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The most general supersymmetric seesaw mechanism has too many parameters to be predictive and

thus can not be excluded by any measurements of lepton flavor violating (LFV) processes. We focus on

the simplest version of the type I seesaw mechanism assuming minimal supergravity boundary conditions.

We compute branching ratios for the LFV scalar tau decays, ~�2 ! ðe; �Þ þ �0
1, as well as loop-induced

LFV decays at low energy, such as li ! lj þ � and li ! 3lj, exploring their sensitivity to the unknown

seesaw parameters. We find some simple, extreme scenarios for the unknown right-handed parameters,

where ratios of LFV branching ratios correlate with neutrino oscillation parameters. If the overall mass

scale of the left neutrinos and the value of the reactor angle were known, the study of LFV allows, in

principle, to extract information about the so-far unknown right-handed neutrino parameters.
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I. INTRODUCTION

Neutrino oscillation experiments have demonstrated that
neutrinos are massive particles [1]. With the most recent
experimental data by the MINOS [2] and KamLAND [3]
collaborations, atmospheric and solar mass-squared differ-
ences are now known very precisely and global fits to all
neutrino oscillation data [4] also give quite accurate deter-
minations for the corresponding neutrino mixing angles.
For the overall mass scale of neutrinos and the third
neutrino mixing angle currently only upper limits exist,
but considerable progress is expected from future double
beta decay [5] and reactor neutrino oscillation [6,7]
experiments.

Neutrino masses provide the first experimental signal of
physics beyond the standard model (SM). From an experi-
mental point of view, neutrino oscillation data can easily be
fitted in very much the same way as the SM accounts for
quark masses and mixings, i.e., namely by Dirac neutrino
masses. From a theoretical point of view, however, such an
ansatz is ad hoc since, being electrically neutral, neutrinos
are expected to be Majorana particles [8]. Indeed, as noted
already in [9], the dimension-five operator,

m� ¼ f

�
ðHLÞðHLÞ; (1)

induces Majorana masses for neutrinos once the electro-
weak symmetry breaks. This way the smallness of the
neutrino masses can then be attributed to the existence of
some lepton number violating scale larger than the elec-
troweak scale. A variety of ways to generate this operator
have been suggested. The resulting Majorana neutrino
masses can be suppressed either by loop factors, by a large
mass scale, by a small scale whose absence enhances the
symmetry of theory, or by combinations of these mecha-
nisms [10].
Electroweak scale models, such as, for example, the Zee

model [11], the Babu-Zee model [12], supersymmetric
models with violation of R parity [13–17], or lepton num-
ber violating leptoquark models [18] generate neutrino
masses at loop level, resulting in f � 1 and � need not
be much larger than mW . A similar situation arises in
models like the inverse seesaw [19]. Such low-scale mod-
els have the advantage that the new fields responsible for
the generation of neutrino masses may be directly acces-
sible to future accelerator experiments, see for example
[20–24].
The most popular mechanism to generate Majorana

neutrino masses, however, the celebrated seesaw mecha-
nism [8,25–29] assumes that the lepton number is violated
at a very large scale, probably at energies comparable to
the grand unification scale. This ‘‘classical’’ version of the
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seesaw mechanism, while automatically suppressing neu-
trino masses without the need for any small prefactor, will
unfortunately never be directly testable.

However indirect insight into the high-energy world
might become possible, if weak scale supersymmetry is
realized in nature. Indeed, starting from flavor diagonal
soft supersymmetry (SUSY) breaking terms at some high-
energy ‘‘unification’’ scale, flavor violation appears at
lower energies due to the renormalization group running
of the soft breaking parameters [30]. If the (type I) seesaw
mechanism is responsible for the observed neutrino
masses, the neutrino Yukawa couplings leave their imprint
in the slepton mass matrices as shown first in [31]. Flavor
off diagonal entries in the neutrino Yukawas then can lead
to potentially large lepton flavor violating lepton decays
such as li ! lj þ � and li ! 3lj [32–37] or �� e con-

version in nuclei [38,39]. In a similar spirit, if supersym-
metry is discovered at a future accelerator such as the LHC,
one can use measurements of masses and branching ratios
of supersymmetric particles to obtain indirect information
on the range of allowed seesaw parameters [40–44]. The
most general supersymmetric seesaw mechanism has too
many parameters to be predictive and thus can not be
excluded by any measurements of lepton flavor violating
(LFV) processes. Within the supersymmetric version of the
seesaw measurements of LFVobservables outside the neu-
trino sector allow one to obtain valuable independent in-
formation about the seesaw parameters [45]. There are two
logical possibilities of how such LFV measurements might
be useful. (a) Given the current incomplete knowledge on
the light neutrino masses and angles, one could make some
simplified assumptions about the right-handed neutrino
sector. Then ‘‘predictions’’ for LFVobservables as a func-
tion of the remaining unknowns for the left-handed light
neutrinos result. Or, (b) one could learn about the parame-
ters of the right-handed neutrinos once the most important,
but currently unknown light neutrino observables have
been measured. While the second option might look
more interesting, the time scale for making progress on
m�, s13, or the Dirac CP phase � will be long. Worse still,
the Majorana phases of the light neutrinos are unlikely to
be ever reliably measured. Hence experimental informa-
tion most likely will be incomplete and measurements of
LFV observables will be useful to at least partially recon-
struct the seesaw parameters.

In this paper we study lepton flavor violating decays of
the scalar tau as well as LFV lepton decays at low energies.
We assume minimal supergravity (mSugra) boundary con-
ditions and type I seesaw as the origin of neutrino masses
and mixings. We compare the sensitivities of low-energy
and accelerator measurements and study their dependence
on the most important unknown parameters. LFVmeasure-
ments at accelerators could be argued to be preferable to
the low-energy LFVexperiments for ‘‘reconstructing’’ see-
saw parameters, since from a theoretical point of view they

involve fewer assumptions. However, the absolute values
of LFV stau decays and, for example, Brð� ! eþ �Þ
depend very differently on the unknown SUSY spectrum.
Whether low-energy LFV or LFV at accelerators yields
more insight into the seesaw mechanism can currently
therefore not be predicted.
While absolute values of LFV observables depend very

strongly on the soft SUSY breaking parameters, it turns out
that ratios of LFV branching ratios can be used to eliminate
most of the dependence on the unknown spectrum. I.e.,
ratios such as, for example, Brð~�2 ! eþ �0

1Þ=Brð~�2 !
�þ �0

1Þ are constants (for fixed neutrino parameters)

over large parts of the supersymmetric parameter space
and therefore especially suitable to extract information
about the seesaw parameters. We therefore study such
ratios in detail, first in a useful analytical approximation
and then within a full numerical calculation.
The rest of this paper is organized as follows. In the next

section, we will recall the basic features of the supersym-
metric seesaw mechanism, mSugra, and LFV in the slepton
sector. Section III then discusses analytical estimates for
slepton mixing angles and the corresponding LFVobserv-
ables. In Sec. IV we present our numerical results before
concluding in Sec. V.

II. SETUP: MSUGRAWITH TYPE I SEESAW

In order to fix the notation, let us briefly recall the main
features of the seesaw mechanism and mSugra. We will
consider only the simplest version of the seesaw mecha-
nism here. It consists in extending the particle content of
the minimal supersymmetric standard model by three
gauge singlet ‘‘right-handed’’ neutrino superfields. The
leptonic part of the superpotential is thus given by

W ¼ Yji
e L̂iĤdÊ

c
j þ Yji

� L̂iĤuN̂
c
j þMiN̂

c
i N̂

c
i ; (2)

where Ye and Y� denote the charged lepton and neutrino

Yukawa couplings, while N̂c
i are the right-handed neutrino

superfields with Mi Majorana mass terms of unspecified

origin. Since the N̂c
i are singlets, one can always choose a

basis in which the Majorana mass matrix of the right-

handed neutrinos is diagonal M̂R.
Note that LFV arises from supersymmetric as well as

from gauge boson loop diagrams, for example, slepton-
gaugino exchange loops and W loops involving right-
handed neutrino exchange. The former (SUSY-induced
LFV) can be described by taking a basis where the Ye

Yukawa coupling matrix is diagonal, its entries fixed by
the observed charged lepton masses. This reduces the
relevant physical parameters to a total of 21.
While in extended schemes like inverse seesaw

[37,39,46] gauge-induced LFV is potentially sizeable, it
is negligible in the simplest type I seesaw model, due to the
large values of Mi required. Therefore, we focus on such
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intrinsically supersymmetric LFV, which can be well char-
acterized Eq. (2) in the unbroken SU(2) limit.

Different parametrizations for the simplest seesaw have
been discussed in the literature. The most convenient
choice for our calculation is to go to the basis where the
charged lepton mass matrix is diagonal. We then have as
parameters nine mass eigenstates (three charged leptons,
the three light and the three heavy neutrinos). The remain-
ing 12 parameters can be encoded in two matrices VL and
VR, with three angles and three phases each, which diago-
nalize Y�,

Ŷ � ¼ Vy
RY�VL: (3)

The effective mass matrix of the left-handed neutrinos is
given in the usual seesaw approximation as

m� ¼ �v2
U

2
YT
� �M�1

R � Y�: (4)

If one of the Mi eigenvalues of the matrix MR goes to
infinity (or the corresponding vector in Y� to zero) the
corresponding eigenvalue of m� (mi) goes to zero. Since
the neutrino mass matrix is complex symmetric, Eq. (4) is
diagonalized by [8]

m̂ � ¼ UT �m� � U: (5)

Inverting the seesaw equation, Eq. (4), allows one to ex-
press Y� as [47]

Y� ¼ ffiffiffi
2

p i

vU

ffiffiffiffiffiffiffiffi
M̂R

q
R

ffiffiffiffiffiffiffi
m̂�

p
Uy; (6)

where m̂� is the diagonal matrix withmi eigenvalues and R
in general is a complex orthogonal matrix. Note, that in the
special case R ¼ 1, Y� contains only ‘‘diagonal’’ productsffiffiffiffiffiffiffiffiffiffiffiffi
Mimi

p
. Note that in this approximation the 18 parameters

in Y� are reduced to 12, which are expressed as six light
neutrino mixing angles and phases in the lepton mixing
matrix U, the three light neutrino masses in m̂�, and the

three heavy right-handed neutrino masses in
ffiffiffiffiffiffiffiffi
M̂R

q
.

In the general minimal supersymmetric standard model,
LFV off diagonal entries in the slepton mass matrices are
free parameters. In order to correlate LFV in the slepton
sector with the LFV encoded in Y� one must assume some
scheme for supersymmetry breaking. We will restrict our-
selves here to the case of mSugra, characterized by four
continuous and one discrete free parameter, usually de-
noted as

m0; M1=2; A0; tan�; Sgnð�Þ: (7)

Here, m0 is the common scalar mass, M1=2 the gaugino

mass, and A0 the common trilinear parameter, all defined at
the grand unification scale, MX ’ 2 � 1016 GeV. The re-
maining two parameters are tan� ¼ vU=vD and the sign of
the Higgs mixing parameter �. For reviews on mSugra,
see, for example [48,49].

Calculable LFV entries appear in the slepton mass ma-
trices, due to the nontrivial generation structure of the

neutrino Yukawa matrix in Eq. (2), as first pointed out in
[31]. In order to determine their magnitude we solve the
complete set of renormalization group equations, given in
[33,50]. It is however useful for a qualitative understand-
ing, to consider first the simple solutions to the renormal-
ization group equations found in the leading-log
approximation [33], given by

ð�M2
~L
Þij ¼ � 1

8�2
ð3m2

0 þ A2
0ÞðYy

�LY�Þij

ð�AlÞij ¼ � 3

8�2
A0YliðYy

�LY�Þij ð�M2
~E
Þij ¼ 0;

(8)

where only the parts proportional to the neutrino Yukawa
couplings have been written. The factor L is defined as

Lkl ¼ log

�
MX

Mk

�
�kl: (9)

Equation (8) shows that, within the type I seesaw mecha-
nism the right slepton parameters do not run in the leading-
log approximation. Thus, LFV scalar decays should be
restricted to the sector of left sleptons in practice, apart
from left-right mixing effects which could show up in the
scalar tau sector. Also note that for the trilinear parameters
running is suppressed by charged lepton masses.
Note also that the LFV slepton mass squareds involve a

different combination of neutrino Yukawas and right-
handed neutrino masses than the left-handed neutrino

masses of Eq. (4). In fact, since ðYy
�LY�Þ is a Hermitian

matrix, it obviously contains only nine free parameters
[45], the same number of unknowns as on the right-hand
side of Eq. (6), given that in principle all three light
neutrino masses, three mixing angles, and three CP phases
are potentially measurable.1

In an ideal world where all low-energy parameters,
namely, the three light neutrino masses, three mixings,
and three CP violation parameters were known, the re-
maining parameters entering Eq. (2) could in principle be
reconstructed by measuring all entries in ð�M2

~L
Þij. This

would determine the full set of 18þ 3 parameters which,
to a good a approximation, characterize LFV in the mini-
mal type I seesaw. In practice, however, there are two
obstacles. (i) Calculability of ð�M2

~L
Þij using Eq. (8) as-

sumes implicitly that there are no threshold effects near the
unification scale which destroy the strict proportionality to
the parameters m0 and A0 [52]. In realistic grand unified
theory models this might not be the case. And, (ii) it is not
realistic to assume that all entries in ð�M2

~L
Þij can be

measured with sufficient accuracy, since (a) the diagonal

1In practice measuring the unknown angle 	13 and the Dirac
CP phase requires improved neutrino oscillation studies [51] and
will not be an easy task. Even if we are lucky to measure the
overall neutrino mass scale in ��0� experiments [5], the
Majorana phases contained in U are much harder to determine
in practice.
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shifts ð�M2
~L
Þii are very small compared to ðM2

~L
Þii (nearly

everywhere in the available parameter space) and (b) the
determination of the phases required to measure
CP-violating LFV observables. The latter does not seem
to be a very realistic option either, since, as our numerical
results show, one expects only rather low statistics to be
available in measurements of LFV slepton decays.

III. ANALYTICAL RESULTS FOR FLAVOR
VIOLATING PROCESSES

In this section we present some general formulas de-
scribing lepton flavor violation within type I seesaw
schemes. We concentrate on the discussion of ratios of
LFV branching ratios, since, as mentioned in the introduc-
tion, these are most easily connected to the seesaw parame-
ters. As a first approximation we adopt the mass-insertion
approximation, neglecting left-right mixing in the slepton
mass matrix and taking the leading logs (see, below). We
will demonstrate the reliability of our analytical estimates
in the next section, where we perform a full numerical
calculation of the various LFV branching ratios, which
does not rely on any of the approximations discussed in
this section.

A. General formulas

The charged slepton mass matrix is a (6, 6) matrix,
containing left and right sleptons. Here we concentrate
exclusively on the left-slepton sector. Taking into account
the discussion given in Sec. II, this is a reasonable first
approximation, as can be seen from Eq. (8). The left-

slepton mass matrix is diagonalized by a matrix R
~l, which

in general can be written as a product of three Euler
rotations. However, if the mixing between the different

flavor eigenstates is sufficiently small, R
~l can be approxi-

mated as

R
~l ’

1 	~e ~� 	~e ~�

�	~e ~� 1 	 ~� ~�

�	~e ~� �	 ~� ~� 1

0
B@

1
CA; (10)

an approximation that corresponds to that employed in the
mass-insertion method [31]. In this small-angle approxi-
mation each angle can be estimated by the following
simple formula

	ij ’
ð�M2

~L
Þij

ð�M2
~L
Þii � ð�M2

~L
Þjj

: (11)

LFV decays are directly proportional to the squares of

these mixing angles, for example Brð� ! eþ �Þ �
ð	~e ~�Þ2 if all angles are small.

Within mSugra ratios of LFV branching ratios can then
be used to minimize the dependence of observables on
SUSY parameters. Consider the case of LFV decays which
involve only one generation of sleptons, for example
Brð~�2 ! eþ �0

1Þ and Brð~�2 ! �þ �0
1Þ. Taking the ratio

of these two decays

Brð~�2 ! eþ �0
1Þ

Brð~�2 ! �þ �0
1Þ

’
�
	~e ~�

	 ~� ~�

�
2 ’

�ð�M2
~L
Þ13

ð�M2
~L
Þ23

�
2
; (12)

i.e., one expects that (a) all the unknown SUSY mass
parameters and (b) the denominators of Eq. (11) cancel
approximately. The latter should happen practically every-
where in mSugra parameter space since ðM2

~L
Þee ’ ðM2

~L
Þ��.

This straightforward observation forms the basis for our
claim that ratios of branching ratios are the theoretically
cleanest way to learn about the unknown seesaw parame-
ters. Numerically we have found, that relations similar to
Eq. (12) hold also for ratios of observables involving
decaying particles of different generations, such as the
low-energy ratio Brð� ! eþ �Þ=Brð� ! eþ �Þ.
To calculate estimates for the different ratios of branch-

ing ratios we therefore define

rijkl �
jð�M2

~L
Þijj

jð�M2
~L
Þklj

(13)

where the observable quantity is ðrijklÞ2. Of course, only

two of the three possible combinations that can be formed
are independent. For example, Brð� ! eþ �Þ=Brð� !
eþ �Þ ’ ðr1213Þ2 �R. Here,R is a correction factor taking

into account the different total widths of the muon and the
tau, R ¼ ��=��.

2

In the leading-log approximation the off diagonal ele-
ments of the charged slepton mass matrix are proportional
to ð�M2

LÞij / ððY�ÞyLðY�ÞÞij. Using the parametrization

for the Yukawa couplings of Eq. (6) the entries in
ð�M2

LÞij can be expressed as

ð�M2
LÞij / Ui
U

�
j�

ffiffiffiffiffiffiffi
m


p ffiffiffiffiffiffiffi
m�

p
R�
k
Rk�Mk log

�
MX

Mk

�
: (14)

We can now rewrite Eq. (14) in terms of observables which
are more directly related to experiments. In the standard
parametrization for the leptonic mixing matrix U is com-
pletely analogous to the Cabibbo-Kobayashi-Maskawa
matrix and can be written as

U ¼
c12c13 s12c13 s13e

�i�

�s12c23 � c12s23s13e
i� c12c23 � s12s23s13e

i� s23c13
s12s23 � c12c23s13e

i� �c12s23 � s12c23s13e
i� c23c13

0
B@

1
CA (15)

2The inclusion of this factor (and similar corrections for the other low-energy LFV decays) is necessary, since ðrijklÞ2 relate really
partial widths, whereas the measured quantity is usually the branching ratio.
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where we assumed strict unitarity and neglected the
Majorana phases [8], because they do not affect lepton
number conserving processes such as the LFV decays we
are concerned with here.

Given that neutrino oscillation experiments fix two
mass-squared splittings, we can reexpress the three light
neutrino masses in terms of one overall neutrino mass scale
and the measured quantities �m2� and �m2

A, where �m2�
(�m2

A) is the solar (atmospheric) mass-squared splitting.
We will refer to the case of m1 � 0 (m3 � 0) as strict
normal (inverse) hierarchy. This choice has the advantage
that in both cases s12 � sin	� and s23 � sin	a.
Equation (14) can then be written in terms of the measured
neutrino angles s12 and s23, the measured neutrino mass-
squared splittings, plus the so far unknown overall neutrino
mass scale m� and the reactor neutrino angle s13 � sR. If
the latter were measured, one could extract information on
the right-handed neutrino mass scale and/or the matrix R
from Eq. (14). Conversely, we could learn aboutm� and s13
from measurements of LFV decays, making some assump-
tions about the scale MR and the possible textures of the
Yukawa couplings that determine MR and R.

B. Degenerate right-handed neutrinos

In this subsection we will assume that the three right-
handed neutrinos are degenerate. This simplifying ansatz
allows us to study the sensitivity with a single mass-scale
parameter associated with the neutrino mass generation via
the type I seesaw mechanism. This ansatz can be theoreti-
cally motivated in the framework of some flavor symme-
tries, for example A4 [53]. In the special case that the
matrix R is real, Eq. (14) reduces to

ð�M2
~L
Þ12 / c12c13ð�s12c23 � c12s23s13e

�i�Þz1
þ s12c13ðc12c23 � s12s23s13e

�i�Þz2
þ s23c13s13e

�i�z3

ð�M2
~L
Þ13 / c12c13ðs12s23 � c12c23s13e

�i�Þz1
þ s12c13ð�c12s23 � s12c23s13e

�i�Þz2
þ c23c13s13e

�i�z3

ð�M2
~L
Þ23 / ðs12s23 � c12c23s13e

�i�Þ
� ð�s12c23 � c12s23s13e

i�Þz1
þ ð�c12s23 � s12c23s13e

�i�Þ
� ðc12c23 � s12s23s13e

i�Þz2 þ s23c23c
2
13z3

(16)

where

zi � miMi log

�
MX

Mi

�
: (17)

For this degenerate right-handed neutrino ansatz the com-

bination Mi logðMX

Mi
Þ becomes an overall factor, which can

be taken out from Eq. (14), since it cancels upon taking
ratios. I.e., for degenerate right-handed neutrinos one may
simply make the replacement zi ! mi in Eq. (16).
As a starting approximation for the following estimates,

let us assume that the lepton mixing matrix has the exact
tribimaximal (TBM) form [54]

U ¼ UTBM ¼

ffiffi
2
3

q
1ffiffi
3

p 0

� 1ffiffi
6

p 1ffiffi
3

p 1ffiffi
2

p
1ffiffi
6

p � 1ffiffi
3

p 1ffiffi
2

p

0
BBB@

1
CCCA: (18)

As is well-known, Eq. (18) is an excellent first-order
approximation to the measured neutrino mixing angles
[4]. With this assumption the ratios of the off diagonal
elements of the charged slepton mass matrix are simply
given by

r1213 ¼ 1 r1223 ¼ r1323 ¼
2ðm2 �m1Þ

j3m3 � 2m2 �m1j : (19)

As Eq. (19) shows r1223 and r1323 depend on mass-squared

splittings and on the overall neutrino mass scale, i.e., also
on the unknown neutrino mass hierarchy. In the case of
strict normal hierarchy (SNH, m1 � 0)

r1223 ¼ r1323 ¼
2

ffiffiffiffi



p
3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 


p � 2
ffiffiffiffi



p (20)

where 
 � �m2�
j�m2

A
j , while for the case of strict inverse hier-

archy (SIH, m3 � 0)

r1223 ¼ r1323 ¼
2ð1� ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 

p Þ

2þ ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 


p : (21)

Finally, for quasidegenerate (QD) neutrinos, defined asffiffiffiffiffiffiffiffiffiffiffi
�m2

A

q
� m�, one finds

r1223 ¼ r1323 ’
2


3�A þ 

(22)

where �A is the sign of the atmospheric mass splitting

�A � �m2
A

j�m2
Aj

: (23)

Note that �A equals þ1 (� 1) for normal (inverse) hier-
archy. Thus QD neutrinos with normal (QDNH) or inverse
hierarchy (QDIH) lead formally to different results.
However, this difference is numerically not relevant,
once uncertainties are taken into account.
Figure 1 shows the ratio ðr1323Þ2 versus the neutrino mass

m1 in eV for normal (inverse) hierarchy. The figure dem-
onstrates the importance of the absolute neutrino mass
scale for ðr1323Þ2. In the most general case one must use
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Eqs. (13) and (16). However, for s13 ¼ 0 the explicit
dependence of the ratios of the off diagonal elements of
the charged slepton mass-squared matrix on the other

neutrino angles matrix follows rather simple expressions

r1213 ¼
c23
s23

;

r1223 ¼
1

s23
s12c12

m2 �m1

jm3 � c212m2 � s212m1j
;

r1323 ¼
1

c23
s12c12

m2 �m1

jm3 � c212m2 � s212m1j
:

(24)

Figures 2 and 3 show the dependence of the square ratios

ðrijklÞ2 as a function of s213 for the different extreme cases of

SNH and SIH as well as QDNH and QDIH, for two choices

of the Dirac phase � ¼ 0, �. These ratios ðrijklÞ2 depend

strongly on s213. Note from Eq. (16) that for tan2	A ¼ 1,
ðr1223Þ2 and ðr1323Þ2 are invariant under the exchange of � ¼
0 $ � ¼ �. If tan2	A � 1, this symmetry is broken, but
always one of the two ratios r1223 and r

13
23 is guaranteed to be

nonvanishing regardless of the value of s13. A nonzero
measurement of both ratios would therefore in principle
contain information on both s13 and � (if right-handed
neutrinos are degenerate).
Figure 3 shows also that the cases QDNH and QDIH

are also symmetric under the simultaneous exchange of

FIG. 1 (color online). Ratio ðr1323Þ2 versus the neutrino mass
m1 in eV. The light/yellow (dark/violet) band is for the case of
normal (inverse) hierarchy. The width of the band indicates the
uncertainty due to the currently allowed 3� C.L. ranges for
�m2

A and �m2�. The calculation assumes exact tribimaximal

mixing for the left-handed neutrinos.

FIG. 2 (color online). Square ratios ðr1213Þ2 (blue line/dotted line), ðr1223Þ2 (red line/dashed line), and ðr1323Þ2 (green line/full line) versus
s213 for SNH (upper panels), SIH (lower panels) for � ¼ 0 (left panels) and � ¼ � (right panels). The plots assume that the heavy

neutrinos are degenerate. The other light neutrino parameters have been fixed to their b.f.p. values. Note from Eq. (16), that for
tan2	A ¼ 1, ðr1223Þ2, and ðr1323Þ2 are symmetric under the exchange of � ¼ 0 $ � ¼ �.
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FIG. 3 (color online). As Fig. 2, but for the limit of quasidegenerate light neutrinos. Square ratios ðr1213Þ2 (blue line/dotted line),
ðr1223Þ2 (red line/dashed line), and ðr1323Þ2 (green line/full line) versus s213 for QDNH (upper panels), QDIH (lower panels) for � ¼ 0 (left
panels) and � ¼ � (right panels).

TABLE I. The parameters rijkl are given for several values of neutrino oscillation parameters. SNH and SIH are strict normal and
strict inverted hierarchy of neutrino masses, respectively. Rows labeled as TBM assume the TBM values for 	12 and 	23 and the
neutrino mass splittings have been fixed to their b.f.p. values taken from [4]. Rows labeled as 3� take into account current allowed 3�
ranges of neutrino oscillation parameters. In the first column, 	13 has been fixed to its TBM value (s13 ¼ 0), while in the second and
third columns s13 has been fixed to its maximum allowed value: ðsmax

13 Þ2 ¼ 0:050 at 3� C.L. and the Dirac phase is fixed to � ¼ 0 and
� ¼ �, respectively.

s13 ¼ 0 s13 ¼ smax
13 , � ¼ 0 s13 ¼ smax

13 , � ¼ �

SNH TBM ðr1213Þ2 1.0 5.2 1:9� 10�1

ðr1223Þ2 1:7� 10�2 2:3� 10�1 4:4� 10�2

ðr1323Þ2 1:7� 10�2 4:4� 10�2 2:3� 10�1

3� ðr1213Þ2 [0.49, 1.9] [1.8, 35] ½0:33; 5:7	 � 10�1

ðr1223Þ2 ½0:91; 3:6	 � 10�2 ½2:0; 3:2	 � 10�1 ½0:96; 12	 � 10�2

ðr1323Þ2 ½0:92; 3:7	 � 10�2 ½0:87; 11	 � 10�2 ½2:0; 3:2	 � 10�1

SIH TBM ðr1213Þ2 1.0 8:7� 10�1 1.1

ðr1223Þ2 1:1� 10�4 9:7� 10�2 1:1� 10�1

ðr1323Þ2 1:1� 10�4 1:1� 10�1 9:7� 10�2

3� ðr1213Þ2 [0.49, 1.9] ½4:2; 18	 � 10�1 [0.57, 2.5]

ðr1223Þ2 ½0:47; 3:2	 � 10�4 ½6:9; 15	 � 10�2 ½0:85; 1:7	 � 10�1

ðr1323Þ2 ½0:48; 3:3	 � 10�4 ½0:83; 1:6	 � 10�1 ½6:8; 15	 � 10�2
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� ¼ 0 $ � ¼ � and QDNH $ QDIH, for the case of
tan2	A ¼ 1. This symmetry is broken in all cases for
tan2	A � 1, as seen from the numerical values given in
Tables I and II. Tables I and II show numerical values for

rijkl for the extreme cases of SNH, SIH, QDNH, and QDIH

for various different choices of neutrino parameters. In the
rows labeled as TBM, we have used the TBM values for
	12 and 	23 and the neutrino mass splittings have been
fixed to their best-fit values taken from Ref. [4]. In the rows
labeled as 3�, we take into account the experimentally
allowed 3� ranges for neutrino oscillation parameters:
s212 ¼ 0:26� 0:40, s223 ¼ 0:34–0:67, �m2� ¼ ð7:1�
8:3Þ � 10�5 eV2, and �m2

A ¼ ð2:0–2:8Þ � 10�3 eV2. In
the first column, 	13 has been fixed to its TBM value (s13 ¼
0), while in the second and third columns s13 has been fixed
to smax

13 , which is the experimentally allowed maximum

value: ðsmax
13 Þ2 ¼ 0:050 at 3� C.L. In the second column,

the Dirac phase is fixed to � ¼ 0, while in the third column
� ¼ �. Note that, as already mentioned, these estimates
are valid in the small mixing limit and hence these values
are indicative only.

C. Right-handed neutrinos strongly hierarchical

One can consider the case of degenerate right-handed
neutrinos to be just one extreme limit in a continuum of
possibilities. The opposite extreme case would than be to
assume right-handed neutrinos are strongly hierarchical.
Note that here we make the important assumption that the
matrix R is the identity.

1. Dominant M1

If M1 is the heaviest mass eigenvalue, the leading terms
for the off diagonal slepton masses are (in case m1 � 0)

ð�M2
~L
Þ12 / c13c12ðs12c23 þ s13e

�i�c12s23Þ
ð�M2

~L
Þ13 / c13c12ðs12s23 � s13e

�i�c12c23Þ
ð�M2

~L
Þ23 / s212s23c23 � s13s12c12ðe�i�c223 � ei�s223Þ

� s213c
2
12s23c23:

(25)

For the special case of s13 ¼ 0, the ratios simplify to r1213 ¼
c23
s23

, r1223 ¼ c12
s12s23

, and r1323 ¼ c12
s12c23

. Note the large difference

in the numerical values compared to the case of degenerate
right-handed neutrinos. Here, for example, for s13 ¼ 0 one
finds ðr1323Þ2 ¼ 4, whereas in the case of degenerate right-

handed neutrinos one obtains ðr1323Þ2 ¼ 0:017 [best fit point

(b.f.p.) values for �m2� and �m2
A]. For nonzero values of

s13 Fig. 4 shows that ðrijklÞ2 depend to a much lesser degree

on s13 than for the case of degenerate right-handed neu-
trinos. Especially, note that for the case of M1 dominance

considered here none of the ðrijklÞ2 vanish in the allowed

range of s13. Numerical values for extreme values of s13 are
summarized in Table III.

2. Dominant M2

If M2 is the heaviest mass eigenvalue, the dominant
terms for the off diagonal slepton masses are

ð�M2
~L
Þ12 / c13s12ðc12c23 � s13e

�i�s12s23Þ
ð�M2

~L
Þ13 / c13s12ðc12s23 þ s13e

�i�s12c23Þ
ð�M2

~L
Þ23 / c212s23c23 þ s13s12c12ðe�i�c223 � ei�s223Þ

� s213s
2
12s23c23:

(26)

For the special case of s13 ¼ 0, the ratios simplify to r1213 ¼
c23
s23

, r1223 ¼ s12
c12s23

, and r1323 ¼ s12
c12c23

. Here, for example, for

s13 ¼ 0 one finds ðr1323Þ2 ¼ 1, whereas for the case of M1

TABLE II. The parameters rijkl are given for several values of neutrino oscillation parameters. QD stands for the quasidegenerate
limit, while NH (IH) indicate that the neutrino hierarchy is normal (inverse). The neutrino parameters have been varied in the same way
as in Table I.

s13 ¼ 0 s13 ¼ smax
13 , � ¼ 0 s13 ¼ smax

13 , � ¼ �

QDNH TBM ðr1213Þ2 1.0 1.3 7:7� 10�1

ðr1223Þ2 4:4� 10�4 1:2� 10�1 9:4� 10�2

ðr1323Þ2 4:4� 10�4 9:4� 10�2 1:2� 10�1

3� ðr1213Þ2 [0.49, 1.9] [0.63, 3.0] ½3:5; 17	 � 10�1

ðr1223Þ2 ½1:8; 12	 � 10�4 ½0:94; 1:8	 � 10�1 ½6:2; 15	 � 10�2

ðr1323Þ2 ½1:8; 12	 � 10�4 ½6:1; 15	 � 10�2 ½0:93; 1:8	 � 10�1

QDIH TBM ðr1213Þ2 1.0 7:6� 10�1 1.3

ðr1223Þ2 4:6� 10�4 8:9� 10�2 1:2� 10�1

ðr1323Þ2 4:6� 10�4 1:2� 10�1 8:9� 10�2

3� ðr1213Þ2 [0.49, 1.9] ½3:4; 16	 � 10�1 [0.64, 3.1]

ðr1223Þ2 ½1:9; 13	 � 10�4 ½5:9; 15	 � 10�2 ½0:89; 1:8	 � 10�1

ðr1323Þ2 ½1:9; 13	 � 10�4 ½0:88; 1:7	 � 10�1 ½5:8; 14	 � 10�2
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being dominant this quantity is expected to be ðr1323Þ2 ¼ 4.

Figure 5 shows the ðrijklÞ2 as a function of s213 for the M2

dominance case. Again the dependence on s13 is weaker
than in the case of degenerate right-handed neutrinos. As in

the previous case ðrijklÞ2 never vanishes in the allowed range
of s213. Finally, the numerical values also differ from the

ones found for the case of M1 dominance. A summary of
numerical values for extreme values of s13 is given in
Table III.

3. Dominant M3

If terms proportional toM3 give the leading contribution
one finds

ð�M2
~L
Þ12 / s13e

�i�c13s23

ð�M2
~L
Þ13 / s13e

�i�c13c23

ð�M2
~L
Þ23 / c213s23c23:

(27)

FIG. 4 (color online). Square ratios ðr1213Þ2 (blue line/dotted line), ðr1223Þ2 (red line/dashed line), and ðr1323Þ2 (green line/full line) versus
s13 for � ¼ 0 (left panel) and � ¼ � (right panel) for the case of M1 being dominant. The remaining neutrino parameters have been
fixed to their b.f.p. values.

TABLE III. The parameters rijkl are given for several values of neutrino oscillation parameters. Each row labeled as Mi is calculated
assuming the contribution from neutrino with mass Mi is dominant. Neutrino oscillation parameters have been varied as in Table I.
Notice that the row for dominant M3 gives the same numerical result for the Dirac phase � ¼ 0 and � ¼ �.

s13 ¼ 0 s13 ¼ smax
13 , � ¼ 0 s13 ¼ smax

13 , � ¼ �

M1 TBM ðr1213Þ2 1.0 3.7 2:7� 10�1

ðr1223Þ2 4.0 8.1 2.2

ðr1323Þ2 4.0 2.2 8.1

3� ðr1213Þ2 [0.49, 1.9] [1.5, 14] ½0:66; 6:6	 � 10�1

ðr1223Þ2 [2.2, 8.4] [3.3, 35] [1.5, 3.4]

ðr1323Þ2 [2.3, 8.6] [1.5, 35] [3.3, 38]

M2 TBM ðr1213Þ2 1.0 5:3� 10�1 1.9

ðr1223Þ2 1.0 7:1� 10�1 1.3

ðr1323Þ2 1.0 1.3 7:1� 10�1

3� ðr1213Þ2 [0.49, 1.9] ½2:1; 11	 � 10�1 [0.85, 4.5]

ðr1223Þ2 [0.52, 2.0] ½4:2; 12	 � 10�1 [0.61, 3.4]

ðr1323Þ2 [0.53, 2.0] [0.62, 3.5] ½4:2; 12	 � 10�1

s13 ¼ 0 s13 ¼ smax
13

M3 TBM ðr1213Þ2 � � � 1.0

ðr1223Þ2 0.0 1:1� 10�1

ðr1323Þ2 0.0 1:1� 10�1

3� ðr1213Þ2 � � � [0.52, 2.0]

ðr1223Þ2 0.0 ½0:80; 1:6	 � 10�1

ðr1323Þ2 0.0 ½0:79; 1:5	 � 10�1
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For the special case of s13 ¼ 0, one finds that r1223 ¼ r1323 ¼
0, otherwise both ratios are proportional to s13. These
numerical values allow us to distinguish theM3 dominance
case from the previous hierarchical cases already dis-
cussed. Numerical values for extreme values of s13 are
summarized in Table III.

IV. NUMERICAL RESULTS

The analytical results presented above allow us to esti-
mate ratios of branching ratios for LFV decays. For abso-
lute values of the branching ratios, as well as for cross-
checking the reliability of the analytical estimates, one
must resort to a numerical calculation. In this section we
present results of such a numerical calculation. All results
presented below have been obtained with the lepton flavor
violating version of the program package SPHENO [55]. For
definiteness we will present results only for the mSugra
‘‘standard points’’ SPS3 [56] and SPS1a’ [57], taken as
reference examples. However, we have checked with a
number of other points that our results for ratios of branch-
ing ratios are generally valid. SPS1a’ [57] is a typical point
in the ‘‘bulk’’ region for SUSY dark matter. It is a slightly
modified version of the original SPS1a point of [56], which
gives better agreement with the latest constraints from cold
dark matter abundance. It has a relatively light slepton
spectrum, i.e., left sleptons around 200 GeV. SPS3 [56] is
a point in the coannihilation region for SUSY dark matter.
Left sleptons in this point are heavier than in SPS1a’, i.e.,
they have masses around 350 GeV. We have chosen these
two points to show the complementarity between low-
energy searches for LFV and LFV scalar tau decays at
the LHC, see also the discussion below.

Our numerical procedure to fit the neutrino masses is as
follows. Inverting the seesaw equation, see Eq. (4), one can
get a first guess of the Yukawa couplings for any fixed
values of the light neutrino masses and mixing angles as a
function of the corresponding right-handed neutrino
masses. We then run numerically the renormalization

group equations taking into account all flavor structures
in matrix form. We integrate out every right-handed neu-
trino and its superpartner at the scale corresponding to its
mass and calculated the corresponding contribution to the
dimension-five operator which is evaluated to the electro-
weak scale. This way we obtain the exact neutrino masses
and mixing angles for this first guess. The difference
between the results obtained numerically and the input
numbers is then minimized in an iterative procedure until
convergence is achieved. As is well-known neutrino
masses and mixing angles run very little, if physical light
neutrino masses are hierarchical [58]. Thus, barring the
exceptional case where neutrinos become very degenerate,
one usually reaches numerical convergence very fast. For
degenerate left neutrinos convergence from first guess to
exact results can be slow, especially for relatively large
values for the right-handed neutrino masses, which require
larger Yukawa coupling constants. In this case we used a
numerical fit procedure [59] based on the programMINUIT.3

In the following two subsections we present numerical
results first for the case of degenerate right-handed neutri-
nos, then for the case(s) of very hierarchical right-handed
neutrinos. We have checked numerically that, as expected
from Eq. (8), right sleptons have small branching ratios for
LFV final states. Thus, the discussion concentrates on the
decays of the ‘‘left’’ staus ~�2 ’ ~�L.

A. Degenerate right-handed neutrinos

In this subsection we still adopt the simplifying ansatz
that R ¼ 1, see Eq. (6). Two examples for hierarchical light
neutrinos are shown in Fig. 6 and 7. Figure 6 has the
mSugra parameters fixed to the standard values SPS1a’
[56,57], while Fig. 7 corresponds to SPS3 [56]. The neu-
trino oscillation data are fitted for the SNH case where

FIG. 5 (color online). Square ratios ðr1213Þ2 (blue line/dotted line), ðr1223Þ2 (red line/dashed line), and ðr1323Þ2 (green line/full line) versus
s13 for � ¼ 0 (left panel) and � ¼ � (right panel) in the case where M2 is dominant. The other neutrino parameters have been fixed to
their b.f.p. values.

3Minimization package from the CERN Program Library,
documentation can be found at http://cernlib.web.cern.ch/cern-
lib/.
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m1 � 0 with exact tribimaximal mixing. The plot on the
left panel shows low-energy lepton flavor violating decay
branching ratios for li ! lj þ � and li ! 3lj, while the

one on the right panel gives LFV stau (~�2) decay branching
ratios as a function of the right-handed neutrino mass scale
M1 ¼ MR.

As expected, all LFV processes show a strong depen-
dence on MR. This can be straightforwardly understood
from Eqs. (4) and (8). Keeping the light neutrino masses
constant �M2

~L
are proportional toMR logMR, thus all LFV

branching ratios grow as ðMR logMRÞ2. As the figures
show, as long as MR is not too large, all lepton flavor
violating processes show the same dependence on MR.
Ratios of branching ratios follow very nicely the corre-

sponding analytically calculated ratios for ðrijklÞ2, once the

corresponding correction factors are taken into account for
the low-energy observables. As is well-known [35,39,60],
for most parts of the mSugra parameter space one expects

Brðli ! 3ljÞ
Brðli ! lj þ �Þ ’ 


3�

�
log

�m2
li

m2
lj

�
� 11

4

�
; (28)

thus the photonic penguin diagram dominates the three-
lepton decay modes li ! 3lj.

Figures 6 and 7 do indeed confirm the validity of this
approximation. Only at large values of MR one observes
some deviations from the analytical estimates. The reason
for this departure is that in this parameter range the small-
angle approximation no longer holds, as can be seen from
the absolute values for the decay Brð~�2 ! �þ �0

1Þ, which

FIG. 6 (color online). Branching ratios for li ! lj þ � and li ! 3lj (left) and ~�2 ! eþ �0
1 and ~�2 ! �þ �0

1 (right) for the
standard point SPS1a’ versus MR, assuming degenerate right-handed neutrinos. Neutrino oscillation parameters have been fixed to the
best-fit values for �m2� and �m2

A, with exact tribimaximal neutrino angles. We also set m1 ¼ 0. The colored region in the right-side

plot is excluded from the current experimental limit on Brð� ! eþ �Þ. Thus, one expects for SPS1a’ only very small branching ratios
for LFV scalar tau decays (compare to Fig. 7).

FIG. 7 (color online). Same as Fig. 6, but for the mSugra standard point SPS3. In this point the constraints on the LFV ~�2 decays
from the upper limit on � ! eþ � are much less severe than for SPS1a’. As a result Brð~�2 ! �þ �0

1Þ could be as large as several

percent with all low-energy constraints fulfilled.
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can reach more than 10% for MR 
 1014 GeV. However,
Figs. 6 and 7 also show how the LFV ~�2 decays are strongly
constrained by low-energy data. For the degenerate right-
handed neutrino case shown here (and for s13 ¼ 0), inde-
pendent of the mSugra parameters Brð� ! eþ �Þ is the
most important constraint. Applying the current experi-
mental limit on Brð� ! eþ �Þ of Brð� ! eþ �Þ �
1:2� 10�11 [61], the branching ratio for Brð~�2 !
�þ �0

1Þ is expected to lie below 10�3 for SPS1a’, whereas

it can reach several percent in case of SPS3. Note that in the
range of MR not excluded by the limit on Brð� ! eþ �Þ
the ratio Brð~�2 ! eþ �0

1Þ=Brð~�2 ! �þ �0
1Þ follows very

well the analytical estimate of Eq. (20). The huge differ-
ence in the upper limit for Brð~�2 ! �þ �0

1Þ when going

from SPS1a’ to SPS3 can be understood from the fact that
both left sleptons as well as (lightest) neutralino and char-
gino are approximately a factor of 2 heavier for SPS3 than
for SPS1a’. Since Brð� ! eþ �Þ / 1=m8

SUSY [33] one

expects Brð� ! eþ �Þ to be a factor of more than several
hundred lower for SPS3 than for SPS1a’.

The strong dependence of Brð� ! eþ �Þ on the super-
symmetric mass spectrum is also seen in Fig. 8, where we
plot Brð� ! eþ �Þ, Brð~�2 ! �þ �0

1Þ, and Brð~�2 ! eþ
�0
1Þ versus the mass of ~�2, for light neutrino parameters as

before and a fixed value ofMR ¼ 3� 1013 GeV. Here, the
parameters for the point SPS1a have been varied around
the slope given in Ref. [56]. Note that Brð� ! eþ �Þ
drops below the current experimental limit for m~�2 larger

than about 250 GeV. In contrast, the ~�2 LFV decay branch-

ing ratios increase for increasingm~�2 . This is due to the fact

that left sleptons become more degenerate when m0 is
increased along the slope for SPS1a. The more degenerate
sleptons are, the larger the resulting LFV parameters, for
given light neutrino parameters. Note, however, that the
ratio Brð~�2 ! eþ �0

1Þ=Brð~�2 ! �þ �0
1Þ remains con-

stant in agreement with the analytical estimate, as long
as Brð~�2 ! �þ �0

1Þ is smaller than a few percent. Again

this reflects the fact that the small-angle approximation is
valid only for small branching ratios in the LFV decays.
We have also checked numerically the reliability of our

analytical calculation for the case of m1 � 0. An example
is shown in Fig. 9. Here we have fixed the mSugra parame-
ters to the standard point SPS1a’, the right-handed neutrino
mass scale toMR ¼ 5� 1012 GeV, the light neutrino mix-
ing angles to the TBM values,�m2

A and�m2� to their b.f.p.

values and we have calculated Brð~�2 ! eþ �0
1Þ=Brð~�2 !

�þ �0
1Þ as a function of the lightest neutrino mass. As

shown in Fig. 9 the value of this ratio obtained within a full
numerical calculation follows very closely the central
value given in Fig. 1, as expected (here we assumed the
case of normal hierarchy).

B. Hierarchical right-handed neutrinos

Now we turn to the extreme case of very hierarchical
right-handed neutrinos. Again our goal is to check the
reliability of the analytical calculation for this case. In all
figures presented in this subsection we have taken two of
the three right-handed neutrino masses to be constant at
MR ¼ 1010 GeV and varied the remaining third right-
handed neutrino mass in the ranges given in the figures.
In all cases we have fixed the neutrino angles to the TBM
values, �m2

A and �m2� to their best-fit values and assumed

normal hierarchical neutrinos. The remaining free parame-
ter m1 is given in each figure.
Figure 10 shows LFV lepton decays as a function of M1

for m1 ¼ 0:001 eV (left) and for m1 ¼ 0:1 eV (right) for

FIG. 8 (color online). Branching ratios as function of scalar tau
mass. The full line (red line) is 1011 � Brð� ! eþ �Þ, the
dashed line (blue line) Brð~�2 ! �þ �0

1Þ, and the dot-dashed

line (green line) is Brð~�2 ! eþ �0
1Þ. The data is calculated for

SPS1a with parameters varied along the ‘‘slope.’’ Note that
SPS1a is used in this plot instead of SPS1a’, since for SPSa1’
no slope is given in [57]. Right-handed neutrino mass is fixed to
MR ¼ 3� 1013 GeV. The black line is the current upper limit on
Brð� ! e�Þ. While SPS1a with MR ¼ 3� 1013 GeV is ex-
cluded by Brð� ! e�Þ, for slightly heavier slepton masses the
low-energy constrained can be evaded, having at the same time
sizeable lepton flavor violating slepton decay branching ratios.

FIG. 9 (color online). Numerically calculated Brð~�2 ! eþ
�0
1Þ=Brð~�2 ! �þ �0

1Þ for the standard point SPS1a’ versus

lightest neutrino mass for the case of normal hierarchy (compare
to Fig. 1).
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the mSugra parameters fixed at SPS1a’. For m1 ¼
0:001 eV, the curves are not monotonous functions of
M1. In fact, in the left figure only for M1 * 1012 GeV do
the different branching fractions follow the analytical es-
timates of Eq. (25). This is due to the fact that the different
contributions of the Mi to �M2

~Lij
scale like miMi logMi,

i.e., M1 becomes dominant in the expressions for the
�M2

~Lij
only if M1=Mj � mj=m1. This is confirmed by

the figure in the right panel, for which m1 ¼ 0:1 eV has
been chosen. Here, the contribution from M1 to the �M2

~Lij

is indeed the dominant one for M1 
 ðfewÞ � 1010 GeV.
Figure 11 shows branching ratios for ~�2 ! eð�Þ þ �0

1 as

a function of M1 for the two mSugra points SPS1a’ (left)
and SPS3 (right). Again the region excluded by the current
upper limit on Brð� ! eþ �Þ is indicated. Ratios of the
LVF slepton decays follow the analytical estimate very
well everywhere in the region allowed by the upper limit
on Brð� ! eþ �Þ. One observes, as is the case also for

degenerate right-handed neutrinos, that for SPS1a’ the
absolute values for the LFV branching ratios are too small
to be observable, whereas for the mSugra point SPS3 much
larger values for LFV scalar tau decays are allowed. Note
that Brð~�2 ! eþ �0

1Þ is larger than Brð~�2 ! �þ �0
1Þ for

M1 dominance, in contrast with the case of degenerate
right-handed neutrinos.
Figure 12 shows branching ratios for li ! lj þ � and

li ! 3lj (left) and LFV stau decays (right), for the standard

point SPS3 as a function ofM2. As in Fig. 10, the left panel
illustrates that only for M2 * 1012 GeV the contribution
fromM2 to the LFV mixing angles is dominant. ForM2 *
1012 GeV the ratios of branching ratios follow the expec-
tation of Eq. (26). LFV scalar tau decays as large as 1% are
allowed in this example. Note also that Brð~�2 !
eþ �0

1Þ ¼ Brð~�2 ! �þ �0
1Þ for M2 dominance and

TBM neutrino angles.
Finally, Fig. 13 shows branching ratios for li ! lj þ �

and li ! 3lj (left) and LFV stau decays (right), for the

FIG. 11 (color online). Branching ratios for ~�2 ! eð�Þ þ �0
1 as a function of M1 for constant M2 ¼ M3 ¼ 1010 GeV for SPS1a’

(left) and SPS3 (right).

FIG. 10 (color online). Branching ratios for li ! lj þ � and li ! 3lj, as a function of M1 for constant M2 ¼ M3 ¼ 1010 GeV and
m1 ¼ 0:001 eV (left) and for m1 ¼ 0:1 eV (right). mSugra parameters have been fixed to SPS1a’.
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standard point SPS3 as a function of M3 fixing s13 � 0
exactly. This implies that all final LFV states involving
electrons are tiny, as is expected from Eq. (27). Therefore
for s13 � 0 and M3 dominance there is no constraint from
the upper limit for Brð� ! eþ �Þ. Once s13 is nonzero
branching ratios for LFV final states involving electrons
also become nonzero and proportional to s213.

In summary this section demonstrates that the full nu-
merical calculation confirms the analytical estimates pre-
sented above. Absolute values of the LFV branching ratios
for lepton decays are sensitive functions of the unknown
SUSY spectrum. For light sleptons, usually the constraint
from the nonobservation of Brð� ! eþ �Þ makes the
observation of LFV stau decays more likely whenM3 gives
the leading contribution to the LFV slepton mixing angles
and s13 is close to zero. In this case LFV stau branching
ratios may exceed 10%, as seen in Fig. 13. LFV stau
branching ratios exceeding a percent are also possible for
SPS3 for hierarchical right-handed neutrinos and M1 and

M2 dominance, as seen in Figs. 11 and 12, but not for the
SPS1a’ case. Similarly, for the case of degenerate neutri-
nos, LFV stau branching ratios can exceed a few percent,
as seen in Figs. 7, especially for heavier sleptons, say 250–
300 GeV, where the Brð� ! eþ �Þ is smaller than the
experimental limit and hence does not place a restriction,
as seen in Fig. 8.
Finally we note that we have expressed our results in

terms of branching ratios. To get a rough idea on the
observability of the signal, one has also to consider cross
sections and backgrounds. For the signal itself one would
have to work out a detailed set of cuts to suppress back-
ground which is clearly beyond the scope of the present
work. However, after applying basic cuts used for SUSY
signals [62] one can estimate the cross sections for ~�2
production. Using PYTHIA 6.4 [63] we find for the sum of
all (Drell-Yan) cross sections 126 fb (25 fb) and 31 fb (3 fb)
for ~�2 in cascade decays in the case of SPS1a’ (SPS3).
Based on Monte Carlo analysis [64,65] it has been shown

FIG. 13 (color online). Branching ratios for li ! lj þ � and li ! 3lj (left) and LFV stau decays (right), for the standard point SPS3
as a function of M3 for constant M1 ¼ M2 ¼ 1010 GeV.

FIG. 12 (color online). Branching ratios for li ! lj þ � and li ! 3lj (left) and LFV stau decays (right), for the standard point SPS3
as a function of M2 for constant M1 ¼ M3 ¼ 1010 GeV.
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that lepton flavor violation can be observed in dilepton
invariant mass spectra within SUSY cascade decays. There
the largest SM background is due to t�t production. There is
also SUSY background due to uncorrelated leptons stem-
ming from different squark and gluino decay chains. The
dilepton spectra can provide a distinct signal of lepton
flavor violation, namely, the appearance of double peaks
[66] due to the fact that not only one but two or more
sleptons can contribute to these spectra. In case of Drell-
Yan processes the main background will be W production.
To show more clearly the observability of such LFV sig-
nals a detailed Monte Carlo study would be necessary.
This, however, is beyond the scope of the present paper.

We have shown results only for two standard mSugra
points. However, as mentioned above, we have checked
with a number of other points that ratios of branching
ratios to a good approximation do not depend on the
mSugra parameters. For absolute values of the branching
ratios in general a heavier slepton spectrum leads to
smaller LFV rates at low-energy and larger LFV branching
ratios at the LHC become possible, see also Fig. 8. Heavier
sleptons, on the other hand, will lead to lower Drell-Yan
production cross section, such that stau production will be
dominated by cascade decays, the exact number of events
depending on the details of the SUSY spectrum.We plan to
do a more detailed, quantitative study of absolute event
rates over all of mSugra space in the future.

V. CONCLUSIONS AND OUTLOOK

We have calculated lepton flavor violating processes
both in LFV decays of the � and the � leptons, as well
as branching ratios for LFV stau decays in the supersym-
metric version of the minimal type I seesaw mechanism
with mSugra boundary conditions. We have limited our-
selves to the study of a few standard mSugra points, ratios
of LFV branching ratios are independent of this choice and
therefore an interesting instrument to study the unknown
seesaw parameters.

We have shown that the LFV branching ratios for lepton
decays are sensitive functions of the unknown SUSY spec-
trum. For light sleptons, the nonobservation of Brð� !
eþ �Þ places an important constraint on the observability
of LFV stau decays. The most favorable case is when right-

handed neutrinos are hierarchical, with M3 giving the
leading contribution to the LFV slepton mixing angles
and s13 close to zero. In this case LFV stau branching
ratios may exceed 10% or so, see Fig. 13. LFV stau
branching ratios exceeding the percent level may also
occur for hierarchical right-handed neutrinos with M1 or
M2 dominance for the SPS3 reference point, but not for the
SPS1a’ case, see Figs. 11 and 12. Similarly, for the case of
degenerate neutrinos, LFV stau branching ratios can ex-
ceed a few percent, as seen in Figs. 7, especially for
sleptons heavier than 250 GeVor so, as seen in Fig. 8.
Notice that the above results rely crucially on an impor-

tant simplifying assumption about the right-handed neu-
trino spectrum. For example, for degenerate right-handed
neutrinos they require that R be real, while for hierarchical
right-handed neutrinos they hold when R ¼ 1. This sim-
plification allows one to calculate LFV decays of leptons
and of the scalar tau as a function of low-energy neutrino
parameters. However the use of this assumption should be
critically scrutinized. We plan to come back to this issue in
a future publication. Once an improved experimental de-
termination of m1 and s13 becomes available from future
double beta decay and neutrino oscillation studies at reac-
tor and accelerators, one could start ‘‘learning’’ about the
right-handed neutrino sector, once the correct SUSY
breaking scheme has been identified and provided that
the SUSY breaking scale is above the lepton number
breaking scale.
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