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We investigate, within the type I seesaw framework, the physical implications of zero textures in the
Yukawa couplings which generate the neutrino Dirac mass matrix mD. It is shown that four is the maximal
number of texture zeros compatible with the observed leptonic mixing and the assumption that no neutrino
mass vanishes. We classify all allowed four-zero textures of mD into two categories with three classes
each. We show that the different classes, in general, admit CP violation both at low and high energies. We
further present the constraints obtained for low energy physics in each case. The role of these zero textures
in establishing a connection between leptogenesis and low energy data is analyzed in detail. It is shown
that it is possible in all cases to completely specify the parameters relevant for leptogenesis in terms of
light neutrino masses and leptonic mixing together with the unknown heavy neutrino masses.
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I. INTRODUCTION

Recent impressive experimental progress towards deter-
mining the masses and mixing angles of the three known
light neutrinos has brought urgency to the task of unravel-
ing the flavor structure of the neutrino mass matrix m�. It
has been pointed out [1] that, in the case of Majorana
neutrinos, it is not possible to completely determine the
structure of m� from feasible experiments. This is one of
the motivations for introducing some theoretical input
aimed at reducing the number of free parameters. One
interesting possibility is the imposition of zeros in the
elements of m� [1]. Another is to assume the vanishing
of detm� [2]. Several papers have analyzed in detail the
consequences of imposing zeros directly in the elements of
m�, starting with at least two-zero textures [1,3].
Implications of single texture zeros were studied in detail
in [4]. In fact, the existence of vanishing mass matrix
elements may reflect the presence of a family symmetry
acting in the leptonic sector [5,6]. It is then more natural to
investigate and classify the appearance of zeros in the
fundamental mass matrix appearing in the Lagrangian
rather than in m� which, at least within the seesaw frame-
work, is a derived quantity. Therefore we focus our atten-
tion on the Yukawa couplings which lead to the neutrino
Dirac mass matrix mD, once spontaneous symmetry break-
ing occurs. One can then see how zeros in mD affect m�
which we take to be related to mD by the type I seesaw
relation. Throughout, by ‘‘texture’’ we shall refer to a

configuration of mD containing zeros in some of its ele-
ments. In the Froggatt-Nielsen approach [7] texture zeros
correspond to extremely suppressed entries, which can be
taken effectively as zeros. The stability of zeros in neutrino
mass matrices under quantum corrections in type I seesaw
models has been studied in Refs. [8–10]. One also needs to
be aware that renormalization group effects can be quite
large in the case of quasidegenerate (inverted hierarchical)
light neutrino masses [11,12].

In this paper we classify and analyze the physical im-
plications of all neutrino Yukawa coupling matrices with
four-zero textures in the weak basis (WB), where the
charged lepton and the right-handed Majorana neutrino
mass matrices are diagonal and real. For simplicity, we
work within the framework of the type I seesaw mecha-
nism, where three right-handed singlet neutrinos are added
to the standard model (SM). The case of only two right-
handed heavy neutrinos leads to one zero neutrino mass,
and in this case only one-zero textures and some of the
two-zero textures are allowed experimentally [13,14].
With three heavy right-handed neutrinos and the additional
requirement that none of the physical neutrino masses
vanish, we show that four is the maximal number of zeros
in textures of mD that are compatible with the available
data on neutrino mixing. We organize all such four-zero
textures into classes and discuss the physical implications
of each class. The imposition of texture zeros in the
Yukawa couplings has the advantage of allowing for the
possibility of establishing a connection between low en-
ergy physics and physics at high energies, in particular,
leptogenesis [15].

It is by now established that new sources ofCP violation
beyond the Kobayashi-Maskawa mechanism of the SM are
required in order to dynamically generate the observed
baryon asymmetry of the Universe (BAU) [16–21]. The
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scenario of baryogenesis through leptogenesis has been
rendered especially appealing by the discovery of neutrino
oscillations, which provides evidence for nonvanishing
neutrino masses. In general, there is no direct connection
between CP violation at low energies and that entering in
leptogenesis [22,23]. It has been shown, however, that such
a connection arises in models with texture zeros in mD
[1,13,24,25]. This is a question that we analyze in the
present work for each one of the classes of allowed four-
zero textures, and we conclude that it is possible in all
cases to completely specify the parameters relevant for
leptogenesis in terms of light neutrino masses and leptonic
mixing together with the unknown heavy neutrino masses.

Texture zeros are clearly not WB invariant. For definite-
ness we analyze the allowed four-zero textures in the WB
in which both the charged lepton mass matrix and the
heavy right-handed Majorana neutrino mass matrix are
diagonal, as mentioned earlier. The question of how to
recognize a flavor model corresponding to a given set of
texture zeros, when written in a different basis, was ad-
dressed in Ref. [26]. It was shown there that some sets of
texture zeros imply the vanishing of certain CP-odd WB
invariants. The relevance of CP-odd WB invariants in the
analysis of texture zero ansätze is due to the fact that
texture zeros lead, in general, to a decrease in the number
of CP-violating phases.

This paper is organized as follows. In Sec. II we set the
notation and present our framework. We show in Sec. III,
based on what is already known experimentally about
leptonic mixing and on the condition that no neutrino
mass vanishes, why textures with five or more zeros in
mD are ruled out. In Sec. IV we enumerate the possible
classes of four-zero textures that are allowed and give for
each one of them low energy relations leading to physical
constraints. CP violation and related WB invariants for the
surviving four-zero textures are discussed in Sec. V. In
Sec. VI we analyze the physical implications of four-zero
textures both for low energies and for leptogenesis. Our
conclusions are summarized in Sec. VII.

II. NOTATION AND FRAMEWORK

We work in the context of the minimal type I seesaw
mechanism with three generations of right-handed neutri-
nos which are singlets of SU(2). We do not extend the
Higgs sector, and therefore we do not include Majorana
mass terms for left-handed neutrinos. After spontaneous
symmetry breaking, the leptonic mass terms are given by

 L m � �� ��
0
LmD�

0
R �

1
2�

0T
R CMR�

0
R �

�l0Lmll
0
R� � H:c:

� ��12n
T
LCM

�nL � �l0Lmll
0
R� � H:c:; (1)

where nL is a column vector with nTL � ��
0
L; ��

0
R�
c�, while

MR, mD, and ml, respectively, denote the right-handed
neutrino Majorana mass matrix, the neutrino Dirac mass
matrix, and the charged lepton mass matrix in family

space. The superscript 0 signifies the fact that the corre-
sponding fields are eigenstates of flavor. The matrix M is
given by

 M �
0 mD

mT
D MR

� �
: (2)

We assume that the scale of MR is much higher than the
electroweak scale v ’ 246 GeV. Upon diagonalization of
the matrix M, we are left with D � diag�m1; m2;
m3;M1;M2;M3�, containing three light and three heavy
Majorana neutrinos. The charged current interactions can
then be written as

 LW � �
g���
2
p ��liL��Kij�jL � �liL��GijNjL�W

� � H:c:;

(3)

where �j and Nj denote the light and the heavy neutrinos,
respectively, andK andG are 3	 3 blocks of a unitary 6	
6 matrix that diagonalizes the symmetric matrix M. The
light neutrino masses and mixing angles are obtained to an
excellent approximation from

 UymeffU? � d; (4)

where meff � �mDM
�1
R mT

D 
 m� computed in the WB
where ml is diagonal, and d � diag�m1; m2; m3�. The uni-
tary matrix U in Eq. (4) is the Pontecorvo, Maki,
Nakagawa, and Sakata (PMNS) matrix [27] relating the
mass eigenstate neutrinos �i�i � 1; 2; 3� to the flavor ei-
genstate neutrinos �f�f � e;�; �� by �fL � Ufi�iL. It
coincides with K in Eq. (3) up to corrections of order
v2=M2, which we ignore. The Yukawa textures that we
analyze are imposed in the weak basis where MR and ml
are real and diagonal. In this WB, all CP-violating phases
are contained in mD. From Eq. (7) and the definition of
meff , one can write mD in the Casas and Ibarra parametri-
zation [28]:

 mD � iU
���
d
p
R

����
D
p

; (5)

where D stands for MR in the WB where it is diagonal and
R is a general complex orthogonal matrix. It is clear, by
construction, that mixing and CP violation at low energies
are blind to the matrix R. However this last matrix is
relevant for leptogenesis.

III. INADMISSIBILITY OF MORE THAN
FOUR-ZERO TEXTURES

We shall now demonstrate that, in the framework speci-
fied earlier, all five-zero textures inmD are ruled out. Let us
start with the general form

 mD �

a1 a2 a3

b1 b2 b3

c1 c2 c3

2
64

3
75: (6)

Since we are assuming that none of the neutrino masses
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vanishes, we conclude from the definition of meff that the
determinant of mD cannot be zero. Therefore patterns of
mD with one full row of zeros or one full column of zeros
are ruled out, as well as patterns with zeros distributed in a
quartet, i.e. in four elements (ij), �lk�, (ik), �lj�, where i, j, k,
l can be 1, 2 or 3, with l � i, k � j. We are thus left with
patterns where the zeros are placed in such a way that
invariably two rows and two columns would have two
zeros simultaneously. Together with the requirement that
there is no quartet of zeros, this leads to several different
possibilities where, in each case, one nonzero entry of mD
is in a row and a column where all other entries are zeros.
Some examples are

 

a1 a2 0
0 0 b3

c1 0 0

2
64

3
75;

a1 a2 0
0 0 b3

0 c2 0

2
64

3
75;

0 a2 0
0 b2 b3

c1 0 0

2
64

3
75;

a1 0 0
0 b2 0
0 c2 c3

2
64

3
75;

0 a2 a3

b1 0 0
0 c2 0

2
64

3
75;

0 a2 a3

0 b2 0
c1 0 0

2
64

3
75:

(7)

Since we work in a WB where MR is diagonal, the
resulting matrix meff , for the five-zero textures under dis-
cussion, is always block diagonal. Furthermore, the fact
that we are in a WB where the charged lepton mass matrix
is also diagonal implies that these textures lead to two-
family mixing only, which is already ruled out experimen-
tally. Indeed, it is already known that there are two large
mixing angles in the PMNS matrix, and as a result, all five-
zero textures are ruled out.

IV. FOUR-ZERO TEXTURES

In this section, we classify all different possible four-
zero textures for mD in a WB, where MR and ml are real
and diagonal with no vanishing neutrino mass. Among
patterns of four-zero textures in mD, the nonvanishing
detmD condition rules out the occurrence of three of the
zeros in the same row or in the same column, as well as
zeros distributed in a quartet, as explained in the previous
section. Block diagonal patterns such as

 

a1 0 0
0 b2 b3

0 c2 c3

2
64

3
75;

a1 0 a3

0 b2 0
c1 0 c3

2
64

3
75;

a1 a2 0
b1 b2 0
0 0 c3

2
64

3
75

(8)

lead to two-family mixing only and are therefore ruled out.
The allowed remaining patterns can be split into two

categories:
(i) those with two orthogonal rows;

(ii) those with two orthogonal columns and no pairs of
orthogonal rows.

The first category can be divided into three classes corre-
sponding to

(i)(a) orthogonality of the first and second rows, leading
to

 meff12 � meff21 � 0; (9)

(i)(b) orthogonality of the first and third rows, leading to

 meff13 � meff31 � 0; (10)

(i)(c) orthogonality of the second and third rows, lead-
ing to

 meff23 � meff32 � 0: (11)

There are 18 different cases in (i)(a). Six of them have
two zeros in the first row and two zeros in the second row,
as, for example,

 

0 0 a3

0 b2 0
c1 c2 c3

2
64

3
75;

0 0 a3

b1 0 0
c1 c2 c3

2
64

3
75: (12)

Another six different cases have two zeros in the first row,
one zero in the second row, and one zero in the third row, as
in

 

0 a2 0
b1 0 b3

0 c2 c3

2
64

3
75;

0 a2 0
b1 0 b3

c1 c2 0

2
64

3
75: (13)

Finally, six different cases are obtained with one zero in the
first row, two zeros in the second row, and one zero in the
third row, as in

 

0 a2 a3

b1 0 0
c1 0 c3

2
64

3
75;

0 a2 a3

b1 0 0
c1 c2 0

2
64

3
75: (14)

There are another 18 different cases in (i)(b). These are
obtained from those in (i)(a), exchanging the second with
the third row. The cases in (i)(c) are also 18 different ones
obtained from those in (i)(a) by exchanging the first row
with the third one. Each case in category (i) has one
symmetric pair of nondiagonal zero entries in meff . Since
meff is symmetric by construction, due to its Majorana
character, off-diagonal zeros always come in pairs.

Textures in category (ii) are obtained by transposing
those in category (i) and discarding those already consid-
ered in (i). There are 18 cases altogether in category (ii). In
all of these, two columns are orthogonal to each other, each
having two zeros, and there is one column without zeros.
This category can again be divided into three classes:

FOUR-ZERO NEUTRINO YUKAWA TEXTURES IN THE . . . PHYSICAL REVIEW D 77, 053011 (2008)

053011-3



(ii)(a) six cases with two zeros in the first row; these
cases are given explicitly by

 

0 0 a3

0 b2 b3

c1 0 c3

2
64

3
75;

0 0 a3

b1 0 b3

0 c2 c3

2
64

3
75;

0 a2 0
0 b2 b3

c1 c2 0

2
64

3
75;

0 a2 0
b1 b2 0
0 c2 c3

2
64

3
75;

a1 0 0
b1 b2 0
c1 0 c3

2
64

3
75;

a1 0 0
b1 0 b3

c1 c2 0

2
64

3
75:

(15)

These verify the conditions

 jmeff11meff23j � jmeff12meff13j;

arg�m11m23m
�
12m

�
13� � 0:

(16)

Note that arg�miimjkm�ijm
�
ik� is rephasing invariant. In

Ref. [26] one example of this class was discussed.
(ii)(b) six cases with two zeros in the second row, which

are obtained from the patterns in (ii)(a) by interchanging
the first with the second row. These verify the conditions

 jmeff22meff13j � jmeff21meff23j;

arg�m22m13m�21m
�
23� � 0:

(17)

(ii)(c) six cases with two zeros in the third row, which
are obtained from the patterns in (ii)(a) by interchanging
the first row with the third row. These verify the conditions

 jmeff33meff12j � jmeff31meff32j;

arg�m33m12m
�
31m

�
32� � 0:

(18)

Equations (16)–(18) are of the form

 meffiimeffjk � meffijmeffik (19)

with i, j, k different from each other and no sum implied.
It can be checked that all allowed cases in category (i) as

well as in category (ii) contain the same number of inde-
pendent parameters in mD, and in all such cases one can
rephase away three of the phases. The counting of inde-
pendent parameters in meff is also the same in all cases, as
will be seen in the next section. Moreover, we shall analyze
in Sec. VI the implications of Eqs. (9)–(11) and (16)–(18)
corresponding to the two categories, each one with three
different classes.

Notice that, although we are considering weak bases
with the maximum number of zeros allowed by experi-
ment, together with the assumption that no neutrino mass
vanishes, the resulting matrix meff contains at most one-
zero nondiagonal entry. We are not considering here the
possibility of fine-tuning between the parameters of mD
and those of MR leading to additional zeros due to special
cancellations. This indicates that imposing texture zeros in

the WB where ml and MR are diagonal does not allow one
to generate any of the two-zero patterns considered in
Ref. [1]. It is already known that not all of these patterns
can be realized through the seesaw mechanism [29,30].

V.CP VIOLATION AND WEAK BASIS INVARIANTS

We start by recalling the general counting of the number
of parameters contained in the lepton mass matrices and
then consider the special case of textures with four zeros in
mD. In the WB where MR and ml are diagonal and real,
leptonic mixing and CP violation are encoded in mD,
which is an arbitrary complex 3	 3 matrix. The latter
contains nine real moduli and nine phases. Of these, only
six phases are physical, since three phases can be removed
by simultaneous rephasing of �L, lL. So mD is left with
nine real moduli plus six phases. Taking into account the
three eigenvalues of MR, we have in this WB a total of 18
parameters including six phases. This equals the number of
physical parameters, to wit, three light neutrino masses,
three heavy neutrino masses, plus six mixing angles and six
CP-violating phases in the first three rows of a 6	 6
complex unitary matrix [31] which we have denoted as K
and G in Eq. (3). It is interesting to notice that the number
of independent physical phases in Eq. (5) is also six, three
in the PMNS matrix and three required to parametrize the
orthogonal complex matrix R.

Textures with four zeros inmD lead to a strong reduction
in the number of parameters, since there are only five real
parameters and two phases after rephasing. This gives rise
to interesting phenomenological implications which are
analyzed in detail in the next section. In particular, it will
be shown that, in all four-zero textures classified by us, the
matrix R, which plays an important role in leptogenesis,
can be fully expressed in terms of low energy parameters
entering in U and d. This establishes a direct connection
between leptogenesis and low energy data. Moreover, this
link exists both in the cases of unflavored and flavored
leptogenesis.

In scenarios where flavor does not play an important
role, the lepton number asymmetry resulting from the
decay of the Nj heavy Majorana neutrino is given by [32]
 

"Nj �
g2

M2
W

X
k�j

�
Im��myDmD�jk�m

y
DmD�jk�

1

16�

	

�
I�xk� �

�����
xk
p

1� xk

��
1

�myDmD�jj

’
g2

M2
W

X
k�j

�
�Mk�

2 Im��GyG�jk�G
yG�jk�

1

16�

	

�
I�xk� �

�����
xk
p

1� xk

��
1

�GyG�jj
: (20)

In Eq. (20) Mk are the heavy neutrino masses and we have
neglected terms of order v2=M2

k. The variable xk is defined
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as xk � M2
k=M

2
j and the function I�xk� is given by I�xk� ������

xk
p
�1� �1� xk��logxk � log�1� xk���. Equation (20)

has been obtained after summing over all charged leptons
l�i (i � e, �, �). From the Casas and Ibarra parametriza-
tion we obtain

 myDmD �
����
D
p

RydR
����
D
p

: (21)

In this framework, leptogenesis is insensitive to the low
energy CP-violating phases appearing in U and can occur
even without CP violation at low energies [23]. Actually,
leptogenesis depends on other parameters beyond "Nj and
involves thermodynamic processes that have been ana-
lyzed by several authors [33–36]. It was pointed out re-
cently that, under certain conditions, flavor matters in
leptogenesis [37– 42]. In this case we must take into ac-
count the separate lepton i family asymmetry generated
from the decay of the kth heavy Majorana neutrino which
depends on the combinations [38] Im��myDmD�kk0 �m

�
D�ik	

�mD�ik0 � and Im��myDmD�k0k�m�D�ik�mD�ik0 �. Clearly, when
one works with separate flavors, the matrix U does not
cancel out, and one is led to the interesting possibility of
having viable leptogenesis even in the case of R being a
real matrix [43–46].

Next, we show explicitly that four-zero textures lead, in
general, to CP violation both at low and high energies. The
strength of leptonic CP violation of Dirac-type, which can
be observable through neutrino oscillations, is controlled
by the WB CP-odd invariant [47]

 I1 
 tr�heff ; hl�3 � �6i�ICP; with

ICP 
 Im�heff12heff31heff23�;
(22)

where heff � meffm
y
eff , hl � mlm

y
l , and � � �m2

� �m2
e�	

�m2
� �m

2
e��m

2
� �m

2
��. In order to show that this CP-odd

invariant does not vanish, in spite of the four zeros in mD,
we have to examine the structure of heff . For definiteness,
let us consider the configuration

 mD �

a1 a2 a3

b1 0 0
0 0 c3

2
64

3
75 (23)

belonging to case (c), category (i). Three phases can be
rephased away so that one is left with only two phases,
which can be placed, for instance, at the entries (1,1) and
(1,2). From Eq. (23) and the definition of meff , one obtains
the following structure for the latter:

 meff 


m11 m12 m13

m12 m22 m23

m13 m23 m33

2
64

3
75 �

c11 c12 r13

c12 r22 0
r13 0 r33

2
64

3
75; (24)

where entries labeled with a c are complex and those
labeled with an r are real. With these choices there are
two complex entries in meff . From this equation we obtain

 

ICP � Im�jm13j
2�m2

12m
�
22m

�
11� � jm12j

2�m11m33m
�2
13�

�m2
12m

�2
13m

�
22m33�: (25)

One may note that each one of the three terms contributing
to ICP is rephasing invariant. It is clear that ICP does not
vanish for the meff of Eq. (24).

It is well known that at low energies there are three
CP-violating phases in U, one of the Dirac-type and two
of the Majorana-type. The question of finding the CP-odd
WB invariants that would be sufficient to control CP
violation at low energies was first addressed in Ref. [47],
and more recently in Ref. [48]. In particular, it was pointed
out that requiring the vanishing of the WB invariant of
Eq. (22) together with the two WB invariants,

 I2 
 Im tr�hl�meffm�eff��meffh�l m
�
eff��; (26)

 I3 
 Tr��m�effhlmeff ; h
�
l �

3; (27)

provides, in general, necessary and sufficient conditions
for low energy CP invariance [48]. The invariant of
Eq. (27) was first proposed in Ref. [49], where it was
shown that it has the special feature of being sensitive to
Majorana-type CP violation even in the limit of three
exactly degenerate Majorana neutrinos. Other relevant
cases can be found in Ref. [50]. The fact that, for the
four-zero texture of Eq. (23), none of the three WB invar-
iants vanishes in general, shows that this texture leads to
both Dirac- and Majorana-type CP violation at low ener-
gies. The same applies to the other four-zero textures.

So far, we have only considered leptonic CP violation at
low energies. Leptogenesis is a high energy phenomenon
requiring CP violation. In the unflavored case the relevant
phases are those inmyDmD as shown in Eq. (20). In this case
one may also write a set of three independent WB invar-
iants [22]:

 I4 
 Im Tr�hDHM�Rh
�
DMR�; (28)

 I5 
 Im Tr�hDH2M�Rh
�
DMR�; (29)

 I6 
 Im Tr�hDH
2M�Rh

�
DMRH�; (30)

where hD � myDmD and H � MyRMR. These three would
have to vanish if CP were to be conserved. The condition
for the vanishing of I4 was first given in Ref. [51]. The
evaluation of these invariants, in the WB with diagonal
MR, shows that, in the case of a nondegenerate D and
assuming no cancellations, they can all simultaneously
vanish only if all imaginary parts of �hDij�2 are absent.
Now it turns out that textures of category (ii) always have
one zero off-diagonal entry in hD due to the orthogonality
of two columns of mD, but the other two off-diagonal
elements are, in general, nonzero. The same goes for those
textures in category (i) that also have two orthogonal
columns. The remaining textures in category (i) have, in
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general, three nonzero complex hDij but their phases are
constrained to be cyclic, i.e., Im�hD12hD31hD23� � 0. The
fact that not all imaginary parts of �hDij�2 vanish simulta-
neously in any of the four-zero textures shows that they
admit CP violation at high energies, relevant for
leptogenesis.

VI. IMPLICATIONS FROM MODELS WITH
FOUR-ZERO TEXTURES

A. Low energy physics

Let us start by summarizing what is presently known
about neutrino masses and leptonic mixing. We choose to
parametrize the PMNS mixing matrix as [52]

 U �
c12c13 s12c13 s13e

�i�

�s12c23 � c12s23s13ei� c12c23 � s12s23s13ei� s23c13

s12s23 � c12c23s13e
i� �c12s23 � s12c23s13e

i� c23c13

0
B@

1
CA � P; (31)

where cij 
 cos�ij, sij 
 sin�ij, with all �ij in the first
quadrant, � being a Dirac-type phase and P �
diag�1; ei�; ei	� with � and 	 denoting the phases associ-
ated with the Majorana character of neutrinos.

The current experimental bounds on neutrino masses
and leptonic mixing are [52]

 �m2
21 � 8:0�0:4

�0:3 	 10�5 eV2; (32)

 sin 2�2�12� � 0:86�0:03
�0:04; (33)

 j�m2
32j � �1:9to3:0� 	 10�3 eV2; (34)

 sin 2�2�23�> 0:92; (35)

 sin 2�13 < 0:05; (36)

with �m2
ij 
 m2

j �m
2
i . The allowed ranges for the pa-

rameters listed above correspond to an impressive degree
of precision. The angle �23 may be maximal (i.e., �=4). In
contrast, maximal mixing for �12 is already ruled out
experimentally. At the moment there is only an experimen-
tal upper bound on the angle �13. A value of �13 close to the
present bound would be good news for the prospects of
detecting low energy leptonic CP violation, mediated
through a Dirac-type phase. The strength of the latter is
given by

 J CP 
 Im�U11U22U�12U
�
21�

� 1
8 sin�2�12� sin�2�13� sin�2�23� cos��13� sin�;

(37)

which would in this case be of order 10�2, for sin� of order
1. A similar quantity defined in terms of the elements of the
Cabibbo-Kobayashi-Maskawa matrix is meaningful in the
quark sector [53,54], and the corresponding value is of the
order of 10�5. It is not yet known whether the ordering of
the light neutrino masses is normal, i.e. m1 <m2 <m3, or
inverted, i.e. m3 <m1 <m2. The scale of the neutrino
masses is not yet established. The spectrum may vary
from a large hierarchy between the two lightest neutrino
masses to three quasidegenerate masses. Examples of the

possible extreme cases are

 �a� m1  0 �or e:g: 10�6 eV�; m2 ’ 0:009 eV;

m3 ’ 0:05 eV

corresponding to normal spectrum, hierarchical, or else

 �b� m3  0 �or e:g: 10�6 eV�;

m1 ’ m2 ’ 0:05 eV

corresponding to inverted spectrum, hierarchical, or else

 �c� m1 ’ 1 eV; m2 ’ 1 eV; m3 ’ 1 eV

corresponding to almost degeneracy.
As explained below, the conditions obtained in Sec. IV

are not all compatible with each of these scenarios. Finally,
we note that it is not yet established whether or not neu-
trinos are Majorana particles, and therefore, at the moment,
there are no restrictions on the Majorana phases �, 	.

The low energy implications of patterns in category (i),
which, as was already pointed out, lead to one off-diagonal
set of zeros in the symmetric matrix meff , were studied in
detail in Ref. [4]. The main conclusions in this paper are
that no off-diagonal entry in meff can vanish in the case of
�13 equal to zero. Implications of one zero in the first row
of meff do not differ much in the two possible such cases
due to the approximate �� � exchange symmetry [55–
57]. In this case all values of m1 are allowed from extreme
hierarchy to almost degeneracy, and so are both possible
orderings of neutrino masses. For �meff�23 � �meff�32 � 0
both normal hierarchy and inverted hierarchy are excluded.

Let us consider category (ii) which implies the con-
straints of Eq. (19). Taking into account Eq. (4) this equa-
tion can be written as

 

X
r<s

mrms�UirUks �UisUkr��UirUjs �UisUjr� � 0 (38)

with i, j, k different from each other and no sum implied,
and the indices r, s ranging from 1 to 3.

With the explicit parametrization of Eq. (31), we obtain
simple exact analytic relations for each of the classes in
category (ii).

For class (ii)(a) the exact form of this constraint is
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�m1m2e
2i�c23s23c

2
13 �m1m3e

2i	�c2
12c23s23 � c12s12�c

2
23 � s

2
23�s13e

�i� � s2
12c23s23s

2
13e
�2i��

�m2m3e
2i���	��s2

12c23s23 � c12s12�s
2
23 � c

2
23�s13e

�i� � c12c23s23s
2
13e
�2i�� � 0: (39)

An interesting feature of this expression is the fact that all terms sensitive to Dirac-type CP violation are doubly suppressed
since they are multiplied either by s2

13 or by the factor �c2
23 � s

2
23�s13, and it is already known experimentally that �13

corresponds to small or no mixing and �23 is maximal or close to maximal. Therefore, this expression can be very well
approximated by

 �m1m2e
2i�c23s23c

2
13 �m1m3e

2i	c2
12c23s23 �m2m3e

2i���	�s2
12c23s23 � 0: (40)

For class (ii)(b) we have the exact relation

 

�m1m2e2i�c23c13s13ei� �m1m3e2i	�c12s12s23c13 � s2
12c23c13s13e�i��

�m2m3e
2i���	���c12s12s23c13 � c

2
12c23c13s13e

�i�� � 0: (41)

Class (ii)(c) exactly verifies

 

�m1m2e2i�s23c13s13ei� �m1m3e2i	��c12s12c23c13 � s2
12s23c13s13e�i��

�m2m3e
2i���	��c12s12c23c13 � c

2
12s23c13s13e

�i�� � 0: (42)

This equation can be obtained from the previous one by
interchanging s23 with c23 and by changing the sign of the
terms that do not depend on the Dirac phase.

It is clear from these expressions that the main features
of low energy physics coming out of these textures do not
crucially depend on the possible existence of CP violation.
In order to get a feeling of the main features of the
implications of the constraints given by Eqs. (39), (41),
and (42), let us take as a first approximation the Harrison,
Perkins, and Scott (HPS) mixing matrix [58]

 U �

2��
6
p 1��

3
p 0

� 1��
6
p 1��

3
p 1��

2
p

� 1��
6
p 1��

3
p � 1��

2
p

2
664

3
775; (43)

which is consistent with present experimental data, and
corresponds to �23 maximal, �13 zero and c12 � 2=

���
6
p

and
no CP violation. Obviously, a detailed analysis would
require the variation of �13, as well as of �12 and �23,
inside their allowed ranges and also to take into consid-
eration the possibility of CP violation.

Equations (39) and (43) lead to

 

1
2m1m2 �

1
3m1m3 �

1
6m2m3 � 0 (44)

and, as already explained, Eq. (44) corresponds to ignoring
terms with a double suppression. In the CP-conserving
limit, light neutrinos may have different CP parities [59];
therefore there are several possible ways of obtaining the
necessary cancellations. Normal ordering with strong hier-
archy is ruled out since for m1 � m2 there would be only
one dominant term, the one in m2m3. Hierarchy in the
masses implies that the magnitude of the term in m2m3 is
close to 7	 10�5 eV2. The strongest allowed hierarchy

consistent with the above constraint favors the larger �13

values; a numerical example obtained for maximal �23 and
the central value of �12, with cancellations already of order
10�10 eV2, is
 

m1 � 0:003 330 712 21 eV;

m2 � �0:009 544 298 98 eV;

m3 � 0:050 110 813 2 eV;

s13 � 0:198 669:

Obviously the number of significant digits in the above
numerical result is meaningless from the experimental
point of view and is only given to be consistent with the
degree of cancellation claimed above. Here m2 is no more
than a factor of 3 higher than m1, which corresponds to a
weak normal hierarchy. As m1 decreases, cancellations
cease to occur and the difference tends to the value of the
dominant term which is the term in m2m3. The situation
would change for larger values of �13 which are already
ruled out, and likewise, for instance, for a small solar angle,
��12�, already excluded, as was pointed out in [25], where a
particular example of a texture of this class was considered,
since in this case the term in m2m3 present in Eq. (40)
would be suppressed by s2

12. Strong inverse hierarchy is
also ruled out since it would leave the dominant term in
m1m2 without the possibility of cancellation. Quasi-
degeneracy can be accommodated within the present range
of experimental values for the mixing angles.

Case (b) in category (ii) obeys the constraint of Eq. (41).
The coefficient of m1m2 is zero for the HPS matrix, and in
this case we are left with

 � 1
3m1m3 �

1
3m2m3 � 0: (45)
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For nonzero �13 the term in m1m2 is suppressed but cannot
be discarded for m3 � m1; m2, i.e., inverse hierarchy. In
the case of inverse hierarchy the necessary cancellation of
the three terms may occur. Almost degeneracy can also be
accommodated, provided �13 is different from zero. For
�13 � 0 the coefficient of m1m3 would be exactly equal to
the coefficient of m2m3, and this relation could not be
verified, since it would imply m1 � m2.

Case (c) in category (ii) is very similar to case (b). The
resulting equation for the HPS matrix coincides with
Eq. (45), and the conclusions are the same as in case (b),
category (ii).

All cases in category (ii) are thus incompatible with a
strong hierarchy and normal ordering, i.e. for m1 � m2.

B. Relating leptogenesis to low energy physics

Zero textures in mD allow one to relate the matrix R,
relevant to leptogenesis, to the light neutrino masses and
low energy leptonic mixing. In fact, it is clear from Eq. (5)
that each zero in mD leads to an orthogonality condition
between one column of the matrix R and one row of the
matrix U

���
d
p

of the form

 �mD�ij � 0) �U�ik
�������
dkk

p
Rkj � 0: (46)

It was already pointed out [26] that the connection between
leptogenesis and low energy physics could be easily estab-
lished in a particular case that falls into category (ii), since
in this case one can fully express the matrix R in terms of
light neutrino masses and low energy leptonic mixing. The
same is true for all other cases in category (ii) as well as for
the cases that fall into category (i) as shown below. The
example given in Ref. [26] can be generalized in the
following way.

In category (i) there is always in mD one column with
two zeros and two columns with one zero each. Let l be the
column with two zeros and a and b the columns with one
zero only. In this case we can write

 � ~Rl�i � �"ijk�U�pj
������
mj
p
�U�qk

������
mk
p
�

1

Nl
; (47)

 � ~Ra�i � �"ijk�U�rj
������
mj
p
�Rl�k�

1

Na
; (48)

 � ~Rb�i � �"ijk�U�sj
������
mj
p
�Rl�k�

1

Nb
; (49)

where p and q are the rows with zeros in the column l.
Moreover, r and s are the rows where the zeros are in
columns a and b, respectively. The ~Ri are the columns of
the matrix R and the Ni are complex normalization factors,
with phases such that ~Ri

2 � 1. It is easy to show that the
columns ~Ra and ~Rb are indeed orthogonal to each other by
using the constraint meffrs � 0 valid for each case in cate-
gory (i).

In Ref. [25] the relation between leptogenesis and CP
violation at low energies in two cases falling into category
(i) were analyzed in detail in the case of hierarchical heavy
Majorana neutrinos and also in the case of twofold quasi-
degeneracy of the heavy neutrinos.

In category (ii) there is in mD always one column
without zeros, and each of the other two columns has
two zeros. Now let l be the column without zeros and a
and b the columns with two zeros. In this case we can write

 � ~Ra�i � �"ijk�U�pj
������
mj
p
�U�qk

������
mk
p
�

1

Na
; (50)

 � ~Rb�i � �"ijk�U�rj
������
mj
p
�U�sk

������
mk
p
�

1

Nb
; (51)

 � ~Rl�i � "ijk� ~Ra�j� ~Rb�k: (52)

Here p and q are the rows with zeros in column a.
Furthermore, r and s are the rows with zeros in column
b, while Ni denote normalization factors. It is easy to show
that ~Ra and ~Rb are indeed orthogonal to each other for each
case in category (ii) by using Eq. (19).

All four-zero textures analyzed in this paper allow one to
completely specify the matrix R, in terms of light neutrino
masses and the elements of the PMNS matrix. It is clear
that R can only be complex if there is CP violation at low
energies.

VII. SUMMARY AND CONCLUSIONS

We have made a systematic study of all allowed four-
zero textures in the neutrino Dirac mass matrix mD, in the
framework of the type I seesaw mechanism, without van-
ishing neutrino masses. In order for this study to be mean-
ingful, one has to choose a specific WB. Without loss of
generality, we have chosen to work in the WB where the
charged lepton and the right-handed neutrino mass matri-
ces are both diagonal, real. Assuming that no neutrino mass
vanishes and taking into account the experimental evi-
dence that no leptonic family decouples from the other
two, we have shown that four is the maximal number of
zeros allowed inmD. We have found the following remark-
able result: the allowed four-zero textures in the neutrino
Yukawa coupling matrices automatically lead to one of two
patterns in m�. Either the latter has only one pair of
symmetric off-diagonal zeros, or else it has no zero ele-
ment but a vanishing subdeterminant condition. In the
derivation of this result, we have implicitly assumed the
absence of any fine-tuning between the parameters of mD
and those ofMR which would lead to special cancellations.

Our analysis also applies to scenarios where, instead of
zeros, one has a set of extremely suppressed entries [60], as
one often encounters in the Froggatt-Nielsen approach. Of
course, renormalization group effects, especially for qua-
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sidegenerate and inverted hierarchical neutrinos [12], will
change at least some of the zeros in mD into small entries.

We have also explored the phenomenological conse-
quences of the above-mentioned textures. In particular,
we have shown that they lead to a close connection be-
tween leptogenesis and low energy measurables such as
neutrino masses and mixing angles. The establishment of
such a connection in the leptonic sector between physics at
low and very high energies is an important goal and
provides an additional motivation for considering texture
zeros in the leptonic sector.
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