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Abstract
Using the type-II seesaw mechanism with three Higgs doublets φα (α =
e, µ, τ) and four Higgs triplets, we build a model for lepton mixing based
on a 384-element horizontal symmetry group, generated by the permutation
group S3 and by six Z2 transformations. The charged-lepton mass matrix is
diagonal; the symmetries of the model would require all the three masses mα

to be equal, but different vacuum expectation values of φα allow mα to split.
The number of parameters in the Majorana neutrino mass matrix Mν depends
on two options: full breaking of the permutation group S3, or leaving a µ–τ

interchange symmetry intact, and hard or spontaneous violation of CP . We
discuss in detail the case with the minimal number of three parameters, wherein
Mν is real, symmetric under µ–τ interchange and has equal diagonal elements.
In that case, CP is conserved in lepton mixing, atmospheric neutrino mixing
is maximal and θ13 = 0; moreover, the type of neutrino mass spectrum and the
absolute neutrino mass scale are sensitive functions of the solar mixing angle.

1. Introduction

There are two puzzles associated with neutrinos: why are their masses so much smaller than
those of the charged fermions and why does the lepton mixing matrix feature large mixing
angles—for reviews see [1]—in contrast to the quark mixing matrix. It is possible that both
puzzles are solved through the same mechanism. In this paper, we envisage the type-II seesaw
mechanism as a possible solution3. We use horizontal symmetries to enforce certain features
of lepton mixing, in particular maximal atmospheric neutrino mixing and θ13 = 0. In order
to achieve this, we enlarge the scalar sector of the Standard Model by adding to it four Higgs
triplets and by using altogether three Higgs doublets. Our model has a permutation group S3

together with six cyclic symmetries Z2, which commute with each other but not with S3; the

3 In our model we do not allow for a type-I seesaw mechanism; we assume right-handed neutrino singlets not to
exist.
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result is a large discrete symmetry group with 384 elements. This setting allows us to obtain
four different neutrino mass matrices, depending on the assumed breaking of the horizontal
symmetries and of the symmetry CP . Amazingly, by breaking the horizontal symmetries
softly by terms of dimension 2, while leaving a residual µ–τ interchange symmetry to be
broken at low energy in the charged-lepton sector, we arrive at a viable neutrino mass matrix
with only three real parameters.

In section 2 we make a general discussion of the type-II seesaw mechanism with an
arbitrary number of Higgs doublets and triplets. Our model, with its multiplets, symmetries and
Lagrangian, is explained in section 3. In section 4, we investigate in detail the most predictive
case of a three-parameter neutrino mass matrix. A generalization thereof is considered in
section 5. The conclusions are presented in section 6.

2. The type-II seesaw mechanism

We first review the type-II seesaw mechanism [2, 3] for small neutrino masses. We assume the
existence—in the electroweak theory—of several Higgs doublets φα with hypercharge 1/2,
together with several Higgs triplets �i with hypercharge 1. Let the neutral components of φα

have vacuum expectation values (VEVs) vα and the neutral components of �i have VEVs δi .
Just because of the hypercharge symmetry, the vacuum potential V0 must be of the form4

V0 = (
µ2

φ

)
αβ

v∗
αvβ +

(
µ2

�

)
ij
δ∗
i δj +

(
tiαβδ∗

i vαvβ + c.c.
)

+ λαβγ δv
∗
αvβv∗

γ vδ + λijklδ
∗
i δj δ

∗
k δl + λαβij v

∗
αvβδ∗

i δj . (1)

The matrices µ2
φ and µ2

� are Hermitian and, likewise, the λ coefficients must obey various
conditions in order that V0 should be real. The VEVs of the triplets are determined by

0 = ∂V0

∂δ∗
i

= (
µ2

�

)
ij

δj + tiαβvαvβ + 2λijklδj δ
∗
k δl + λαβij v

∗
αvβδj . (2)

In contrast to µ2
φ , we assume the matrix µ2

� to be positive definite so that, in the absence of
the tiαβ terms, the only solution to equation (2) would be for all δi to vanish. The VEVs vα

are of order of the electroweak scale v ≈ 174 GeV, or smaller. Assuming tiαβ to be of order
M and the eigenvalues of µ2

� to be of order M2, where M is a mass scale much larger than v

[3], the approximate solution to equation (2) is given by [5]

δi ≈ − (
µ2

�

)−1

ij
tjαβvαvβ. (3)

From equation (3), δi are of order v2/M � v. If, furthermore, all the λ coefficients are of
order unity or smaller, then the approximate solution (3) will be corrected on its right-hand
side only by terms suppressed by a factor v2/M2 � 1.

Under an SU(2) gauge transformation, the left-handed lepton doublets DLα transform as
DLα → WDLα while the Higgs triplets transform as �i → W�iW

†, where W is an SU(2)

matrix. Therefore, the Higgs triplets have Yukawa couplings of the form DT
LαC−1ε�iDLβ ,

where C is the charge-conjugation matrix in Dirac space and ε is the 2×2 antisymmetric matrix
in gauge-SU(2) space. The VEVs δi being very small, the above Yukawa couplings generate
very small neutrino mass terms δiν

T
LαC−1νLβ , of order v2/M times a typical Yukawa-coupling

constant. The neutrino masses being of order 0.1 eV,M could easily be of order 1014 GeV
[3], thus fully justifying the approximate solution (3).

4 We use the summation convention.



A three-parameter model for the neutrino mass matrix 1759

3. The model

Our model follows closely, in the symmetries that it utilizes, a previous model of ours [6].
We have three left-handed lepton doublets DLα , three right-handed charged-lepton singlets
αR and three Higgs doublets φα (α = e, µ, τ)5. There are four Higgs triplets, �α and �4.6

The symmetries of the model consist of a permutation group S3 acting simultaneously on all
indices α, three Z2 symmetries

z(1)
α : φα → −φα, αR → −αR (4)

and another three Z2 symmetries

z(2)
α : DLα → −DLα, αR → −αR and �β → −�β iff β �= α. (5)

Note that �4 is invariant under all these symmetries. In appendix A we make a study of the
full symmetry group of our model.

The Yukawa Lagrangian invariant under all these symmetries is

LYukawa = −y0D̄LαφααR + 1
2y1D

T
LαC−1ε�4DLα

+ y2
(
DT

LeC
−1ε�µDLτ + DT

LµC−1ε�τDLe + DT
LτC

−1ε�eDLµ

)
+ h.c. (6)

Thus, the charged-lepton mass matrix is automatically diagonal, the charged lepton α having
mass mα = |y0vα|. On the other hand, the neutrino mass matrix is

Mν =

y1δ4 y2δτ y2δµ

y2δτ y1δ4 y2δe

y2δµ y2δe y1δ4


 , (7)

all its diagonal matrix elements being equal.
Due to the symmetries of our model, the coupling constants tiαβ of the previous section

assume the very simple form

tiαβ = tδi4δαβ. (8)

Hence, from equation (3),

δi = −tvαvα

(
µ2

�

)−1

i4 . (9)

Ordering the triplet fields as (�e,�µ,�τ ,�4), the symmetries of our model would enforce

µ2
� = diag

(
µ2

1, µ
2
1, µ

2
1, µ

2
2

)
, (10)

which is not satisfactory since it would lead, through equation (9), to δe = δµ = δτ = 0.

We must have
(
µ2

�

)−1
i4 �= 0 for i = e, µ, τ . In order to solve this problem, we assume the

symmetries of the model to be broken softly, only by terms of dimension 2. Without any
residual symmetry, this means that both matrices µ2

� and µ2
φ become fully general, while all

other couplings remain unchanged.
However, in order to simplify our model and render it more predictive, we may assume

that the interchange symmetry µ ↔ τ [8–11], which is a subgroup of our permutation group
S3, is kept unbroken in µ2

� and µ2
φ . Then,

(
µ2

�

)−1 =




a b b c

b∗ d e f

b∗ e d f

c∗ f ∗ f ∗ g


 (11)

5 Constraints on multi-Higgs doublet models from electroweak precision tests are not very stringent; Higgs bosons
with large ZZ couplings must have an average mass in the range allowed for the mass of the Standard Model Higgs
boson [4].
6 The scalar content of our model resembles that of the A4 model of [7]. However, in that model, three gauge triplets
are used instead of our �4.
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(a, d, e and g are real), so that δe = −tcvαvα, δµ = δτ = −tf vαvα and the neutrino mass
matrix is µ–τ symmetric. This immediately leads to the predictions θ23 = π/4 and θ13 = 0.
The µ–τ interchange symmetry is supposed to be spontaneously broken through the VEVs of
the Higgs doublets: vµ �= vτ . The Higgs potential is rich enough to allow for this outcome; in
appendix B we demonstrate this by working out a simplified case. Of course, the spontaneous
breaking at the electroweak scale of the µ–τ interchange symmetry will seep, through radiative
corrections, into the rest of the theory, so that at loop level the matrix

(
µ2

�

)−1
will not any

more be of the form in equation (11), and then δµ �= δτ . But, both because this is a loop effect
and because it is a correction of order of the ratio of the electroweak scale to the much larger
mass terms in µ2

�, we may expect δµ − δτ to remain negligible.
In a further simplification of our model, we may also assume the CP violation to be

spontaneous: the matrix
(
µ2

�

)−1
is then real, but the VEVs vα display non-trivial relative

phases. Then δe, δµ, δτ and δ4 will all have the same phase—the phase of vαvα . This phase
may be rephased away from Mν , so that the neutrino mass matrix becomes real. Thus,
spontaneous CP breaking in our model yields the remarkable outcome that even though there
is CP violation, it remains absent from the mass matrices and from lepton mixing7.

One thus obtains the following four possibilities.

(i) The general case, in which CP violation is hard and µ–τ symmetry is allowed to be
broken in µ2

�. Then,

Mν =

 m p eiψ q eiχ

p eiψ m r eiρ

q eiχ r eiρ m


 , (12)

with real m,p, q and r. This case should not be very predictive, since it has seven
parameters to predict nine observables—three neutrino masses, three lepton mixing
angles, one CKM-type phase and two Majorana phases.

(ii) The case in which µ–τ symmetry is allowed to be broken in µ2
� but CP violation is

spontaneous. Then ψ, χ and ρ in (12) vanish. There is no CP violation in lepton mixing.
The four parameters m,p, q and r allow one to predict six observables—three neutrino
masses and three lepton mixing angles.

(iii) The case in which the µ–τ interchange symmetry is preserved in µ2
�, while the CP

violation is allowed to be hard. Then,

Mν =

x y y

y x w

y w x


 , (13)

with complex parameters x, y and w. There are in this case five parameters—three moduli
and two phases.

(iv) The most predictive case, in which the CP violation is spontaneous and µ–τ interchange
symmetry is preserved down to the electroweak scale. The neutrino mass matrix is the
one in equation (13), but with real x, y and w. The neutrino mass matrix has only three
parameters.

4. The three-parameter neutrino mass matrix

In this section we concentrate on case (iv) of the previous section, i.e. on the neutrino mass
matrix of equation (13) with real x, y and w. The algebra of the diagonalization of a general

7 This is not an original situation; in the classical Branco model of CP violation [12], spontaneous CP breaking
also does not find a way into the quark mixing matrix.
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µ–τ symmetric neutrino mass matrix has been worked out in [9], and we only need to adapt
it to the simpler case (iv). In the following, the solar mixing angle—which is defined to be
in the first quadrant—is denoted by θ , the neutrino masses are m1,2,3, the solar mass-squared
difference is �m2

� = m2
2 − m2

1 > 0 and the atmospheric mass-squared difference is

�m2
atm =

∣∣∣∣m2
3 − m2

1 + m2
2

2

∣∣∣∣ = ε

(
m2

3 − m2
1 + m2

2

2

)
, (14)

where ε = +1 indicates a normal neutrino mass ordering and ε = −1 an inverted ordering.
Equations (3.9)–(3.11) and (3.15) of [9] yield, respectively,

m3 = |x − w|, (15)

m2
1,2 = x2 + 4y2 + (x + w)2 ∓ �m2

�
2

, (16)

tan 2θ = 2
√

2|y|
w

sign(2x + w), (17)

�m2
� cos 2θ = w(2x + w). (18)

Experimentally, we know that θ is in the first octant. Hence, tan 2θ > 0 and equations (17)
and (18) both give

sign(2x + w) = sign w. (19)

Again from equations (17) and (18),

|y| = |w| tan 2θ

2
√

2
, (20)

x = �m2
� cos 2θ − w2

2w
. (21)

From equations (14)–(16), we find

ε�m2
atm = w2

2
− 3xw − 2y2. (22)

Inserting equations (20) and (21) into equation (22), we obtain the value of w:

w2 = 4ε�m2
atm + 6�m2

� cos 2θ

8 − tan2 2θ
. (23)

Since �m2
atm 
 �m2

�, the numerator of equation (23) has the sign of ε; hence, its denominator
must also have the sign of ε. This denominator vanishes when sin2 θ = 1/3, i.e. when θ is
just the Harrison–Perkins–Scott (HPS) solar mixing angle [10]. We thus conclude that, in our
model,

• if the neutrino mass spectrum is normal, then the solar mixing angle is smaller than its
HPS value;

• if the neutrino mass spectrum is inverted, then sin2 θ > 1/3.

This remarkable result relates the type of neutrino mass spectrum to the value of the solar
mixing angle.

From equations (15), (16), (20) and (21),

m1,2 = 1

2

( |w|
cos 2θ

∓ �m2
� cos 2θ

|w|
)

and m3 = 3|w|
2

− �m2
� cos 2θ

2|w| . (24)
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Figure 1. Plot of m1, m3 and
∑

i mi as a function of sin2 θ in our three-parameter model. The
values of �m2

atm and �m2� have been fixed at 2.5 × 10−3 and 7.9 × 10−5, respectively, in eV2.
The dashed vertical line indicates the singularity at sin2 θ = 1/3.

(This figure is in colour only in the electronic version)

This gives the overall scale of the neutrino masses. Since |w| diverges when tan2 2θ → 8, we
see that in our model the neutrino mass spectrum becomes quasi-degenerate when the solar
mixing angle approaches its Harrison–Perkins–Scott value.

One easily sees the reason why our model displays a singularity when sin2 θ = 1/3. The
most general neutrino mass matrix leading to HPS lepton mixing is

Mν =

x y y

y x + u y − u

y y − u x + u


 . (25)

Our Mν in equation (13) has equal diagonal matrix elements. Hence, if it were to accept
sin2 θ = 1/3, it would have to correspond to u = 0 in equation (25). But Mν of equation (25)
with u = 0 leads to two equal neutrino masses; hence it is unrealistic. There is, therefore,
a contradiction with experiment in the assumption that our Mν of equation (13) might be
compatible with HPS mixing.

Experimentally, sin2 θ is close to 1/3; therefore, there is the danger that our neutrino
masses are too large and saturate the cosmological bound [13]. As a numerical exercise, we
take the 1σ bound on solar mixing from [14]

0.27 < sin2 θ < 0.32 ⇔ 3.73 < tan2 2θ < 6.72. (26)

The mean value of θ is given by sin2 θ = 0.30 and tan2 2θ = 5.25. Note that the upper 2σ

limit sin2 θ = 0.36 gives tan2 2θ = 11.76, which is already significantly larger than 8. Thus,
there is experimentally ample room for the neutrino masses to be sufficiently small. This
happens because tan2 2θ is a rapidly varying function of θ .

In figure 1 we have plotted m1,m3 and m1 + m2 + m3 against sin2 θ in our model.
We have used the best-fit values �m2

atm = 2.5 × 10−3 eV2 and �m2
� = 7.9 × 10−5 eV2 from

[14]; for θ we have used the 3σ bounds 0.24 < sin2 θ < 0.40, from the same source8.
8 A different model in which the neutrino mass spectrum is normal or inverted depending on whether sin2 θ is smaller
or larger than 1/3, and the neutrinos become degenerate in the limit sin2 θ → 1/3, has been suggested in [15].
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Another important observable is mββ , the effective mass relevant for neutrinoless 2β

decay. This is equal to the modulus of the (e, e) matrix element of Mν , i.e. in our case, to |x|.
Thus,

mββ = |w|
2

− �m2
� cos 2θ

2|w| . (27)

Since

|w| ≈ 2

√
�m2

atm∣∣8 − tan2 2θ
∣∣ 


√
�m2� cos 2θ, (28)

we see that in our model we have the relation

mββ ≈ m3/3. (29)

This same relation has recently been obtained in a different model [16].
One may ask oneself whether the neutrino mass matrix displays any characteristic texture

in the limit tan2 2θ → 8. A glance at equations (20), (21) and (23) allows one to conclude
that, in that limit, all the matrix elements of Mν diverge. Moreover, from equations (21) and
(20), respectively, we obtain

x

w
→ −1

2
,

|y|
|w| → 1 (30)

for tan2 2θ → 8, from where the texture of Mν in that limit can be read off.

5. Extension to the complex case

In this section, we investigate what happens when one allows the neutrino mass matrix
of equation (13) to have complex matrix elements. Does the intriguing feature of quasi-
degenerate neutrinos in the limit of HPS mixing, found in the previous section for the case of
real matrix elements, still hold true? We shall see that it does not; indeed, the general neutrino
mass matrix (13) does not seem to have much predictive power beyond Ue3 = 0 and maximal
atmospheric neutrino mixing.

The symmetric matrix

Mν =

x y y

y z w

y w z


 (31)

is diagonalized in the following way:

UT MνU = diag(m1,m2,m3), (32)

the matrix U being unitary while mj (j = 1, 2, 3) are real and non-negative. Due to the special
form of Mν , wherein (Mν)12 = (Mν)13 and (Mν)22 = (Mν)33, U is of the form

U = diag(eiϕ, eiϑ , eiϑ)


 c s 0

−rs rc r

−rs rc −r


 diag(ei�1 , ei�2 , ei�3), (33)

where c = cos θ, s = sin θ and r = 2−1/2. From equations (31)–(33), we find

x = e−2iϕ(c2m1 e−2i�1 + s2m2 e−2i�2), (34)

z = e−2iϑ

2
(s2m1 e−2i�1 + c2m2 e−2i�2 + m3 e−2i�3). (35)
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We define m̄j ≡ mj e−2i�j for j = 1, 2, 3. We also define χ ≡ 2(ϑ −ϕ). Then, the condition
x = z, which makes Mν of equation (31) identical with that of equation (13), is equivalent to

m̄1(2c2 eiχ − s2) + m̄2(2s2 eiχ − c2) − m̄3 = 0. (36)

Thus, the condition x = z is equivalent to the existence of four phases χ and �1,2,3 such that
condition (36) is satisfied. This condition states that it is possible to draw a triangle in the
complex plane, the sides of that triangle having lengths

√
Am1,

√
Bm2 and m3, where

A = 4c4 + s4 − 4c2s2 cos χ, B = 4s4 + c4 − 4c2s2 cos χ. (37)

Therefore, one may eliminate the phases �1,2,3 from condition (36) by writing the sole ‘triangle
inequality’ [17]

A2m4
1 + B2m4

2 + m4
3 − 2

(
ABm2

1m
2
2 + Am2

1m
2
3 + Bm2

2m
2
3

)
� 0. (38)

Using

m2
1 = m2

3 − ε�m2
atm − 1

2
�m2

�, m2
2 = m2

3 − ε�m2
atm +

1

2
�m2

�, (39)

inequality (38) takes the form

k4m
4
3 + 2k2m

2
3 + k0 � 0, (40)

where

k4 = 1 − 2(A + B) + (A − B)2, (41)

k2 = [A + B − (A − B)2]ε�m2
atm + 1

2 (A − B)(1 − A − B)�m2
�, (42)

k0 = [
(A − B)ε�m2

atm + 1
2 (A + B)�m2

�
]2

. (43)

Since k0 > 0, inequality (40) does not tolerate m3 = 0; hence, there is a non-trivial lower
bound on the neutrino masses. We want to find the numerical value of that bound. Using the
values of A and B in equations (37), one finds that

k4 = −16c2s2(1 − cos χ), (44)

k2 = 2(−2 + 13c2s2 − 4c2s2 cos χ)ε�m2
atm + 3(c2 − s2)(−2 + 5c2s2 + 4c2s2 cos χ)�m2

�,

(45)

k0 = [
3(c2 − s2)ε�m2

atm + 1
2 (5 − 10c2s2 − 8c2s2 cos χ)�m2

�
]2

. (46)

The case of real x, y and w corresponds to cos χ = +1. In (and only in) that case, the
left-hand side of inequality (40) becomes linear in m2

3; besides, in that case k2 vanishes when
c2s2 = 2/9, thereby generating singularities at the points s2 = 1/3 and s2 = 2/3, as we saw
in the previous section.

For cos χ �= +1, k4 is negative. Since k0 is always positive, inequality (40) then yields

m2
3 �

√
k2

2 + |k4| k0 + k2

|k4| ≡ L. (47)

The task now consists in finding the minimum value of L as a function of cos χ (and of ε = ±1);
this minimum value provides the lower bound on m2

3. It is easy to convince oneself that L
always has its minimum when cos χ = −1, for all experimentally allowed values of s2,�m2

atm
and �m2

�. Computing L as a function of s2 for fixed cos χ = −1,�m2
atm = 2.5 × 10−3 eV

and �m2
� = 7.9 × 10−5 eV, we conclude the following.
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• When the neutrino mass spectrum is normal, i.e. when ε = +1, the minimum value of
the lowest neutrino mass, m1, hardly varies with s2. One has m1 > 1.679 × 10−2 eV for
s2 = 0.24 and m1 > 1.665 × 10−2 eV for s2 = 0.40.

• When the neutrino mass spectrum is inverted, i.e. when ε = −1, the minimum value of the
lowest neutrino mass, m3, varies strongly as a function of s2. One has m3 > 2.9×10−2 eV
for s2 = 0.24 and m3 > 9 × 10−3 eV for s2 = 0.40.

Thus, the mass matrix of equation (13) with complex x, y and w is not very predictive: it
only allows one to derive a rather mild lower bound on the neutrino masses. There is also no
prediction for the effective mass mββ , except for the rather trivial bounds∣∣m2

1c
2 − m2

2s
2
∣∣ � mββ �

∣∣m2
1c

2 + m2
2s

2
∣∣ . (48)

6. Conclusions

In this paper we have constructed an extension of the Standard Model with three Higgs
doublets φα and four scalar gauge triplets �α and �4. The scalar triplets generate a type-II
seesaw mechanism, thus explaining the smallness of the neutrino masses. We have employed
a large horizontal symmetry group G, generated by the permutation group S3 of the indices α

and by six cyclic groups Z2. After spontaneous symmetry breaking, the charged-lepton mass
matrix is diagonal; the different VEVs of φα allow for different charged-lepton masses mα

(α = e, µ, τ). In order to obtain a realistic neutrino mass matrix Mν , we additionally allow
for soft breaking of G, through terms of dimension 2 in the scalar potential. A crucial feature
of our model is the equality among the diagonal entries of Mν—this is one of the reasons for
the predictiveness of the model.

There are two relevant options: breaking G softly in the mass matrix of the scalar triplets
either fully or keeping a µ ↔ τ symmetry intact and having either hard or spontaneous
CP breaking. Our model has the interesting property that spontaneous CP violation has
no effect on Mν , i.e. it does not generate any physical phases in lepton mixing. The most
predictive scenario combines the preservation of µ–τ interchange symmetry with spontaneous
CP violation, in which case we arrive at a viable neutrino mass matrix which has only three
(real) parameters. This neutrino mass matrix leads to the usual predictions of µ–τ symmetric
neutrino mass matrices, namely maximal atmospheric mixing and θ13 = 0; hence, there is
no CP violation in neutrino oscillations. Besides, the CP property mentioned before also
prevents Majorana phases in our case.

The solar mixing angle θ is undetermined. Our three-parameter neutrino mass matrix
predicts the neutrino masses mj as functions of the two mass-squared differences and of θ .
For sin2 θ < 1/3, which seems to be preferred by the data, we have a normal spectrum, while
for sin2 θ > 1/3 the neutrino mass spectrum is inverted. When sin2 θ → 1/3, all mj diverge;
see figure 1. As for the effective mass mββ of neutrinoless 2β decay, our three-parameter mass
matrix predicts mββ ≈ m3/3.
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Appendix A. The group structure of our model

In this appendix, we attempt a mathematical description of the full symmetry group of our
model and of its irreducible representations (irreps). Clearly, S3 commutes neither with z(1)

α of
equation (4) nor with z(2)

α of equation (5); thus the full symmetry group is rather complicated.
Let us define

n1 = diag(−1, 1, 1), n2 = diag(1,−1, 1), n3 = diag(1, 1,−1), (A.1)

c+ =

0 0 1

1 0 0
0 1 0


 , c− =


0 1 0

0 0 1
1 0 0


 , (A.2)

t1 =

1 0 0

0 0 1
0 1 0


 , t2 =


0 0 1

0 1 0
1 0 0


 , t3 =


0 1 0

1 0 0
0 0 1


 . (A.3)

Then

N = {11, n1, n2, n3, n1n2, n2n3, n3n1,−11} (A.4)

forms an Abelian group isomorphic to Z2 × Z2 × Z2. Also,

Ŝ3 = {11, c+, c−, t1, t2, t3} (A.5)

forms a three-dimensional (reducible) representation of S3.
Let us call G the symmetry group utilized in this paper. G may be defined to be the group

of the 6 × 6 matrices(
ms 0
0 ns

)
, m, n ∈ N, s ∈ Ŝ3. (A.6)

This defining reducible representation of G may be called 6. Clearly, G has 8 × 8 × 6 = 384
elements9. Calling (m, n, s) the abstract element of G which is represented in 6 by the matrix
of equation (A.6), the group multiplication law is

(m1, n1, s1)(m2, n2, s2) = (
m1s1m2s

−1
1 , n1s1n2s

−1
1 , s1s2

)
. (A.7)

From this group multiplication law, it follows that G has eight one-dimensional irreps:

1(p,q,r) : (m, n, s) → (det m)p(det n)q(det s)r with p, q, r ∈ {0, 1}. (A.8)

It is obvious from equation (A.6) that the matrices ms give a three-dimensional irrep of G, and
similarly with the matrices ns. The matrices mns give one further three-dimensional irrep of
G, since

m1n1s1m2n2s2 = m3n3s3 with m3 = m1s1m2s
−1
1 ,

(A.9)
n3 = n1s1n2s

−1
1 and s3 = s1s2

complies with the multiplication law (A.7). Thus, G has 24 three-dimensional irreps:

3(p,q,r)

1 : (m, n, s) → (det m)p(det n)q(det s)rms, (A.10)

3(p,q,r)

2 : (m, n, s) → (det m)p(det n)q(det s)rns, (A.11)

9 The 8 × 6 = 48 matrices ms, where m ∈ N and s ∈ Ŝ3, form the Coxeter group B3. (We thank E Ma for drawing
our attention to Coxeter groups.) We may write G = N �B3 = (N × N) �S3, the symbol � denoting a semi-direct
product.
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3(p,q,r)

3 : (m, n, s) → (det m)p(det n)q(det s)rmns, (A.12)

with p, q, r ∈ {0, 1}.
The three-dimensional representations of G that we employ in our model are

ms for (φe, φµ, φτ ),

mns for (eR, µR, τR),

ns for (DLe,DLµ,DLτ ),

(det n)ns for (�e,�µ,�τ ).

(A.13)

Our group G also has two- and six-dimensional irreps, which are not used in our model.
Next we include, for completeness, their construction.

The group S3 has a two-dimensional irrep D2, generated by

t1 →
(

0 ω

ω2 0

)
, t2 →

(
0 ω2

ω 0

)
, (A.14)

where ω = (−1 + i
√

3)/2. Note that (det s)D2(s) is isomorphic to D2(s):

(det s)D2(s) =
(

1 0
0 −1

)
D2(s)

(
1 0
0 −1

)
. (A.15)

Therefore, G has four two-dimensional irreps:

2(p,q): (m, n, s) → (det m)p(det n)qD2(s) with p, q ∈ {0, 1}. (A.16)

The remaining irreps of G are four six-dimensional ones:

6(p,q) : (m, n, s) → (det m)p(det n)qD6(m, n, s) with p, q ∈ {0, 1}.
(A.17)

The irrep D6 (m, n, s) is found in the decomposition of the product of the irreps ms and ns.
Suppose there is a space C

3 spanned by e1,2,3 transforming like ms and another space C
3

spanned by e′
1,2,3 transforming like ns. Then the space spanned by ek ⊗ e′

k (k = 1, 2, 3)

transforms like mns, while ej ⊗e′
k with j �= k span a space which transforms like D6(m, n, s).

It can be shown that this representation D6(m, n, s) of G is irreducible, and also that it is
equivalent to (det s)D6(m, n, s).

The group G has the interesting property that it has no faithful irreps. It is obvious that
the irreps with dimensions 3 and lower are not faithful. The six-dimensional irreps are not
faithful either, as we now explain. Defining the elements a and b of G by a = (−11, 11, 11) and
b = (11,−11, 11), then a, b and ab generate the subgroups Z

(a)
2 , Z

(b)
2 and Z

(ab)
2 of G, respectively.

The isomorphisms

6(0,0) ∼= G/Z
(ab)
2 , 6(1,0) ∼=G

/
Z

(a)
2 ,

(A.18)
6(0,1) ∼= G

/
Z

(b)
2 , 6(1,1) ∼= G

/(
Z

(a)
2 × Z

(b)
2

)
are easy to demonstrate. Thus, none of the six-dimensional irreps represents G faithfully.

Appendix B. Spontaneous breaking of the µ–τ symmetry

Let us consider a simplified model with only two VEVs, vµ and vτ . We assume the following
symmetries:

z1 : vµ → −vµ, vτ → vτ ;
z2 : vµ → vµ, vτ → −vτ ; (B.1)

z3 : vµ ↔ vτ .
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The symmetries z1,2 are assumed to be softly broken by terms of dimension 2, while z3 is
assumed to be exactly conserved. For the sake of clarity, we also assume all coefficients to be
real. Then

V0 = a(|vµ|2 + |vτ |2) + b(v∗
µvτ + v∗

τ vµ) + λ(|vµ|2 + |vτ |2)2 + λ′|vµ|2|vτ |2. (B.2)

Only the b term breaks z1,2 softly.
Without loss of generality we take vµ to be real and positive, writing

vµ = ν cos φ, vτ = ν sin φ eiα, (B.3)

with ν > 0 and φ in the first quadrant. Then we obtain

V0 = aν2 + bν2 sin 2φ cos α + λν4 +
λ′ν4

4
sin2 2φ. (B.4)

We require that

0 = ∂V0

∂(2φ)
= (ν2 cos 2φ)

(
b cos α +

λ′ν2

2
sin 2φ

)
. (B.5)

The solution cos 2φ = 0 corresponds to |vµ| = |vτ | and is undesirable. But there is another
solution,

sin 2φ = −2b cos α

λ′ν2
, (B.6)

which we adopt. Since the minimization of V0 in equation (B.4) with respect to α leads to
b cos α = −|b| being negative, we must assume λ′ to be positive. If

|b| � λ′ν2

2
, (B.7)

which corresponds to the soft-breaking term being very small, then sin 2φ � 1 and |vµ| � |vτ |
can be realized.
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