11)

This general expression may be reduced further by noting
that, in a collinear frame in which none of the momenta
have components in the x̂ or ŷ directions, the only depen-
dence of the integrand on the azimuthal angle ’ is in the
angular dependent term D. Hence, we may average over
this angle using the (covariant) identity

1

2�

Z
d’D��ðPþ; kÞ ¼ bð~k; ~qÞR��ðPþ; P�Þ; (5.12)

where

bð~k; ~qÞ ¼ 3

2

ð~k � ~qÞ2
~q2

� 1

2
~k2

R��ðPþ; P�Þ ¼ ~q�~q�

~q2
� 1

3
~g��;

(5.13)

with ~k and ~q defined as in Eq. (2.15) [with the substitutions
P ! Pþ and mH ! M]. This identity is proved in
Appendix B.

Using the conditions (2.6) and (2.28) again, the ’ aver-
age of (5.11) can be simplified

���	
D2SðP;qÞ ¼ � ffiffiffi

3
p Z

k

�
bð~k; ~qÞ

�
q�q�

0

~q2
ðP SÞ�0�

� 1

3
�2S;3g

�
�

�
�X2

i¼1

O	
i

�
�� �P��½P6 þ �M�

mMþ b

�	

� c D2S
� c S

N: (5.14)

This will now be evaluated for the two cases of interest.

1. Nucleon ðSÞ ! �ðD3Þ
The term in round brackets in Eq. (5.11) commutes with

O2 (an identity operator on the Dirac space), and hence, for
the transition to the spin 3=2 core state (D3) with P S ¼
P 3=2 gives zero (this is the � term discussed above).

Commuting the term in round brackets through O1, letting
P6 þ ! M when it operates to the left, gives

�	

�
�� � P��½P6 þ �M�

mMþ b

�
¼ 2g�	 � ���	

�
�
P��½2P	

þ � 2M�	�
mMþ b

�
:

(5.15)

For the S ¼ 3=2 case under consideration, the ���	 terms
vanishes, and combining this with the remaining terms
gives

��
�	
D3 ðP; qÞ ¼ �2

ffiffiffi
3

p
fv
Z
k

�
bð~k; ~qÞ

�
q�q�

0

~q2
ðP 3=2Þ�0�

� 1

3
g��

�
�
�
g�	 � P��½P	

þ �M�	�
mMþ b

�	
� c D3

� c S
N: (5.16)

Now, we know that the terms proportional to q	 can be
ignored (they determine G3, which we already know is just
right to give a gauge invariant result, but otherwise play no
role in the calculation). Furthermore, we already know that
G�

C ¼ 0, and hence the value of G2 must be fixed in terms

ofG1 andG4 through Eq. (3.16), so we need not calculate it
explicitly. This leaves onlyG1 andG4, whose values can be
extracted from (5.16) by separating out the terms depen-
dent on g�	 and q��	. This leads to

G1 ¼ 0 G4 ¼ � 2ffiffiffi
3

p fvID3; (5.17)

where the overlap integral ID3 is

I D3 ¼
Z
k
bð~k; ~qÞc D3

� ðPþ; kÞc S
NðP�; kÞ: (5.18)

From Eqs. (3.14) and (3.15) we obtain

GD3
M ðQ2Þ ¼ � 4

3
ffiffiffi
3

p m

Mþm
fvID3; (5.19)

GD3
E ðQ2Þ ¼ � 4

3
ffiffiffi
3

p m

Mþm
fvID3; (5.20)

GD3
C ðQ2Þ ¼ 0: (5.21)

Although formally different from the integral involved
in the S-state transition, it can be shown that the integral
ID3 goes with 1=Q4 for large Q2. The proof follows the
lines presented in case I of Appendix G in Ref. [68]. As a
consequence, GD3

M ¼ GD3
E 
 1=Q4.
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2. Nucleon ðSÞ ! �ðD1Þ
For the D1 transition the � term is no longer zero, and

using Eq. (5.14), the property of the S ¼ 1=2 projection
operator, and the definition of O2 gives

��
�	
D1 ðP; qÞj� ¼ ffiffiffi

3
p

f2�
Z
k

�
bð~k; ~qÞq� P

	

m

� 1

~q2
q�

0 ðP 1=2Þ�0��
�

	
c D1

� c S
N; (5.22)

which contributes only to G2

G2j� ¼ � 2
ffiffiffi
3

p
M

md�
f2�ID1; (5.23)

where the D1 overlap integral is

I D1 ¼
Z
k
bð~k; ~qÞc D1

� ðPþ; kÞc S
NðP�; kÞ: (5.24)

Comparing this calculation with Eq. (4.6), and using the
connection j2 ! C0f2�, gives an explicit expression for
�ð1=2Þð1=2Þ

�ð1=2Þð1=2ÞðQ2Þ ¼ Rð1=2Þð1=2Þ
2Mffiffiffi
3

p
d�

ID1 ¼ 1

3C0

ffiffiffiffiffiffiffiffiffiffiffi
dþ
2Mm

s
ID1:

(5.25)

Next, using Eq. (5.15) for S ¼ 1=2 case (where the
���	 term does not vanish), the O1 term for the D1
transition is

��
�	
D1 ðP; qÞjO1

¼ � ffiffiffi
3

p
fv
Z
k

�
bð~k; ~qÞ

�
q�q�

0

~q2
ðP 1=2Þ�0�

�

�
�
2g�	 � ���	 � P��½2P	

þ � 2M�	�
mMþ b

�	
� c D1

� c S
N: (5.26)

From this we must extract the contributions to G1, G2, and
G4 [again ignoring G3 which, using the modified current
(4.13), will be given by the gauge invariant condition]. It is
easy to see that G4 ¼ 0, and

G1 ¼ 2Mffiffiffi
3

p
dþ

fvID1 G2jO1
¼ 8Mð2mþMÞffiffiffi

3
p

dþd�
fvID1:

(5.27)

These contributions combine with (5.23) to give

GD1
M ðQ2Þ ¼ 2

3
ffiffiffi
3

p m

Mþm
fvID1

GD1
E ðQ2Þ ¼ � 2

3
ffiffiffi
3

p m

Mþm
fvID1

GD1
C ðQ2Þ ¼ 4mMffiffiffi

3
p

Q2
fCID1;

(5.28)

where fC is the analogue of (4.9)

fC ¼ f1� � Q2

2mðMþmÞ f2�: (5.29)

Note that the expression (5.28) for GD1
C ðQ2Þ is consistent

with (4.10) if we use the expression (5.25) and the connec-
tion jC ! C0fC.
Finally, as we have already discussed, the possible sin-

gularity in G�
C must be canceled by imposing the require-

ment

lim
Q2!0

ID1 ! AQ2; (5.30)

where A is a constant. This constraint predicts that the D1
contributions to the magnetic and electric form factors will
be zero at Q2 ¼ 0. However, the constant A in the limit
(5.30) will in general be nonzero, predicting that G�

C is

finite as Q2 ! 0.
For large Q2, we can write ID1 as a difference of two

integrals of the type ID3 with different coefficients. Hence,
ID1 goes like 1=Q

4, which gives a 1=Q4 behavior for GD1
M ,

GD1
E and GD1

C 
 1=Q6 (because fC ! constant as Q2 !
1).
In the overall, the asymptotic expression for the form

factors are consistent with pQCD [16].

C. Sum of all valence contributions

Considering the sum of all valence quark contributions,
we obtain the contribution of the quark core, which we
denominate by the ‘‘bare’’ (B) contribution

GB
MðQ2Þ ¼ N½GS

M þ aGD3
M þ bGD1

M �; (5.31)

GB
EðQ2Þ ¼ N½aGD3

M � bGD1
M �; (5.32)

GB
CðQ2Þ ¼ NbGD1

C ; (5.33)

where we used the relations between the electrical and
magnetic components for each state. Note that there are
only two contributions for GB

E, and one of them (GD1
M ) is

zero for Q2 ¼ 0. As for GB
C there is only the D1 state

contribution.
For completeness we mention here that the nucleon

could also have a D state. However, the nucleon (with total
angular momentum J ¼ 1=2) can only have the D state
with core spin 3=2. This nucleon D state can be built using
the ideas presented in the previous sections and leads to an
additional contribution toG�

C. We have not considered such

a D-state admixture in this paper because the nucleon form
factors can be well described at low Q2 [4] without includ-
ing it.

VI. PION CLOUD CONTRIBUTION TO THE FORM
FACTORS

The previous section presented the contribution for the
form factors from the photon-quark interaction in relativ-
istic impulse approximation, and within the spectator the-
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ory. But the description of the electromagnetic N� tran-
sition requires also the presence of nonvalence degrees of
freedom, which may involve two-body currents and/or sea
quark contributions—dominated by virtual pion states, the
pion cloud effects.

In the language of the dynamical models, where the
hadronic interactions are described in terms of a baryon
core that interacts with mesonic fields, a transition form
factor can be separated into two terms [43,65,66]: the
contribution of the quark core, or bare contribution, and
the contribution from the pion cloud

G�
�ðQ2Þ ¼ GB

�ðQ2Þ þG�
�ðQ2Þ; (6.1)

where � holds for M, E, C, and G�
� denotes the corre-

sponding mechanisms involving at least one intermediate
pion state. This contribution is related with the long-range
interaction, while GB

� contains the short range physics [43]
parametrized by the baryon wave functions. The decom-
position (6.1) was also considered in Ref. [72].

Note that this scheme is model dependent, because the
decomposition in background and resonances amplitudes
is not unique [18,19,43,99]. However, once established the
pion production mechanism (�NN amplitude), we can split
G�

� in two contributions in a given formalism.
Although our main goal here is the D-state effects in the

core valence quark wave function, even a qualitative esti-
mate of the D-state effects requires a simulation of the pion
cloud effects. An effective parametrization of the pion
cloud in G�

M was already introduced in a previous work
[68]. For G�

E and G�
C we consider in the present work the

parametrization introduced in Refs. [24,53,70,71], which
we will sketch now.

A. Pion cloud parametrization of G�
C

In a pure SU(6) model the neutron electric form factor
GEn would be identically zero and the multipoles E2 and
C2 in the �N ! � transition negligible. In the real world,
GEn is small but nonzero.

Considering a constituent quark model with a confining
harmonic oscillator potential with also pion- and gluon-
exchange between quarks, Buchmann [53,72] concluded
that theGEn data can be explained considering a two-quark
current, with a quark-antiquark pair interacting with the
external photon. In this description, the neutron spatial
extension, expressed in term of its radius, can be written as

r2n ¼ �M2 �m2

m
b2q; (6.2)

where bq is the quark core radius (oscillator parameter).

For the experimental result, r2n ’ �0:113 fm2, we can
estimate bq � 0:6 fm. Within the same formalism, one

concludes [53] that

G�
Cð0Þ ¼ �

ffiffiffiffiffiffiffi
2m

M

s
Mm

r2n
6
: (6.3)

As, for low Q2, we can write for GEn

GEnðQ2Þ ’ �Q2 r
2
n

6
; (6.4)

and we obtain, for small Q2

G�
CðQ2Þ ¼

ffiffiffiffiffiffiffi
2m

M

s
Mm

GEnðQ2Þ
Q2

: (6.5)

The relation (6.5) can alternatively also be constructed
from relations between the nucleon and nucleon to �
transition magnetic moment, in the large Nc limit [24],
for low Q2 (Q2  1 GeV2).
Following Buchmann again, from a different perspective

[72], the nucleon form factors can be described by a
symmetric quark core distribution plus an asymmetric
pion cloud around the inner core. Considering the proton
electrical form factor, in particular, we can write

GEpðq2Þ ¼ GEp0 ðQ2Þ þG�
EpðQ2Þ; (6.6)

where GEp0 ðQ2Þ is the bare proton charge form factor, and

G�
EpðQ2Þ is the contribution due to the pion cloud. In the

same picture the neutron electric form factor is however
just given by the pion cloud, and we may write

GEnðQ2Þ ¼ �G�
EpðQ2Þ; (6.7)

since the charge distribution in the neutron bare core is
zero. In the Q2 ¼ 0 limit, Eqs. (6.6) and (6.7) are directly
related with the nucleon radii. From Eq. (6.4) we obtain
GEnð0Þ 
 r2n � �0:113 fm2. As for GEp, we may write

GEpðQ2Þ ’ 1� r2p
Q2

6 , where r2p is the proton electrical

squared radius. Now, r2p can be decomposed as r2p0 � r2n �
0:78 fm2, where r2p0 � 0:67 fm2 represents the radius of

the bare proton, the size of the proton being increased by
the pion cloud.
As GEn is determined by pure pion cloud effects, we

conclude thatG�
C (6.5) is the result of pion cloud effects (or

equivalently, the Coulomb quadrupole form factor in the
�N ! � transition would be zero, for the case of no pion
cloud effects). The previous derivation assumes no contri-
bution from the inner core (symmetric distribution in the
core). This assumption is not valid in general but can be a
good approximation for a small D-state admixture. We will
therefore use

G�
CðQ2Þ ¼

ffiffiffiffiffiffiffi
2m

M

s
Mm

GEnðQ2Þ
Q2

(6.8)

to represent the contribution of the pion cloud for G�
C.

To check the consistency of this assumption, and before
using it together with the bare model built here, we com-
pare the RSM data with the results extracted from the
electrical form factor data using the parametrization (6.5).
To estimate G�

MðQ2Þ at the respective momentum Q2, we
consider the simple phenomenological parametrization of
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Ref. [21]

G�
MðQ2Þ ¼ 3GD expð�0:21Q2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Q2

ðMþmÞ2
s

: (6.9)

The quality of this parametrization for G�
M is presented in

Fig. 3. The results are presented in Fig. 4, where we
calculatedGEn from our spectator constituent quark model.
Although according to Eq. (6.5) the pion cloud contribution
to G�

C decreases with Q2, its effect is not observed in the

figure, due to the kinematic factor jqj
2M present in RSM.

Because of the nature of the derivation of Eq. (6.8) (large
Nc limit andQ2 
 0) we cannot say for sure whether or not
the discrepancies in Fig. 4 are the result of the crude
estimation (Oð1=N2

cÞ correction to the large Nc limit) or
the result of neglecting the bare quark contribution.
Reference [70] estimates the D-state effects from this
one-body current to be 20% to the final result.

B. Pion cloud parametrization of G�
E

Considering the large Nc limit, Pascalutsa and
Vanderhaghen [24] related G�

C and G�
E at the photon point

(Q2 ¼ 0)

G�
Cð0Þ ¼

4M2

M2 �m2
G�

Eð0Þ: (6.10)

Using the relation (6.5) between G�
C and GEn, and extend-

ing the results for finite Q2, one has [24]

G�
EðQ2Þ ¼

�
m

M

�
3=2 M2 �m2

2
ffiffiffi
2

p GEnðQ2Þ
Q2

: (6.11)

This result was derived in Ref. [24], in the Q2 ¼ 0 limit,
and must be restricted to low Q2 (Q2  1 GeV2). The
comparison between the REM data and the predictions
from Eq. (6.11) using the GEn data is presented in Fig. 5.

In the G�
C case, the exact SU(6) symmetry would imply

GEn � 0, and there is no contribution for the electric
quadrupole. In contrast, one cannot conclude that Eq.

(6.11) results uniquely from pure pion cloud effects. In
the large Nc analysis, both G�

E and G�
C are Oð1=N2

cÞ, to be

compared with G�
M ¼ OðN0

cÞ, which is estimated in terms
of the magnetic form factor of the neutron [65,72]. In that
limit the valence quark core is dominant, but the next order
correction can be originated by pion cloud effects or by
angular momentum excitation of a quark. But, because G�

E

can be written in terms of r2n (or GEnðQ2Þ for Q2 
 0), we
will take (6.11) as the pion cloud contribution for G�

E for
low Q2, neglecting next order corrections Oð1=N3

cÞ) in the
large Nc limit

G�
EðQ2Þ ¼

�
m

M

�
3=2 M2 �m2

2
ffiffiffi
2

p GEnðQ2Þ
Q2

: (6.12)

Reference [53] estimates the contributions due to the
quark-antiquark states G�

E to be 88% of G�
E for Q2 ¼ 0.
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FIG. 3 (color online). Comparing the G�
M data with the pa-

rametrization of Eq. (6.9).
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FIG. 4 (color online). Comparing the RSM data with the pre-
diction of Eq. (6.5) using the neutron electrical form factor data
of Ref. [4]. The nucleon model line corresponds to the model of
Ref. [4]. The nucleon wave function parameters are presented in
Table I.
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FIG. 5 (color online). Comparing the REM data with the pre-
diction of Eq. (6.11) using the neutron electrical form factor data
of Ref. [4]. The nucleon model line corresponds to the model of
Ref. [4]. The nucleon wave function parameters are presented in
Table I.
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The relation between G�
E and G�

C represented in Eq.

(6.10) is also known as the long wavelength limit for the
ratio G�

Cð0Þ=G�
Eð0ÞÞ. It is the result of the conditions Q2 

M2 �m2  M2; m2, like in the large Nc limit, whereM�
m ¼ Oð1=NcÞ. Equation (6.10) is also used to relate the
electrical and Coulomb bare quadrupoles in the SL [43]
and DMT [44] models.

A direct consequence of (6.10), if G�
C and G�

E are the

only contribution for the respective form factors, is that
[24]

REMð0Þ ¼ RSMð0Þ: (6.13)

Note that the pion cloud contributions (6.8) and (6.12)
for G�

C and G�
E, respectively, go with 1=Q6 for large Q2,

competing with the bare contributions (1=Q6 and 1=Q4,
respectively). (Assuming as in Ref. [4] that GEn 
 1=Q4).
As a consequence, the pion cloud contribution does not
change the asymptotic behavior derived forGB

E andG
C
B. We

need to have in mind, however, that the results for G�
C and

G�
E are derived under the assumption that Q2 is small.

Buchmann [71,72] argues that nevertheless, the pion cloud
description forG�

C can be extended also to the intermediate

Q2 region (Q2 
 4 GeV2).
With the parametrization of the pion cloud mechanisms

using the Eqs. (6.8) and (6.12), we preserve the covariance
of our calculation because GEn is evaluated using a spec-
tator model [4].

VII. RESULTS

In this section, we present the numerical results of our
model to the �N ! � transition. For the quark current we
adopted the quark form factors from Ref. [4] based on a
vector dominance model parametrization

f1�ðQ2Þ ¼ �þ ð1� �Þ
1þQ2=m2

v

þ c�Q2=M2
h

ð1þQ2=M2
hÞ2

f2�ðQ2Þ ¼ ��
�

d�
1þQ2=m2

v

þ ð1� d�Þ
1þQ2=M2

h

	
:

(7.1)

In these expressions, mv and Mh are the masses of the
vectorial mesons. The lower mass mv ¼ m� (or m!),

describes the two pion resonance (three pion resonance)
effect, and Mh, fixed as Mh ¼ 2m, takes into account all
the larger mass resonances. The parameter � was adjusted
to give the correct quark density number in deep inelastic
scattering [4,68]. All the other parameters are presented in
Table I.

Wewill divide this section into two subsections. First we
consider the effects of the valence quarks. In particular, we
test whether the bare contributions alone calculated as
explained in Sec. V can describe the experimental data.
In the second subsection, we add the effects of the sea
quarks (pion cloud effects), with the phenomenological,
parameter free, description of the pion cloud presented in
Sec. VI.

A. Valence quark contributions only: Models 1–3

With only valence quark degrees of freedom the N�
electromagnetic transition form factors are described by
Eqs. (5.31), (5.32), and (5.33). The free parameters of our
model are the admixture coefficients a, b, and the momen-
tum range parameters of the scalar wave functions (2.40)
and (2.41). In a previous work, we adjusted the S-state �
wave function to the G�

M data considering also an effective
pion cloud contribution [68] as

G�
MðQ2Þ ¼ GB

MðQ2Þ þG�
MðQ2Þ; (7.2)

where GB
M is the contribution of the quark core and G�

M the
pion cloud effects, parametrized by

G�
MðQ2Þ ¼ ��

�
�2

�

�2
� þQ2

�
2ð3GDÞ; (7.3)

where GD ¼ ð1þQ2=0:71Þ�2 is the nucleon dipole form
factor, �� a cutoff, and �� a coefficient that defines the
intensity of the pion cloud effect. The factor 3 was included
for convenience: when Q2 ¼ 0, G�

Mð0Þ=G�
Mð0Þ ¼ ��, then

�� measures the fraction of pion cloud (G�
Mð0Þ � 3). The

parametrization (7.3) simulates the main features of the
pion cloud mechanism: significant contribution for Q2 ¼
0; falloff with increasing Q2. For more details see
Ref. [68].
Here we extend the predictions to the subleading quad-

rupole form factors G�
E andG�

C expressed in the ratios REM

and RSM defined, respectively, by Eqs. (3.10) and (3.11).
We kept the parametrization (7.2) and (7.3) for G�

M; how-
ever,GB

M is no longer determined only by the� S state, but
now also includes contributions of both of the D states. For
this reason the parameters originally fixed in the S state fit
are now readjusted.
We considered the G�

M data from CLAS/JLab [14,15],
DESY [100], and SLAC [101]. For the electromagnetic
ratios REM and RSM, we use the data from MAMI [10,11],
LEGS [12], MIT-Bates [13], and JLab [14,15]. Although
there is no inconsistency in the G�

M data, there is some
ambiguity in the REM and RSM data, dependent on the
analysis. For the form factor information to be extracted
one uses data for the pion photoproduction reaction cross
sections. Those cross sections are interpreted in terms of an
amplitude that includes a background and a resonant con-
tribution. In the process, the extraction of the multipoles
depends on assumptions for the background and resonance

TABLE I. Parameters of the nucleon wave function (�1, �2)
and quark form factors corresponding to the model II of Ref. [4].
In each case, we kept �þ ¼ 1:639 and �� ¼ 1:823 in order to
reproduce the nucleon magnetic moments exactly.

�1, �2 cþ, c� dþ, d� �, ms=m

0.049 4.16 �0:686 1.21

0.717 1.16 �0:686 0.87
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parametrization. The multipole resonant amplitudes are
then varied to fit the cross section data [18]. Kamalov
et al. [45] presented a re-analysis of the CLAS-2002 data
[14] with significant differences from the original data.
Similarly, the CLAS-2006 RSM data [15] for Q2 �
3 GeV2 shows a dependence on Q2 different from the
recent MAID analysis [75] of the same data. The REM

analysis from Arndt et al. [102] is in contradiction with
all the published results. More recently, Stave [67] showed
that there is significant discrepancies in the extraction of
E2 and C2 from the data using different reaction models
like SL and DMT in the region Q2 < 1 GeV2. (This dis-
crepancy can be reduced by refitting the models within the
range Q2 < 1 GeV2 only, which however prevents the
range of the application of the models for higher Q2

regions.)
As a first step, model 1 fits only the G�

M and REM data
(using, as in Ref. [68], the bare data extracted by the SL
model [43] to constrain the bare form factor GB

M). This fit
(together with the fit from model 2 described below) is

shown in Fig. 6. The Coulomb form factor predicted by
model 1 (and not used in the fit) is shown in Fig. 7.
The parameters that were adjusted during the fits are

shown in Table II. Although we did not fit the RSM data, the
coefficient b, which determines the strength of the D1
state, was adjusted during the fit. (As emphasized in the
previous sections, only the D1 state can generate a non-
vanishing RSM, or G

�
C � 0.) As we see in Table II, the best

description of the G�
M and REM data requires a small

admixture of the D1 state (0.2%). To check the sensitivity
of the fit to the inclusion of the D1 state, we considered also
another fit forcing b ¼ 0. This defines model 2. As Table II
shows, the admixture with b � 0 improves the description
of the data only slightly (�2 of 2.72 versus 2.83), meaning
that the role of the D1 state is not decisive forG�

M and REM.
Figure 7 shows the prediction of model 1 for RSM (the

result for model 2 is zero). We conclude that the RSM

prediction from model 1 is an order of magnitude smaller
than the data.
The next step is to try to fit the RSM data as well, still

using only the valence quark degrees of freedom. However,
because of the zero in fC, Eq. (5.29), we also predict a zero
in G�

C, Eq. (5.28). Using the parameters of Ref. [4], fC
passes through zero around Q2 ’ 5:6 GeV2. This zero is
completely at odds with the data. It is therefore impossible
to fit G�

C over the entire Q2 range, and at this stage we

restrict the fit to RSM to the low momentum region Q2 <
1:5 GeV2. This fit defines model 3.
The results from model 3 are shown in Fig. 8. In the last

panel of the figure we show RSM for Q2 < 1:5 GeV2 only,
the range used in the fit. Figure 7 compares the results for
RSM obtained from models 1 and 3 over the entire Q2

range. Note the unavoidable zero for model 3 at Q2 

5:6 GeV2. The first conclusion from model 3 is that the
fit gives RSM only within the region Q2 < 1:5 GeV2, and
that the fit is a poor one (high �2

RSM). Also, the quality of

the description of the G�
M data is affected, as we can

conclude from Table II, by comparing �2
GM obtained in

model 3 with the corresponding values obtained in models
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FIG. 6 (color online). Models 1 and 2. G�
M data from CLAS/

JLab [14,15], DESY [100] and SLAC [101]. REM data from
MAMI [10,11], LEGS [12], MIT-Bates [13], and JLab [14,15].
The bare data for GB

M, shown in the top panel, were extracted
from the SL analysis, Ref. [43]. For the fit we doubled the bare
data error bars shown in the figure to constrain GB

M, but the extra
�2 that results from the fit of GB

M to bare data is not included in
any of the �2 reported in this paper.
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FIG. 7 (color online). RSM from models 1 and 3. Data from
MAMI [10,11], LEGS [12], MIT-Bates [13], and JLab [14,15].
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1 and 2. Note also that even the qualitative description of
RSM provided by model 3 requires an abnormally large
admixture of the D1 states (15.2%). All these observations
show the intrinsic limitations of a pure constituent quark
model. They can be overcome by adding pion cloud ef-
fects, as motivated in the discussion in the previous section.
At lowQ2, the data tell us that RSMð0Þ � �4%, which is

equivalent to G�
Cð0Þ � 1:1 [this follows from (3.11) with

G�
Mð0Þ ’ 3]. Without a pion cloud such a result can be

obtained in this formalism only by requiring a large D1
admixture. But even with a large D1 admixture, the valence
quark contribution for RSM changes sign at about Q2 

5:6 GeV2, and we are led to conclude that the valence
quark degrees of freedom are insufficient to explain the
G�

C data for large Q2. This conclusion is consistent with

both constituent quark models and the results from dy-
namical models.
Let us discuss now the numerical values of the range

parameters �i. Remember that �i can be interpreted as a
Yukawa range parameter [4,6], with a smaller � parameter
representing a larger spatial range. It is interesting to see
that in all the models with D-state components, �1 ’ �2.
This finding differs from the results obtained previously for
a � wave function with only an S-wave component [68].
For the pure S state, �1 � 0:3 and �2 � 0:4. Apparently,
the introduction of the D states sets a new long-range scale,
with �i 
 0:1 to 0.2, for i ¼ 3, 4, 5. These longer range
scales are also nicely consistent with the notion that the D
waves are peripheral. Finally, it is worth mentioning that
the similarity in the values for �1; �2 ’ 0:35, suggests that
the S-state effects are somehow model independent. This
feature suggests that, in the future, it might suffice to chose
only 1 parameter to describe the S state of the �, showing
that the improvement that accompanies the inclusion of the
D-states is robust.
Summarizing: a qualitative description of the G�

M and
G�

E data can be obtained using a � wave function com-

posed predominantly of an S state with admixtures of D3
and D1 states. A fit based on a quark core requires an 8.2%
admixture of the D3 state. The inclusion of the D1 state is
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FIG. 8 (color online). Model 3. Data from Figs. 6 and 7.

TABLE II. Model 1 fits G�
M and REM. Model 2 fits the same quantities with b ¼ 0 (no D1 mixture). Model 3 fits all variables but

restrictsQ2 < 1:5 GeV2 for RSM. Model 4 includes an effective pion cloud in both REM and RSM (forQ2 < 4:3 GeV2). All models also
fit GB

M to the bare data (as shown in the figures) but the extra �2 that results from the fit to bare data is not included in the �2 reported in

the last two columns.

Model ��, �
2
� �1, �2 �3, �4 �D1, �5 D3, D1 �2

GM, �
2
REM �2

RSM, �
2

1 0.450 0.344 0.1956 1.025 8.15% 1.41 —

1.46 0.344 0.1978 0.1165 0.17% 4.39 2:72
2 0.448 0.350 — — 8.16% 1.21 —

1.53 0.343 — 0.0991 — 4.90 2:83
3 0.479 0.343 0.1567 1.0087 8.50% 3.33 11.84

1.30 0.350 0.1574 0.2218 15.2% 3.80 5:45
4 0.441 0.336 0.1089 1.0094 0.88% 1.41 5.68

1.53 0.337 0.1094 0.1880 4.36% 0.99 2:51
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not at all necessary to explain the G�
M and G�

E data. To
explain the G�

C data using only a quark core requires an

unusual large admixture of the D1 state, and is only rea-
sonable for low Q2, failing totally for Q2 > 2 GeV2 (see
Fig. 7). The conclusion from models 1–3 is that a quark
core only is not sufficient to explain the �N ! � transition
data, even when the � wave function includes admixtures
of D1 and D3 states.

B. A mixed description: valence quarks and a pion
cloud: Model 4

We now add a pion cloud contribution to the G�
E and G�

C

form factors

G�
EðQ2Þ ¼ GB

EðQ2Þ þG�
EðQ2Þ

G�
CðQ2Þ ¼ GB

CðQ2Þ þG�
CðQ2Þ; (7.4)

where the pion cloud contributions are taken from Eq.
(6.12) and Eq. (6.8), respectively. There are no adjustable
parameters in the pion cloud components. For the neutron
electric form factor GEnðQ2Þ we use model II of Ref. [4]
(see Table I). The limit of validity of the pion cloud
formulas is restricted to low Q2, which led us to restrict
our fit to RSM to the Q2 < 4:3 GeV2 region. The bare
contributions from valence quarks come from (5.32) and
(5.33). Then, GB

E is the result of the valence quark contri-
bution involving the D3 and D1 states, and GB

C comes only

from the D1 state.
The results for model 4: the fit obtained using the pion

cloud, are shown in Fig. 9, with the parameters given in
Table II (along with the results for all the other models).
The description of G�

C (and the corresponding ratio RSM)

by model 4 for Q2 > 2 GeV2 favors the recent MAID
analysis [75] over the original JLab analysis [15], and its
success or failure will ultimately depend on which of these
analysis survives further study.

By comparing the �2s in Table II for models 3 and 4, one
concludes that the inclusion of the pion cloud for G�

E and
G�

C does indeed improve significantly the simultaneous

description of the data of these two more problematic
observables. In model 4, the contribution of the pion cloud
at Q2 ¼ 0 is 86.9% for G�

E, and 72.5% for G�
C. The most

important D state is the D1, with a small admixture of 4.4%
compared with a tiny admixture of a D3 state of only 0.9%.
As for the dominant G�

M form factor, the pion cloud con-
tribution estimated using an S-wave model does not change
with the inclusion of D waves (44.1% for model 4 to be
compared with 46.4% from Ref. [68]). The magnitude of
the cutoff, �2

�, in the pion cloud contribution to G�
M is

decreased slightly (1:53 GeV2 versus 1:22 GeV2). The
addition of the pion clouds term to the D-wave states
does not change the previously observed approximate
equality �1 ’ �2, although it reduces very slightly the
value of these range parameters.

Even though the pion cloud contributions dominate the
description of the small form factors, our model suggests
that the corrections coming from the valence quark sector
are still important to obtain the best description of the data.
This can be confirmed in Fig. 9, in particular, for RSM.
Leaving aside the discrepancy at high Q2, which depends
on the resolution of the differences between the recent
MAID analysis and the older JLab analysis. The figure
shows that the pion cloud contribution, which in our work
is parameter free, underestimates the data.
While model 4 fits the overall data well, and is clearly

the best model found, there are at least three ways in which
our theory and the experimental data could be improved.
First, the validity of our model for the pion cloud can be
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questioned, particularly away from the photon point,Q2 ¼
0. Second, the analysis of the data forQ2 < 0:15GeV2 and
for large Q2 is uncertain. If the low Q2 data is excluded
from the fit, we found that a higher quality description of
RSM was possible, with �2 
 1:2. That there is some
legitimacy in excluding this data may be seen from a
comparison between different data sets, shown in Fig. 10.
The experiments for Q2 ¼ 0:121GeV2 from MIT-

Bates and Q2 ¼ 0:126; 0:127GeV2 from MAMI suggest
a large negative fraction for the RSM (around �7%), in
contradiction with the data for Q2 ¼ 0:2GeV2 GeV2 from
MAMI, and also the very recent preliminary CLAS data
[43,67,84] (RSM 
�5%). The final analysis of the CLAS
data should clarify this point.
Finally, our treatment of the valence quark sector can be

questioned. The factor fC in Eq. (5.29) gives a zero in GB
C,

which implies a dominance of the pion cloud for Q2 

6GeV2. To study the model dependence on this behavior of
fC, we probed a change in the quark anomalous magnetic
moments ��. We tried to suppress the largeQ2 behavior of

f2� by redefining �� ! �� �2

�2þQ2 , with � an adjustable

cutoff. This reparameterization decreased the overall �2

obtained for the description of the transition data, but also
increased the �2 for the fit to the nucleon form factor data.
Clearly, this effect deserves more study.

VIII. COMPARISON WITH OTHER WORKS

In general, our results agree qualitatively with
Refs. [53,70] and support the general idea that the quad-
rupole transition form factors are dominated by pion cloud
effects [19,27,44,65–67] or quark-antiquark states [53,70–
72]. In particular, our pion cloud contribution is consistent
with both chiral perturbation and lattice QCD estimations.
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FIG. 11 (color online). Left side: Parametrization to the bare form factors from SL [41], DMT [44,45], and DUO [46] models. The
circles represent the experimental data from Figs. 6 and 7. Right side: Model 4 compared with SL and bare data. The ratios were
evaluated using the parametrization of G�

M from (6.9). In both cases the bare data is from Ref. [43].
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Also, according to results of chiral perturbation theory
RSM 
 logm� as m� ! 0, which implies significant pion
cloud effects at the physical pion mass [20,21,103].
Additionally, the EFT calculations of Gail et al. [21,73]
predict a dominance of the pion cloud effects. The recent
quenched and unquenched lattice QCD calculations [64]
for pion masses m� > 0:35 GeV predict only a small
fraction of the experimental result for G�

C for low Q2.

This fact suggests as well that the pion cloud effects are
dominant in G�

C for low Q2 (the enhancement of the chiral

loop corrections relative to lattice data for small pion
masses was shown in Ref. [20]).

Constituent quark models, such as the Isgur-Karl model
[28,65], include S states and a D-state admixture of typi-
cally 1%, but predict only a fraction of the totalG�

E andG�
C

near Q2 ¼ 0. This feature is also shared by several rela-
tivistic quark models [30,32] and by the valence contribu-
tion of our model 4 (see Figs. 9 and 11). The exception to
this role is the work of Ref. [52], where a manifestly
Lorentz covariant chiral quark approach was considered.
In that work the effect of the pion cloud is reduced to the
order of 10%, which is compensated by a significant con-
tribution of relativistic effects when compared with non-
relativistic quark models. A discussion of the predictions
of quark models for low Q2 can be found in
Refs. [11,27,65,67].

We conclude this section by looking at the implications
of describing the pion cloud with a DM. Dynamical models
assume that the complete electroproduction (or photopro-
duction) amplitude is the iteration of a kernel composed of
the sum of bare resonance pole(s) in the s channel, plus
‘‘left-hand cuts’’ (arising from the angular average of t and
u channel poles coming from the exchanges of mesons and
baryons). Fitting the data with such a model fixes both the
bare resonance parameters and the parameters of the left-
hand cuts, which dynamically determine the background,
and in this way allows one to extract bare ‘‘data,’’ or that
part of the form factors that would be present even without

the dressing produced by the rescattering of pions.
Predictions of a pure CQM could be compared directly
with this bare data, since both exclude the same physics—
all pion rescattering mechanisms.
The bare data extracted from the fits of Ref. [43] are

compared with various theoretical models in Fig. 11. Since
the comparison involves electromagnetic ratios and not
absolute quantities, we used (7.2) to parametrize G�

M,
which is present in all the ratios shown in the figure. The
left-hand panels show the comparison of bare data to the
parametrizations used by SL [41], DMT [44,45], and the
dynamical Utrecht-Ohio (DUO) [46] models. Note that
there is a substantial difference between the bare data
[43] and the parametrization initially used in the SL model
[41], particularly for REM.
The figure eloquently exhibits that bare contributions are

strongly model dependent, in their size and even their sign,
differing from model to model. All that we can conclude
from these results, considering also the observed experi-
mental data, is that bare contributions and pion cloud
contributions are both sizable (see Table III). The excep-
tion is the DMT model, where the bare contributions are
almost negligible for lowQ2 (
 5%). As for the SL model
[41], the bare contribution is 33% and 36% for E2 and C2,
respectively, atQ2 ¼ 0 [73] (corresponding to a pion cloud
contribution of 77% for E2 and 74% for C2 at the photon
point). A compilation of the bare contribution for E2 and
C2 for different models is presented in Table III forQ2 ¼ 0
andQ2 ¼ 1 GeV2. For a summary of the literature see also
Refs. [65,73,74].

IX. CONCLUSIONS

In this work we introduce for the first time the D states in
the covariant spectator formalism for the description of
baryons as a quark-diquark systems, and apply our formal-
ism to the description of the form factors of the electro-
magnetic N� transition. Covariant formalisms provide a
correct treatment of boosts and rotations, which are im-
portant to describe correctly the kinematics and the dy-
namics in the intermediate Q2 region (Q2 
 4 GeV2).
There are two D states for the �: one for the valence quark
core of spin 3=2 (D3 state), the other for valence core of
spin 1=2 (D1 state). We show that these D states have the
correct spin structure in the baryon rest frame. Within this
framework, we show here that a consistent model, with
orthogonal nucleon and � wave functions, predicts non-
vanishing contributions for the electric and Coulomb quad-
rupole form factors, an indirect signature of the asymmetry
of the valence quark distribution in space.
However, we start by finding that the D-state contribu-

tions are not enough to explain the experimental data for
G�

E and G�
C. An admixture of an 8% D3 state can explain

the REM data, but the RSM data cannot be explained without
a D1 component. Importantly, although, is that even a very
large admixture of the D1 state cannot explain the high Q2

TABLE III. Bare contribution in different models, estimated
by subtraction of the pion cloud. In the lines labeled with an ‘‘*’’,
the total result was not available and model 4 was used.

Q2 ¼ 0 GeV2 GB
E=G

�
E GB

C=G
�
C

DMT [73] �5:7% �4:7%
SL [73] 33% 36%

DUO* 136% �42%
Buchmann [53,70] 12% 20%

Model 4 13% 18%

Q2 ¼ 1 GeV2 GB
E=G

�
E GB

C=G
�
C

DMT* �8:8% �8:2%
SL* 56% 51%

DUO* 11% �15%
Model 4 17% 18%
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behavior of this observable. This conclusion is consistent
with results from other constituent quark models in the
literature.

With this established, we had to turn our attention to the
pion cloud effects. We find that the pion cloud contribu-
tions are essential to an accurate description of the �N !
� transition, and that our best model (model 4) gives a
good overall description of the �N ! � transition form
factors. In this model, we used pion cloud effects derived in
the large Nc limit, containing no adjustable parameters,
and our fit predicts that the �wave function is the sum of a
large S-state component with an admixture of 0.9% for the
D3 state and a reasonable 4.4%weight for the D1 state. The
pion cloud dominants G�

E and G�
C, with contributions of

87% and 73%, respectively, at the photon point. Like the
valence quark contribution, the pion cloud contribution is
also covariant because it is based on a covariant description
of the neutron electric form factor. As the pion cloud
parametrization presented here can be justified only for
low Q2 (Q2 < 1:5 GeV2, in accordance with Ref. [24]), in
the future we are planing to include an explicit relativistic
calculation of the pion cloud, to replace the effective
parametrization.

The momentum distribution of the D3 state is deter-
mined by one parameter (�5 ’ 0:20), and that of the D1
state by two parameters, which turn out to be nearly equal
(�3 ’ �4 ’ 0:10). These values are smaller than the one
parameter (�1 ’ �2 ’ 0:35) required to represent the S
state, consistent with the picture that the D waves are
more peripheral.

We conclude with two notes which concern also future
developments:

(1) We found that the quality of the description of the
data is very sensitive in the regions Q2 < 0:2 GeV2

and at higher Q2 > 3 GeV2. Evidence for problems
in the data come from an apparent inconsistency
between the G�

C data for Q2 ’ 0:13 GeV2 and Q2 ’
0:2 GeV2. The new CLAS data [43,67,84] for
0:16 GeV2 � Q2 � 0:34 GeV2 can be useful to
clarify the situation. For high Q2, the understanding
of the differences between the CLAS analysis and
the MAID analysis will be also crucial for future
progress.

(2) Presumably the most accurate estimate of the pion
cloud effects comes from dynamical models that
compute the dressing of the bare quark currents by
pion rescattering to all orders. As a by-product,
these dynamical models determine the parameters
of the valence, or undressed, quark contribution,
which can be compared with a quark model without
pion cloud effects. We observed that the results from
the bare, pure valence quark form factors strongly
depend on the pion production model (see SL, DMT,
or DUO models presented in the text). It becomes
therefore crucial to use valence quark models to

estimate directly the bare form factors as functions
of Q2, and to understand the nature of the valence
quark distribution in the nucleon and � system, as
we do here. Since the valence quark distribution
dominates the largest �N ! � transition form fac-
tor G�

M [68], dynamical models should use valence
quark models as input, instead of relying on phe-
nomenological parameterizations.
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APPENDIX A: SPIN STRUCTURE OF THE D-WAVE
MATRIX ELEMENTS

In this appendix we first show how the spin 3=2 function
V3=2 [defined in Eq. (2.35)] satisfies the special spin 3=2
constraint

��V
�
3=2ðP; �Þ ¼ 0 (A1)

and then prove the relations (2.36) and explicitly construct
the matrix elements in the expansions (2.37).
To show that V3=2 satisfies the special spin 3=2 condi-

tion, go to the rest frame �P ¼ ðM; 0; 0; 0Þ and observe that

��V
�
S ð �P; �sÞ ¼

X
�

0 �a�s�

a�s� 0

� �
��

0

� �
; (A2)

where the 2� 2 operator is

a�s� ¼
�
1

2
�1�0









32�s

�
�0 ; (A3)

with

� ¼ i"
i
� ¼

8>>>>>><
>>>>>>:

z � ¼ 0

0 � ffiffiffi
2

p
0 0

 !
� ¼ 1

0 0ffiffiffi
2

p
0

� �
� ¼ �1

: (A4)

Examining the �s > 0 cases shows thatX
�

ða3=2�Þ�� ¼ 1�þ ¼ 0

X
�

ða1=2�Þ�� ¼
ffiffiffi
2

3

s
0�þ þ

ffiffiffi
1

3

s
1�� ¼ 0:

(A5)

Similar results hold for the �s < 0 cases.
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The orthogonality and normalization relations (2.36)
follow immediately from the orthogonality and normaliza-
tion of the spinors and polarization vectors, and the uni-
tarity of the CG coefficient matrix. The completeness
relations follow from the normalization and orthogonality
relations, but it is instructive to prove them directly. To do
this go to the rest frame and compute the matrix elements
of the projectors in the spherical basis. Define

PS
��0 ¼ "���PðP SÞ��"��0P (A6)

and note that this matrix is Hermitian and when multiplied

by the projection operator ðMþ �6PÞ=ð2MÞ ¼ 1
2 ð1þ �0Þ is

of the block diagonal form

PS
��0 ¼ �pS

��0 0
0 0

� �
; (A7)

where the 2� 2 submatrices have the symmetry property

xp
S
��0x ¼ pS

����0 : (A8)

Hence, there are only three independent elements, which
will be chosen to be p00, p11, and p01. Using the definitions
of the projection operators (2.25), in the rest frame we
obtain directly

p1=2
00 ¼ 1

3

1 0
0 1

� �
p3=2
00 ¼ 2

3

1 0
0 1

� �

p1=2
11 ¼ 1

3

0 0
0 2

� �
p3=2
11 ¼ 1

3

3 0
0 1

� �

p1=2
10 ¼ � 1

3
0

ffiffiffi
2

p
0 0

" #
p3=2
10 ¼ 1

3
0

ffiffiffi
2

p
0 0

" #
:

(A9)

These same operators can be calculated from the defini-
tions (2.35) and the expansions (2.36). In the rest system
the spherical components of these expansions are

O S
��0 �

X
�s

"��
� �P
VS�ð �P; �sÞ �V�

S ð �P; �sÞ"��0 �P

¼X
�s

�
1

2
�11�









S�s

��
1

2
�0
11�

0








S�s

�

� u�ð �P; �1Þ �u�ð �P; �0
1Þ; (A10)

where the operator O has the form

O S
��0 ¼ �oS

��0 0
0 0

� �
; (A11)

with the 2� 2 matrix

oS
��0 ¼

X
�s

�
1

2
�11�









S�s

��
1

2
�0
11�

0








S�s

�
��1

�y
�0
1
: (A12)

This operator has the same symmetry properties as pS
��0 ,

and by explicit computation

oS00 ¼
��

1

2

1

2
10









S 12
��

2 1 0

0 0

 !

þ
��

1

2
� 1

2
10









S� 1

2

��
2 0 0

0 1

 !

¼

8>>>>><
>>>>>:

1
3

1 0

0 1

 !
S ¼ 1

2

2
3

1 0

0 1

 !
S ¼ 3

2

(A13)

in agreement with Eq. (A9). Similar agreement is obtained
for the other matrices.
We now turn to the computation of the matrix elements

in Eq. (2.37). Using the direct product representations
(2.35) (and a similar one for w�)

CD2S � �VS�ðP; �sÞD��w�ðP; ��Þ
¼ X

�

�
1

2
�1m









S�s

��
1

2
�1m0









32��

�
Dmm0

¼ 1

3

ffiffiffiffiffiffiffi
8�

p
k2Y2

m‘

X
�

h2m‘1mj1m0i

�
�
1m0 1

2
�









32��

��
1m

1

2
�









S�s

�
; (A14)

where the CG coefficients guarantee that m ¼ �s � �,
m0 ¼ �� � �, and m‘ ¼ m0 �m ¼ �� � �s. The sum
over three CG coefficients is evaluated using Racah coef-
ficients W. For the cases at hand [104],X
�

h2m‘1mj1m0i
�
1m0 1

2
�









32��

��
1m

1

2
�









S�s

�

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð2Sþ 1Þ

p
W

�
2; 1;

3

2
;
1

2
; 1; S

��
2m‘S�s









32��

�

¼ �ð�1Þ1=2�S 1ffiffiffi
2

p
�
2m‘S�s









32��

�
; (A15)

giving Eq. (2.37).

APPENDIX B: INTEGRATION IN k

When the currents associated to the � D-states are
written there is a dependence in the tensor

I��ðPþ; P�Þ ¼
Z
k
D��ðPþ; kÞc D2S

� ðPþ; kÞc S
NðP�; kÞ:

(B1)

The properties of I�� in a Lorentz transformation follows
the properties of D��

D ��ðP0þ; k0Þ ¼ ��
�

�
�D�ðPþ; kÞ: (B2)

Then

I��ðP0þ; P0�Þ ¼ ��
�

�
�I�ðPþ; P�Þ: (B3)
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In these conditions, a covariant expression for I��ðPþ; P�Þ
can be derived in a particular frame and the extended for an
arbitrary frame using (B3).

Consider Eq. (B1) in the � rest frame. In the � rest
frame the scalar wave functions are independent of the
variable ’. In these conditions, we can perform the ana-
lytical integration in ’, replacing the integral expression,
by a equivalent integral with an integrand function inde-
pendent of ’. The result is

1

2�

Z
d’D��ðPþ; kÞ ¼ S3 �R

��; (B4)

where z ¼ cos� (� is the angle between k and q) and

S3 ¼ k2

2
ð1� 3z2Þ; (B5)

�R�� ¼
0 0 0 0
0 1=3 0 0
0 0 1=3 0
0 0 0 �2=3

2
664

3
775: (B6)

We can express (B4) in a covariant form considering co-
variant expressions for S3 and �R��

S3 ! bðk; qÞ �R�� ! R��ðPþ; P�Þ:
In particular, we can write in the � rest frame

bð~k; ~qÞ ¼ 3

2

ð~k � ~qÞ2
~q2

� 1

2
~k2; (B7)

R��ðPþ; P�Þ ¼ ~q�~q�

~q2
� 1

3
~g��: (B8)

The expression R��ðPþ; P�Þ is the only covariant ex-
pression for �R�� compatible with (B6), as can be showed
considering the most general expression

R��ðPþ; P�Þ ¼ a

M2
P�þP

�
þ þ b

M2
P�þP�� þ c

M2
P��P

�
þ

þ d

M2
P��P�� þ eg��; (B9)

where a, b, c, d, and e are functions of Q2.
Similarly, the identity (B7) is the only possible covariant

representation of S3. Equivalent representation involving

the factors ~q � k or q � ~k are reduced to ~q � ~k. By definition

of ~k and ~q, ~k � q ¼ ~q � k ¼ ~q � ~k.
As consequence of the representation (B7) and (B8), the

integral (B4) in the � rest frame can be represented by

1

2�

Z
d’D��ðPþ; kÞ ¼ bð~k; ~qÞR��ðPþ; P�Þ: (B10)

As (B10) is expressed in a covariant notation we can obtain
the equivalent expression for a different collinear frame
considering an appropriate boost.
Using Eq. (B10) we can write for any collinear frame

I��ðPþ; P�Þ ¼ R��ðPþ; P�ÞIDðPþ; P�Þ; (B11)

where

IDðPþ; P�Þ ¼
Z
k
bð~k; ~qÞc D2S

� ðPþ; kÞc S
NðP�; kÞ: (B12)
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