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We study the long distance interaction for hybrid hadrons, with a static gluon, a quark and an antiquark

with lattice QCD techniques. AWilson loop adequate to the static hybrid three-body system is developed

and, using a 243 � 48 periodic lattice with � ¼ 6:2 and a� 0:072 fm, two different geometries for the

gluon-quark segment and the gluon-antiquark segment are investigated. When these segments are

perpendicular, the static potential is compatible with confinement realized with a pair of fundamental

strings, one linking the gluon to the quark and another linking the same gluon to the antiquark. When the

segments are parallel and superposed, the total string tension is larger and agrees with the Casimir scaling

measured by Bali. This can be interpreted with a type-II superconductor analogy for the confinement in

QCD, with repulsion of the fundamental strings.
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I. INTRODUCTION

Here we explore the static potential of the hybrid three-
body system composed of a gluon, a quark and an anti-
quark using lattice QCDmethods. TheWilson loop method
was devised to extract from pure-gauge QCD the static
potential for constituent quarks and to provide detailed
information on the confinement in QCD. In what concerns
gluon interactions, the first lattice studies were performed
by Michael [1,2] and Bali extended them to other SU(3)
representations [3]. Recently Okiharu and colleagues [4,5]
extended the Wilson loop for three-quark baryons to tetra-
quarks and to pentaquarks. Our study of hybrids continues
the lattice QCD mapping of the static potentials for exotic
hadrons.

The interest in hybrid three-body gluon-quark-antiquark
systems is increasing in anticipation to the future experi-
ments BESIII at IHEP in Beijin, GLUEX at JLab and
PANDA at GSI in Darmstadt, dedicated to study the
mass range of the charmonium, with a focus on its plau-
sible hybrid excitations. Moreover, several evidences of a
gluon effective mass of 600–1000 MeV from the lattice
QCD gluon propagator in Landau gauge [6,7], from
Schwinger-Dyson and Bogoliubov-Valatin solutions for
the gluon propagator in Landau gauge [8], from the anal-
ogy of confinement in QCD to superconductivity [9], from
the lattice QCD breaking of the adjoint string [1], from the
lattice QCD gluonic excitations of the fundamental string
[10] from constituent gluon models [11–13] compatible
with the lattice QCD glueball spectra [14–17], and with the
Pomeron trajectory for high energy scattering [18,19], may
be suggesting that the static interaction for gluons is
relevant.

Importantly, an open question has been residing in the
potential for a hybrid system, where the gluon is a color

octet, and where the quark and antiquark are combined to
produce a second color octet. While the constituent quark
(antiquark) is usually assumed to couple to a fundamental
string, in constituent gluon models the constituent gluon is
usually assumed to couple to an adjoint string. Notice that
in lattice QCD, using the adjoint representation of SU(3),
Bali [3] found that the adjoint string is compatible with the
Casimir scaling, where the Casimir invariant �i � �j pro-

duces a factor of 9=4 from the q �q interaction to the gg
interaction. Thus we already know that the string tension,
or energy per unit length, of the adjoint string is 1.125
times larger than the sum of the string tension of two
fundamental strings. How can these two pictures, of one
adjoint string and of two fundamental strings, with differ-
ent total string tensions, match? This question is also
related to the superconductivity model for confinement,
is QCD similar to a type-I or type-II superconductor?
Notice that in type type-II superconductors the flux tubes
repel each other while in type-I superconductors they
attract each other and tend to fuse in excited vortices
[20]. This is sketched in Fig. 1. String-string interactions
have also been studied in 2þ 1 dimension lattice QCD
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FIG. 1. String attraction and fusion, and string repulsion, re-
spectively, in type-I and type-II superconductors.
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[21–24]. The understanding of the hybrid potential will
answer these questions for 3þ 1 dimension lattice QCD.

In Sec. II we produce a Wilson loop adequate to study
the static hybrid potential. In Sec. III we present the results
of our Monte Carlo simulation. In Sec. IV we interpret the
results and conclude.

II. HYBRID WILSON LOOP

In principle, any Wilson loop with a geometry similar to
the one in Fig. 2 and describing correctly the quantum
numbers of the hybrid is adequate, although the signal to
noise ratio may depend on the choice of the Wilson loop. A
correct Wilson loop must include a SU(3) octet, the gluon,
a SU(3) triplet, the quark and a SU(3) antitriplet, the
antiquark. It must also include the connection between
the three links of the gluon, the quark and the antiquark.

In the limit of infinite quark mass, a nonrelativistic
potential V can be derived from the large time behavior
of Euclidean time propagators. Typically, one has a meson
operator O and computes the Green function,

h0jOðtÞOð0Þj0i ���! expf�Vtg (1)

for large t. Different types of operators allow the definition

of different potentials. In the static gluon-quark-antiquark
interaction, the static gluon can be replaced by a static
quark-antiquark pair in a color octet representation. In this
way, we can construct the gluon-quark-antiquark Wilson
loop starting from the mesonic operator,

O ðxÞ ¼ 1
4½ �qðxÞ�a�1qðxÞ�½ �qðxÞ�a�2qðxÞ�; (2)

where �i are spinor matrices. Using the lattice links to
comply with gauge invariance, the second operator in
Eq. (2) can be made nonlocal to separate the quark and
the antiquark from the gluon,

OðxÞ ¼ 1
4½ �qðxÞ�a�1qðxÞ�½ �qðx� r1�̂1ÞU�1

ðx� r1�̂1Þ � � �U�1
ðx� �̂1Þ�a�2U�2

ðxÞ � � �U�2
ðxþ ðr2 � 1Þ�̂2Þqðxþ r2�̂2Þ�:

(3)

The nonrelativistic potential requires the computation of the Green functions present in Eq. (1). Assuming that all quarks
are of different nature, the contraction of the quark field operators gives rise to the gluon operator,

WO ¼ 1

16
TrfUy

4 ðt� 1; xÞ � � �Uy
4 ð0; xÞ�bU4ð0; xÞ � � �U4ðt� 1; xÞ�ag � TrfU�2

ðt; xÞ � � �U�2
ðt; xþ ðr2 � 1Þ�̂2Þ

�Uy
4 ðt� 1; xþ r2�̂2Þ � � �Uy

4 ð0; xþ r2�̂2ÞUy
�2
ð0; xþ ðr2 � 1Þ�̂2Þ � � �Uy

�2
ð0; xÞ�b

�Uy
�1
ð0; x� �̂1Þ � � �Uy

�1
ð0; x� r1�̂1ÞU4ð0; x� r1�̂1Þ � � �U4ðt� 1; x� r1�̂1Þ

�U�1
ðt; x� r1�̂1Þ � � �U�1

ðt; x� �̂1Þ�ag: (4)

Gauge invariance of (4) can be proven with the help of the
relation

X

a

�
�a

2

�

ij

�
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�

kl
¼ 1

2
�il�jk � 1

6
�ij�kl: (5)

How does our operator relate with the operators used so
far to investigate the gluon interactions on the lattice? The
gluonic timelike links used by Michael and colleagues
[2,25] to study the glue lump are the real 8� 8 matrices,

UAdj��
4 ¼ 1

2 TrfU4�
�Uy

4�
�g; (6)

built from the usual SU(3) fundamental representation
links Ui, whereas in the investigation of Casimir scaling
by Bali [3], the author worked directly with adjoint links,
i.e. with the 8� 8 matrix SU(3) representation. If one now
compares the Wilson loop in Eq. (4) with Eq. (6), it follows

that, when t corresponds to a single lattice spacing, then the
gluonic trace, i.e. the first trace, of Eq. (4) is a ‘‘Michael
link.’’ Notice that when the quark and antiquark are super-
posed, they become equivalent to a gluon. Then all three
operators (our operator, the operator of Michael and col-
leagues and the operator of Bali) couple to the same
quantum numbers and thus, variationally, the respective
results should be equivalent.

III. THE STATIC HYBRID POTENTIAL

In this paper we consider two possible hybrid geome-
tries: ? with the quark-gluon segment perpendicular

ð dr1; r2 ¼ �=2Þ to the antiquark-gluon segment and k with

the quark-gluon segment parallel ð dr1; r2 ¼ 0Þ to the
antiquark-gluon segment. We denote the potentials, respec-
tively, V?ðr1; r2Þ and Vkðr1; r2Þ, where r1 (r2) is the quark-

Zoomλλλλa

λλλλa

λλλλb

λλλλb

t

q

g
r2

FIG. 2. Wilson loop for the q �qg potential, and equivalent
position of the static antiquark, gluon, and quark.
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gluon (antiquark-gluon) distance in lattice units, defined in
Fig. 2 and in Eq. (4).

We now discuss the results of our simulation with 142
configurations of a 243 � 48 lattice with a � ¼ 6:2 pure-
gauge Wilson SU(3) action. The configurations are gener-
ated with the version 6 of the MILC code [26], via a
combination of Cabbibo-Mariani and over-relaxed up-
dates. In order to improve the signal to noise ratio, the
links are replaced by ‘‘fat links’’ [27]

U�ðsÞ !
U�ðsÞ þ w

P
���� U�ðsÞU�ðsþ �ÞUy

� ðsþ�Þ
1þ 6w

(7)

followed by a projection into SU(3). We simply with w ¼
0:2 and, then, one iteration in the time with w ¼ 1:0. The
temporal smearing slightly reduces the short-range
Coulomb potential but produces a clearer signal for the
long-range potential, the one we are interested in.
Furthermore, to improve the quality of the signal, we
explore the symmetry r1 $ r2 when computing
V?ðr1; r2Þ and Vkðr1; r2Þ.

Using Eq. (1), the static potentials are extracted from the
fit of minus the log of the Wilson loop, � logW, for large
Euclidean time t. This fit provides us with the potential,
and we estimate the respective error bar with the jackknife
method. In our results for the static hybrid potentials V?
and Vk are displayed in Fig. 3. To illustrate the fit of

� logW as a function of t, an example is displayed in
Fig. 4.

We are interested in large distances, to compare the
different possible string tensions. With 243 (space) �48
(time) lattices with periodic boundary conditions, the
maximum distance we reach is 12a. With a lattice spacing
a� 0:072 fm, our maximal distance is still comfortably
shorter than the string breaking distance [28], which is
larger than 1 fm for 3þ 1 dimension lattice QCD, and
comfortably longer than the perturbative distance of say,
0.3 fm. To get the string tensions �, we fit the potentials
values with funnel potentials, including only the points
with 4 � r1; r2 � 12.

The string tension is the coefficient of the linear com-
ponent of the potential. Assuming a fundamental q �q string
tension

ffiffiffiffiffiffi
�0

p ¼ 440 MeV as in Bali and Schilling [29], we

get an inverse lattice spacing of a�1 ¼ 2718� 32 MeV.
To study the onset of two fundamental strings, we plot in
Fig. 5 the perpendicular geometry potential V? as a func-
tion of the sum of the two distances in lattice spacing units,
r1 between the quark and the gluon and r2 between the
antiquark and the gluon, as in Eq. (4). Indeed the potential
is linear in the sum of the distances, if we subtract the
Coulomb terms. V?ðr1; r2Þ to c0 � 	ð 1r1 þ 1

r2
Þ þ �ðr1 þ

r2Þ, this ansatz corresponds to having two independent
strings linking the quark or the antiquark to gluon, with
� being the string tension and 	 the coefficient a Luscher-
like term. Since our aim here is the string tension, we leave

more detailed studies of the short-range potential for future
studies.
We get

� ¼ ð1:03� 0:03Þ�0ð
2=dof ¼ 1:54Þ; (8)

which is consistent with � ¼ �0, reinforcing the picture
that when the quark and antiquark are distant we have two
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FIG. 3 (color online). Potential in lattice spacing units, for the
system q �qg, respectively (top) for the ? and (bottom) for the k
geometries.
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FIG. 4 (color online). Graph of � logWO as a function of t, in
lattice units, for r1 ¼ r2 ¼ 10. Notice that the fit to calculate
Vðr1; r2; tÞ used the interval from t ¼ 5 to t ¼ 15.
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fundamental strings, one linking the quark to the gluon and
the other linking the antiquark to the gluon.

To compare with the Casimir scaling result found by
Bali [3] we now consider the case where the quark and
antiquark are superposed. In this case the static quark and
antiquark are equivalent to a static gluon, and therefore our
potential is equivalent to a static gluon-gluon potential.
This is the case of the parallel geometry potential Vk when
the two distances r1 between the quark and the gluon and
r2 between the antiquark and the gluon, as in Eq. (4), are
identical, r1 ¼ r2. This is plotted in Fig. 5 and indeed we
find a linear behavior. Fitting the static potential of the
parallel geometry for distances r1 ¼ r2 ¼ r, by Vkðr; rÞ ¼
c0 � 	

r þ �r, we get

� ¼ ð2:21� 0:06Þ�0; ð
2=dof ¼ 0:29Þ; (9)

which is consistent with Casimir scaling and agrees with
the result obtained by Bali [3]. In general, the energy of the
string-antistring system includes their interaction, and also
the coupling to all the bound states and resonances [21–
24]. The increase in the static hybrid potential when the
quark and antiquark are superposed can be interpreted with
a repulsive energy between the two fundamental strings. A
similar repulsive energy exists in type-II superconductors,

when all possible resonances and bound states are situated
above the energy of the pair of fundamental strings.
Moreover, in the parallel geometry, we consider an

antiquark quite distant from the quark-gluon pair, to study
whether they are linked by a fundamental string. When we
fix the distance r1, the funnel potential fit in r2 yields

r1 ¼ 1: � ¼ ð1:01� 0:04Þ�0; ð
2=dof ¼ 0:62Þ;
r1 ¼ 2: � ¼ ð1:04� 0:05Þ�0; ð
2=dof ¼ 1:33Þ;
r1 ¼ 3: � ¼ ð1:04� 0:05Þ�0; ð
2=dof ¼ 1:04Þ;

(10)

consistent with a fundamental string tension.

IV. CONCLUSION

We explore, in 243 � 48 periodic lattices with � ¼ 6:2
and a� 0:072, two different geometries for the gluon-
quark segment and the gluon-antiquark segment. When
these segments are perpendicular, the static potential is
consistent with confinement realized with a pair of funda-
mental strings, one linking the gluon to the quark and one
linking the same gluon to the antiquark. When the seg-
ments are parallel and superposed, the total string tension
is larger and is compatible with a repulsive energy between
the two fundamental strings. Notice that when the two
segments are parallel and superposed, the total string ten-
sion is also compatible with the Casimir scaling measured
by Bali.
This can be interpreted with a type-II superconductor

analogy for the confinement in QCD, with repulsion of the
fundamental strings and with the string tension of the first
topological excitation of the string (the adjoint string)
larger than twice the fundamental string tension.
Nevertheless, because the energy of two fundamental
strings plus the repulsive energy measured here is quite
similar to the energy of the adjoint string measured by Bali
[3], this shows that the pure-gauge QCD is similar to a
type-II superconductor quite close to the phase transition to
a type-I superconductor [20].
Our results are important for constituent models of

hybrids and glueballs. In the three-body hybrid, with one
quark, one antiquark and one gluon, our results suggest that
the best potential model has only two fundamental strings,
plus a repulsion acting only when the two fundamental

FIG. 5. Potential for the system q �qg, in lattice spacing units,
respectively (top) for the ? geometry (with the Coulomb
contributions subtracted) as a function of r1 þ r2 and (bottom)
for the k geometry as a function of r1 ¼ r2 ¼ r.
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FIG. 6. The starfishlike and trianglelike possible geometries
for the strings in the static three-gluon system.
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strings are close. In the two-body gluon-gluon glueball, our
results suggest that the string tension is similar to the one of
the Casimir scaling model, with a factor of the order of 9

4

when compared with the quark-antiquark potential. We can
also extrapolate our result for three-body glueballs, rele-
vant for the odderon problem [30]. With three gluons, a
triangle formed by three fundamental strings costs less
energy than three adjoint strings with a starfishlike geome-
try, depicted in Fig. 6. Thus we anticipate that the three-

gluon potential is similar to a sum of three mesonic quark-
antiquark interactions, plus a repulsion acting only when
there is superposition of the fundamental strings.
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