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We estimate the potential energy for a system of three static gluons in lattice QCD. This is relevant for

the different models of three-body glueballs that have been proposed in the literature, either for gluons

with a constituent mass, or for massless ones. A Wilson loop adequate to the static hybrid three-body

system is developed. We study different spacial geometries, to compare the starfish model with the

triangle model, for the three-gluon potential. We also study two different color structures, symmetric and

antisymmetric, and compare the respective static potentials. A first simulation is performed in a 243 � 48

periodic Lattice, with � ¼ 6:2 and a� 0:072 fm.
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I. INTRODUCTION

We explore, in lattice QCD, the static potential of the
three-body glueball system composed of three gluons,
using Wilson loops. The interest in three-body gluon-
gluon-gluon systems is increasing in anticipation of the
future experiments BESIII at IHEP in Beijin, GLUEX at
JLab, and PANDA at GSI in Darmstadt, dedicated to
studying the mass range of charmonium, with a focus in
its plausible excitations and in glueball production.

Even before the glueballs are discovered, the study of
two-gluon and three-gluon glueballs are, respectively, rele-
vant to the pomeron [1,2] and to the odderon [3]. Thus
several models of three-gluon models have already started
to be developed [3–12].

The relevance of computing the static potentials in
lattice QCD for 3-gluon models is partly motivated by
the plausible existence of a constituent mass for the gluon.
Several evidences of a gluon effective mass of 600–
1000 MeV, much larger than �QCD, exist from the lattice

QCD gluon propagator in Landau gauge, [13,14], from
Schwinger-Dyson and Bogoliubov-Valatin solutions for
the gluon propagator in Landau gauge [15], from the
analogy of confinement in QCD to superconductivity
[16], from the lattice QCD breaking of the adjoint string
[17], from the lattice QCD gluonic excitations of the
fundamental string [18] from constituent gluon models
[4,19,20] compatible with the lattice QCD glueball spectra
[21–24], and with the Pomeron trajectory for high energy
scattering [1,2]. Furthermore, even for modeling massless
gluons, the knowledge of a static potential would at least
provide one of the components of the dynamical potential.
For instance, the static quark-antiquark potential, denomi-
nated funnel or Cornell potential, is frequently applied to
light quarks, only with small corrections of the respective
parameters [20,25]. This has been recently validated in
lattice QCD, where the potential for a baryon made of
two static quarks and a light one has been computed,
[26,27] and indeed the part of the potential depending on

the position of the light quark maintains the shape of the
static potential, with corrected parameters.
The Wilson loop method was devised to extract, from

pure-gauge QCD, the static potential for constituent quarks
and to provide detailed information on the confinement in
QCD. In what concerns gluon interactions, the first lattice
studies were performed by Michael [17,28] and Bali ex-
tended them to other SU(3) representations [29]. Recently
Okiharu and colleagues [30,31] studied for the first time
another class of exotic hadrons, extending the Wilson loop
of three-quark baryons to tetraquarks and to pentaquarks.
Very recently, Bicudo, Cardoso, and Oliveira continued the
lattice QCD mapping of the static potentials for exotic
hadrons, with the study of the hybrid quark-antiquark-
gluon static potential [32,33].
In this paper we study the three-gluon potentials in

lattice QCD. We address two novel and important ques-
tions. Noticing that with three gluons two different color
singlets can be constructed, symmetric or antisymmetric,
we study whether the respective interactions are identical
or different. This will be further detailed in Sec. II.
Moreover, noticing that a gluon may couple to one adjoint
string, or to a pair of fundamental strings, we study whether
the potential is amenable to a triangle-shaped triplet of
fundamental strings or to a starfish-shaped triplet of adjoint
strings, as depicted in Fig. 1.
Notice that Kuzmenko, Shevchenko, and Simonov [11],

using the vacuum correlator method, already studied the
three-gluon system analytically. This study favors the tri-
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FIG. 1. The starfishlike and trianglelike possible geometries
for the strings in the static three-gluon system.
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angle (or ring) geometry over the starfish (or star) geome-
try. A prediction inspired in the bag model and in Casimir
scaling (see for example [34]) suggests a starfish geometry
but with a string tension that is 3=2�, instead of the 9=4�
of the adjoint string; however, it seems disfavored by
lattice studies [29,32].

While the tree-gluon strings are only now being ex-
plored, the discussion on the shape of the baryonic strings
has been addressed with detail in lattice QCD [35–45],
including the study of the three-quark system at finite
temperature [46].

In particular, our study of the hybrid system already
indicated [32,33] that it would be interesting to study
three-body glueballs, relevant for the odderon problem
[3]. Notice that in lattice QCD, using the adjoint represen-
tation of SU(3), Bali [29] found that the adjoint string is
compatible with the Casimir scaling, where the Casimir
invariant �i � �j produces for the gg interaction a factor

9=4 times larger than the q �q interaction. With three gluons,
a triangle formed by three fundamental strings might cost
less energy than three adjoint strings with a starfishlike
geometry, depicted in Fig. 1. The three-gluon potential
may be similar to a sum of three mesoniclike quark-
antiquark interactions, plus a repulsion acting only when
there is superposition of the fundamental strings. This
question is also related to the superconductor (type-I vs
type-II) model for confinement, where flux tubes repel
each other in type-II superconductors, while in type-I
superconductors they attract each other and tend to fuse
in excited vortices [47]. A first evidence of QCD string
repulsion was indeed found in our very recent study of the
hybrid potential [32,33]. The understanding of the three-
gluon potential in 3þ 1-dimensional lattice QCD will
further clarify our understanding of confinement.

In Sec. II we derive a class of Wilson loops adequate to
study the static hybrid potential. This paper is mainly
analytical, and in Sec. III we discuss theoretically the
important questions of the best Wilson loops to distinguish
the triangle from the starfish string ground states, and of the
differences of the symmetric to antisymmetric potentials.
In Sec. IV we present the first results of our numerical
Monte Carlo simulations, and conclude.

II. THREE-GLUON WILSON LOOP

We first construct a wave function with three gluons.
This wave function will be the starting point of the Wilson
loop. Because of confinement, a hadron, a system com-
posed of quarks, antiquarks, or gluons, must be a color
singlet.

Each gluon is a state of the adjoint, or octet 8, repre-
sentation of SU(3). With the tensor product of two gluons,
different representations of SU(3) can be constructed,

8 � 8 ¼ 1 � 8 � 8 � 10 � 10 � 27 (1)

including a singlet 1 and two octets 8. When we couple

three gluons, we get not just one color singlet, but two color
singlets (plus many other representations), resulting from
coupling this third octet to each of the two octets in the
right-hand side of Eq. (1),

8 � 8 � 8 ¼ 1 � 1 � 8 � � � � (2)

These two octets must have opposed symmetries, with one
being symmetric for the permutation of two gluons, while
the other is antisymmetric for gluon permutation. The
symmetric one leads to charge conjugation C ¼ � three-
gluon glueballs and the antisymmetric one leads to C ¼ þ
glueballs. To arrive at the wave function for the two color
singlets, it is sufficient to study the product of two Gell-
Mann matrices, since it already produces the relevant color
singlet and color octets resulting from Eq. (1),

�a�b ¼ 2
3�

ab þ ifabc�
c þ dabc�

c; (3)

and thus the product of three Gell-Mann matrices already
produces the two possible color singlets, that we single out
in the trace of the product of the three Gell-Mann matrices,

tr f�a�b�cg ¼ 2ifabc þ 2dabc; (4)

and thus the two possible color singlet wave functions of
three gluons are

j�Ai ¼ fabcjabci; j�Si ¼ dabcjabci; (5)

where the first combination is antisymmetric and the sec-
ond is symmetric with respect to the exchange of two
gluons.
We build the three-gluon Wilson loop operator inspired

in the three-quark case of the baryon. In the baryon we
have a color singlet wave function given by

j�Baryoni ¼ �ijkjijki; (6)

and the corresponding Wilson loop is

W3q ¼ �ijk�i0j0k0X
ii0Yjj0Zkk0 ; (7)

where X, Y, and Z are the elementary paths of the three
quarks, each composed of the product of successive ele-
mentary links U starting and ending in wave functions of
the form (6).
In the three-gluon-glueball case we proceed similarly,

developing adjoint paths ~X, ~Y, and ~Z starting either from
the symmetric, or antisymmetric, color singlet wave func-
tions (5), as illustrated in Fig. 2. Each adjoint path is
composed of the product of successive adjoint links, cor-
responding to gluons, composed of matrices of the SU(3)
adjoint or octet representation, given in terms of the fun-
damental representation ones by using the formula

~U�ðxÞab ¼ 1
2 Trf�aU�ðxÞ�b½U�ðxÞ�yg: (8)

Notice that these adjoint links are unitary matrices, as
expected by a representation of SU(3),
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X

b

~Uab ~Uybc ¼ X

b

1

4
Tr½Uy�aU�b�Tr½�bUy�cU�

¼ 1

2
Tr½Uy�aUUy�cU�

� 1

6
Tr½Uy�aU�Tr½Uy�cU�

¼ �ac; (9)

where we used the Fierz relation,
X

a

�a
ij�

a
kl ¼ 2

�
�il�jk � 1

3
�ij�kl

�
(10)

illustrated in Fig. 3, to contract the �b matrices.
We now explicitly derive the operator for the three-gluon

Wilson loop. In the limit of arbitrarily large gluon masses,
a nonrelativistic potential V can be derived from the large
time behavior of Euclidean time propagators. Typically,
one has a meson operator O and computes the Green
function,

h0jOðtÞOð0Þj0i ! expf�Vtg (11)

for large t. Different types of operators allow the definition
of different potentials. We can construct the three-gluon
Wilson loop starting from the gluonic operator,

O A
3gðxÞ ¼ fabc½gaðxÞ�½gbðxÞ�½gcðxÞ�; (12)

where gaðxÞ is an operator that annihilates a gluon of color
index a at the position x. The second operator OS is
constructed replacing fabc by dabc.
In Eq. (12) the three octets are situated in the same point

x. Using the lattice links to comply with gauge invariance,
the second operator in Eq. (12) can be made nonlocal to
separate the three octet operators,

OA
3gðx;x1;x2;x3Þ¼fabc½ ~U�1

ðxÞ��� ~U�1
ðxþðr1�1Þ�̂1Þ�aa1

�ga1ðxþr1�̂1Þ½U�2
ðxÞ���U�2

ðx
þðr2�1Þ�̂2Þ�bb1gb1ðxþr2�̂2Þ
�½U�3

ðxÞ���U�3
ðxþðr3�1Þ�̂3Þ�cc1

�gc1ðxþr3�̂3Þ; (13)

where we apply the lattice QCD prescription of linking the
fields with links, to maintain the gauge invariance of our
operator. We also assume the sum over repeated indices.
The nonrelativistic potential requires the computation of
the Green functions present in Eq. (11). Assuming that the
Gluons are static, and that moreover any permutation of
gluons is left for the future application of the present static
potential in constituent gluon models, the contraction of
the gluon field operators provides adjoint temporal links,
giving rise to the gluon operator,

WA
3g ¼ fabcfa0b0c0 ½ ~U�1

ð0;xÞ � � � ~U�1
ð0;xþ ðr1 � 1Þ�̂1Þ ~U4ð0;xþ r1�̂1Þ � � � ~U4ðt� 1;xþ r1�̂1Þ

� ~Uy
�1
ðt;xþ ðr1 � 1Þ�̂1Þ � � � ~Uy

�1
ðt;xÞ�aa0 � ½ ~U�2

ð0;xÞ � � � ~U�2
ð0;xþ ðr2 � 1Þ�̂2Þ ~U4ð0;xþ r2�̂2Þ � � �

� ~U4ðt� 1;xþ r2�̂2Þ ~Uy
�2
ðt;xþ ðr2 � 1Þ�̂2Þ � � � ~Uy

�2
ðt;xÞ�bb0 � ½ ~U�3

ð0;xÞ � � � ~U�3
ð0;xþ ðr3 � 1Þ�̂3Þ

� ~U4ð0;xþ r3�̂3Þ � � � ~U4ðt� 1;xþ r3�̂3Þ ~Uy
�3
ðt;xþ ðr3 � 1Þ�̂3Þ � � � ~Uy

�3
ðt;xÞ�cc0 : (14)

We now translate the adjoint links into quark links. This is convenient, both to explicitly show that ourWilson loop is SU
(3) gauge invariant, and to arrive at a more convenient expression for our computer simulations. So let us consider the
product of two adjoint links, and apply again the Fierz relation to, say,

X

b

~U1
ab ~U2

bc ¼ X

b

1

4
Tr½U1

y�aU1�
b�Tr½�bU2�

cU2
y� ¼ 2

1

4
Tr½U1

y�aU1U2�
cU2

y� � 2

3

1

4
Tr½U1

y�aU1�Tr½U2�
cU2

y�

¼ gU1U2
ac
: (15)

λλλλa

λλλλa
=   2 - (2/3) ΣΣΣΣa

FIG. 3. Graphical version of the Fierz relation, showing that
when two disconnect paths touch each other at the same point
where a pair of Gell-Mann matrices is summed in their indices,
this is equivalent to connecting the paths in two different ways,
both gauge invariant.

λλλλc λλλλa

t λλλλb
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t λλλλb

λλλλc’
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FIG. 2. Wilson loop for the ggg potential, (a) for the symmet-
ric color wave function and (b) for the antisymmetric color wave
function.
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Thus the product of two adjoint links is the adjoint of the
product of two links. Iterating this result to the product of
an arbitrary number of links, we get that all three paths
present in Eq. (14) verify

½ ~U�1
ð0;xÞ � � � ~Uy

�1
ðt;xÞ�aa0 ¼ 1

2
Trf�aU�1

ð0;xÞ � � �
�Uy

�1
ðt;xÞ�a0U�1

ðt;xÞ � � �
�Uy

�1
ð0;xÞg

¼ 1

2
Trf�aX�a0Xyg ¼ ~X; (16)

where X is the quark path utilized in the Wilson loop for
static baryon potentials, corresponding to the gluon path ~X
In particular, the Wilson loop in Eq. (14) can be decom-
posed in quark paths X, Y, and Z, as in Fig. 2,

WA
3g¼fabcfa0b0c0Trf�aX�a0XygTrf�bY�b0YygTrf�aZ�c0Zyg;

(17)

WS
3g¼dabcda0b0c0Trf�aX�a0XygTrf�bY�b0YygTrf�aZ�c0Zyg;

(18)

extending the three-quarkWilson loop of Eq. (7), replacing
the quark fundamental SU(3) path X, by the gluon adjoint
SU(3) path ~X. We also removed the overall 1=8 factors
since the potentials are independent of the norm of the
Wilson loops.

We now proceed to completely translate the results of
Eqs. (17) and (18) into fundamental quark paths. We ex-
press the Eqs. (17) and (18) in terms of correlations of the
quark paths X, Y, and Z only. Noticing

fabc ¼ 1

4i
Trfð�a�b � �b�aÞ�cg;

dabc ¼ 1

4
Trfð�a�b þ �b�aÞ�cg;

(19)

we replace in Eqs. (17) and (18) the structure functions
fabc and dabc by traces of Gell-Mann matrices. Then we
repeatedly apply the Fierz relation (10), illustrated in
Fig. 3.

Subtracting and summing the results of the two different
contractions of Fig. 4, we get the contribution of the
respective symmetric and antisymmetric wave functions
to the three-gluon Wilson loops,

fabcTr½�aA�Tr½�bB�Tr½�cC�

¼ i

2
�a
ij�

b
klð�b�a � �a�bÞmnAjiBlkCnm

¼ i

2
ð�a

ij�
b
kl�

b
mp�

a
pn � �a

ij�
b
kl�

a
mp�

b
pnÞAjiBlkCnm

¼ 2iðTr½CBA� � Tr½ABC�Þ; (20)

where we assumed a sum over repeated indices. Following

a similar procedure we also get

fabcTr½�aA�bB�cC� ¼ 2iTr½A�Tr½B�Tr½C�
� 2iTr½CBA�: (21)

Using the results (20) and (21) we finally arrive at the
expression for the Wilson loop for the antisymmetric color
arrangement

λλλλa

λλλλa

λλλλb
λλλλbλλλλc

λλλλc

=  --16
9 - --8

3

- --8
3 - --8

3
+ 8

λλλλb

λλλλa

λλλλa
λλλλbλλλλc

λλλλc

=  --16
9 - --8

3

- --8
3 - --8

3
+ 8

FIG. 4. Contractions of the three pairs of Gell-Mann matrices
resulting from one of the three-gluon wave functions. This shows
that the three-gluon Wilson loops, present in Eqs. (17) and (18),
are gauge invariant, because they can be written as connected
paths of lattice QCD links U.
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x3
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x
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x3

t

x

x1

x2

x3

t

x

x1

x2

x3

W3g
A  =  4

+  4

-4

-4

FIG. 5. The antisymmetric three-gluon Wilson loop WA
3g ex-

pressed with paths of quarklike fundamental U links.
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WA
3g ¼ þ4Tr½XYy�Tr½YZy�Tr½ZXy� þ 4Tr½XyY�Tr½YyZ�Tr½ZyX� � 4Tr½XZyYXyZYy� � 4Tr½XYyZXyYZy�; (22)

depicted in Fig. 5. Using the same techniques for the operator for the symmetric color wave function,

dabcTr½�aA�Tr½�bB�Tr½�cC� ¼ 2Tr½ABC� þ 2Tr½CBA� � 4
3 Tr½A�Tr½BC� � 4

3 Tr½B�Tr½CA� � 4
3 Tr½C�Tr½AB�

þ 8
9 Tr½A�Tr½B�Tr½C�;

dabcTr½�aA�bB�Tr½�cC� ¼ 2Tr½AC�Tr½B� þ 2Tr½BC�Tr½A� þ 8
9 Tr½AB�Tr½C� � 4

3 Tr½ABC� � 4
3 Tr½CBA�

� 4
3 Tr½A�Tr½B�Tr½C�;

dabcTr½�aA�bB�cC� ¼ 2Tr½CBA� þ 8
9 Tr½ABC� � 4

3 Tr½A�Tr½BC� � 4
3 Tr½B�Tr½CA� � 4

3 Tr½C�Tr½AB�
þ 2Tr½A�Tr½B�Tr½C�; (23)

and finally we get,

WS
3g ¼ 4Tr½XYyZXyYZy� þ 4Tr½XyZYyXZyY� � 16

3 Tr½XYy�Tr½XyY� � 16
3 Tr½YZy�Tr½YyZ� � 16

3 Tr½ZXy�Tr½ZyX�
þ 4Tr½XyY�Tr½YyZ�Tr½ZyX� þ 4Tr½YyX�Tr½ZyY�Tr½XyZ� þ 32

3 : (24)

The results in terms of quarklike Wilson loops, composed
of fundamental links only, are illustrated in Figs. 5 and 6.

III. ANALYTICAL DISCUSSION

The class of Wilson loopsWA
3g andW

S
3g formally derived

in Sec. II still contain degrees of freedom, that we may use
to increase the signal-to-noise ratio. In particular, the paths
linking the fixed positions x1, x2, and x3 of the three gluons
remain to be determined.
Notice that smearing is a standard technique to increase

the signal-to-noise ratio of the Wilson loop. The smearing
[48–53] of the spatial links is a technique consisting of
repeatedly mixing a link to neighbor staplelike paths. The
resulting mixing is unitarized back to a SU(3) matrix. The
smearing is expected to maximize the signal- (of the
ground state) to-noise ratio when the smearing is compa-
rable to the actual width of the QCD confining flux tube.
Moreover, the Wilson loops WA

3g and WS
3g defined in

Sec. II depend on the position of the point x, initially
defined in Eq. (12). Notice, however, that the actual static
potential should not depend on this x point. Possibly, as
long as we keep fixed the points x1, x2, and x3, the spatial
paths connecting these points could also be arbitrarily
changed, even if they do not meet in a common point x;
however this remains to be verified. Importantly, we expect
that the spatial paths closer to the actual position of the
strings confining the three gluons will maximize the signal-
to-noise ratio.
In Fig. 7 we show two possible different spatial paths

linking the points x1, x2, and x3. In this paper, for sim-
plicity, we use only paths parallel to the lattice grid. In
Fig. 7(a) we place the three gluons at the vertices of an
equilateral triangle, constructed with the edges of a cube.
Placing the vertex of the cube at, say (0,0,0), three points
forming the triangle are ðr; 0; 0Þ, ð0; r; 0Þ, and ð0; 0; rÞ. In
Fig. 7(a), the x point is located at the simplest possible
position for a numerical simulation, at the vertex (0,0,0) of
the cube. In Fig. 7(b), the paths are quite simple; we place
the three gluons at the vertices of an isosceles rect triangle,

t

x

x1

x2

x3

t

x

x1

x2

x3

t

x

x1

x2

x3

t

x

x1

x2

x3

W3g
S  =  4

+  4

+  4

+  4

( l1) ( l2)

( l3) ( l4)

t

x

x1x3

t

x

x1

x2

t

x

x2

x3

- --16
3

- --16
3

- --16
3

+   --32
3

( l5)

( l6)

( l7)

FIG. 6. The symmetric three-gluon Wilson loopWS
3g expressed

with paths of quarklike fundamental U links. Each individual
loop is labeled by a li.
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and the x point coincides with the x3, thus the spatial
geometry is planar. The paths in Figs. 7(a) and 7(b) are
neither placed at the starfishlike string position, nor at the
position of the trianglelike string position. More sophisti-
cated choices of paths might lead to better signal-to-noise
ratios, but the paths in Fig. 7 are the simplest for a first
simulation.

On the other hand we may explore analytical similarities
or differences between the Wilson loopsWA

3g andW
S
3g. The

Casimir scaling, dominating the perturbative QCD, and, at
least, the short-distance potentials, can be algebraically
computed,

�1 � �2 ¼ ð�1 þ �2 þ �3Þ2 � ð�1
2 þ �2

2 þ �3
2Þ

6
¼ �6;

(25)

and the result is the same both for the symmetric and the
antisymmetric potentials. Thus the short-range part of the
interactions should be identical.

Now we also check that in the limit where two gluons
are superposed, we recover the normal two-gluon operator,
where the result is proportional to (the proportionality
factor is irrelevant here)

Wgg ¼ Wq �qWq �q
� � 1; (26)

where, say, Wq �q ¼ TrfXYyg is a complete one-quark

Wilson Loop. Thus when x3 ¼ x2 or equivalently when
Z ¼ Y, we get, for the antisymmetric loop WA

3g,

WA
3g ! 24ðWW� � 1Þ (27)

and are also identical in the symmetric loop WS
3g,

WS
3g ! 40

3 ðWW� � 1Þ: (28)

Importantly, since the result only differs in a physically
irrelevant constant factor, this shows that whenever two of
the arms of the starfish are superposed, the two potentials,
for the symmetric and for the antisymmetric cases, are
identical. Then, if any difference occurs, it only occurs
when the arms are separated. Thus, we should position the

gluons at the vertices of an open triangle, say an equilateral
triangle, or an isosceles rect triangle, to study this possible
difference.

IV. NUMERICAL RESULTS

Since this is mainly an analytical paper, in Sec. IV we
only numerically simulate the simplest paths to compute,
with the spatial subpaths depicted in Fig. 7. We perform our
simulations with 141 configurations generated by the
Monte Carlo method in a 243 � 48 periodic lattice, with
� ¼ 6:2 and a� 0:072 fm.
First, we check that the sum of all the different quarklike

Wilson loops vanish in the limit of large Euclidean time t.
This actually happens, and we also numerically check that
the Wilson loops, as described in Figs. 5 and 6, in the limit
of large t tend to

l1 ¼ l2 ¼ l3 ¼ l4 ! 1
3 ; l5 ¼ l6 ¼ l7 ! 1: (29)

Then, we study the possible difference between the
antisymmetric and symmetric static potentials, defined in
Figs. 5 and 6 and in Eqs. (22) and (24).
The results of our simulations for the difference between

the antisymmetric and symmetric static potentials as a
function of the perimeter p ¼ r12 þ r23 þ r31 are show
in Fig. 8 and suggest a difference between the two poten-
tials with the potential for the symmetric color arrange-
ment being slightly larger than the one for the
antisymmetric arrangement. To quantify this difference,
we fit the difference between the two potentials to a
constant plus linear function

Vsym � Vasym ¼ Cdiff þ �diffp; (30)

and obtain�diff ¼ ð0:043	 0:003Þ� (� is the fundamental
string tension), with �2=dof ¼ 1:00. The fit is made to all

x
x1

x2

x3

x1

x2

x=x3

(a)
(b)

FIG. 7. Spatial paths, (a) for an equilateral triangle using the
vertex of a cube, (b) for an isosceles rect triangle, using the
vertex of a square.
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FIG. 8 (color online). We show the difference VS � VA of the
three-gluon potentials of the two operators WS

3g and WA
3g as a

function of the perimeter p of the respective triangle. For the
spatial geometry of the loops, we utilize the equilateral triangle
of Fig. 7(a).
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points in both geometries with p=a < 40. It must be noted
that, since the error bars of the last points are very large, as
can be seen in Fig. 8, we cannot assert that the difference
between the two potentials always rises linearly, it remains
possible that the difference saturates at larger distances.

To verify that the static potentials do not depend on the
arbitrary meeting point x of the spatial paths, we compute
the static potentials for two different geometries, depicted
in Fig. 7. In case (a), the point x is placed relatively far
from the position of any of the three gluons. In case (b) the
point x coincides with the position of one of the gluons. As
anticipated in Sec. III, the potentials show little depen-
dence on the point x. This is illustrated in Fig. 9, where
both geometries produce similar results.

We also study the two potentials separately, as defined in
Figs. 5 and 6 and in Eqs. (22) and (24). The results for the
potentials are shown in Fig. 9 as a function of the triangle
perimeter

Vtriangle ¼ CþX

i<j

� �

rij
þ �0p: (31)

Notice that our study only aims at the confining part of the
potential; for a precise study of the Coulomb potential we
will need more statistics or different techniques [54].
Nevertheless, we obtain the results for the different color/
geometry combinations in the fitting range 10< p< 40
shown in Table I.

This result clearly rules out the starfish model, since it
would give us a string tension of �0 ¼ 9

4
ffiffi
3

p � ’ 1:30� for

the equilateral triangle geometry and �0 ¼ 9ð1þ ffiffi
3

p Þ
8ð1þ ffiffi

2
p Þ� ’

1:27� for the triangle rectangle isosceles geometry. It
must be noted that the error of the string tension is of the

same order or greater than �diff , calculated before.
Nevertheless, since the difference �diff is systematic, we
are able to compute it.
The results are also not compatible with the bag model,

which would give us �0 ¼
ffiffi
3

p
2 � ’ 0:87� and �0 ¼

3ð1þ ffiffi
3

p Þ
4ð1þ ffiffi

2
p Þ� ’ 0:85� for the equilateral triangle and rect tri-

angle geometries.
Finally, to check that the 243 � 48 lattice configurations

are producing good results, we show the plot of � logW3g,

which is used to calculate the potentials, in Fig. 10.
To conclude, we show that there are two, and only two,

symmetric and antisymmetric, three-gluon static poten-
tials. We derive the two respective Wilson loops and study
them analytically. We perform numerical tests, verifying
that our Wilson loop is correct. Notice that the three-gluon
Wilson loops include products of up to three fundamental
Wilson loops, technically difficult to compute. We thus
leave the systematic numerical exploration of the three-
gluon Wilson loops for future works. Nevertheless, our
numerical simulations already indicate that the symmetric
potential is slightly larger than the antisymmetric one, and
that both are compatible with the trianglelike model for the
three-gluon static potential.

0 10 20 30 40
p / a

0

0.5

1

1.5

2

V
(p

) 
a

antisymmetric - equil. triangle
symmetric - equil. triangle
antisymmetric - rect triangle
symmetric - rect triangle

FIG. 9 (color online). We show the three-gluon potentials for
the two operators (WA

3g andW
S
3g) as a function of the perimeter p

of the respective triangle. We utilize both the equilateral triangle
and the isosceles rect triangle spatial paths of Figs. 7(a) and 7(b).
The results are extracted from 141 SU(3) lattice QCD configu-
rations 243 � 48, with the smearing of 100� 0:5 in space and of
1� 1 in time.

TABLE I. Results of the fits for the various geometry and color
arrangement combinations.

Geometry/symmetry �0=� � �2=dof

Equilateral/antissymetric 1:04	 0:04 0:28	 0:03 1.07

Equilateral/symmetric 1:05	 0:06 0:29	 0:05 1.37

Isosceles/antisymmetric 1:07	 0:03 0:23	 0:02 0.92

Isosceles/symmetric 1:10	 0:13 0:23	 0:17 1.13
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t
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5
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15

- 
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W
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)

antisymmetric
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FIG. 10 (color online). Plots of� logW3g for the two operators
(WA

3g and WS
3g), which we use to get the values of the potentials,

for the equilateral triangle geometry with a perimeter p ¼ 15
ffiffiffi
2

p
and for 141 lattice QCD configurations 243 � 48. In this simu-
lation we use 100� 0:5 smearing steps in space and 1� 1
smearing step in time.
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