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J�� Glueballs and a Low Odderon Intercept
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We report an odderon Regge trajectory emerging from a field theoretical Coulomb gauge QCD model
for the odd signature JPC (P � C � �1) glueball states. The trajectory intercept is clearly smaller than
the Pomeron and even the! trajectory’s intercept which provides an explanation for the nonobservation of
the odderon in high energy scattering data. To further support this result we compare to glueball lattice
data and also perform calculations with an alternative model based upon an exact Hamiltonian
diagonalization for three constituent gluons.
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Regge trajectories [1] have long been an effective phe-
nomenological tool in hadronic physics. In Regge theory
the scattering amplitude is governed by Regge poles,
�n�s�, in the complex J (angular momentum) plane. For
integer J the amplitude has a pole in the complex s plane
and, by crossing symmetry, for t < 0 at high s the cross
section is dominated by the Regge trajectory, ��t� � bt�
��0�, with the largest intercept, ��0�. This conjecture
provides a unifying connection between hadron spectros-
copy (Chew-Frautschi plot of J versus t � M2

J) and the
high energy behavior of the total cross section which scales
as s��0��1. For elastic scattering the energy dependence is
well described by the leading Regge trajectory, the
Pomeron, having �P�0� � 1 and bP � 0:2–0:3 GeV�2

[for recent fits see Ref. [2] ]. Of course the Pomeron
does not relate to conventional hadron spectra since meson
trajectories typically have larger slopes, bM � 0:9 GeV�2,
and smaller intercepts, �M�0� � 0:55. According to the
glueball-Pomeron conjecture [3,4], supported by lattice
[5] and other models [6], this trajectory is instead con-
nected to glueball spectroscopy. The different Pomeron
and meson trajectory slopes can be generated [4] by the
gg and q �q color factors, respectively, used in confining 2-
body models. Because of the large gluon mass gap, which
suppresses relativistic corrections and transverse gluon
exchange [7], these models tend to be more robust for
glueballs than mesons. They produce a Pomeron consisting
of even signature J�� glueballs having maximum intrinsic
spin S coupled to minimum possible orbital L.

Of active interest is the odd signature, P � C � �1
counterpart to the Pomeron, the odderon [8], for which
there is no firm experimental evidence. Whereas the
Pomeron predicts asymptotically equal pp and �pp cross
sections, the competitive presence of the odderon or any
other C � �1 trajectory would produce a difference.
However, high energy measurements reveal a minimal
difference indicating that the odderon, if it exists, would
have a smaller intercept probably at most comparable to
the ! value, �!�0� � 0:5. Indeed, dedicated exclusive
searches at HERA [9] exclude an odderon Regge trajectory
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with an intercept greater than 0.7. Although perturbative
QCD calculations [10] based on the BKP equation predict
an odderon intercept close to 1, they are only reliable for
both s;�t� �QCD and thus suspect for ��t � 0�. For
example, the predicted Pomeron intercept using the similar
BFKL equation is 1.5 in conflict with data.

In this Letter we summarize recent nonperturbative
QCD calculations based on lattice gauge theory and
QCD models incorporating fundamental elements which
produce realistic hadron spectra with Regge trajectories.
Our key results clarify and dispel several misconceptions
concerning the odderon. First, we document an odderon
trajectory of odd signature J�� glueballs [that we call
oddballs, a name first used for exotic mesons [11] and
subsequently exotic glueballs [12] ]. Its intercept is well
below 0.7, consistent with experimental searches. Second,
the odderon and Pomeron have similar slopes, in analogy
with the similar-slope meson (two-body) and baryon
(three-body) Regge trajectories. Third, the lightest reso-
nance on the odderon is the 3��, not the 1�� which is on a
daughter trajectory. In the framework of constituent mod-
els, the odderon begins with a 3�� three-gluon L � 0 state
with maximum spin S, similar to the two-gluon Pomeron
beginning with the s wave, spin aligned 2�� glueball.
Higher odd signature states on the odderon have the
same S but increasing L (e.g., d; g . . . waves producing
JPC � 5��; 7�� . . . ).

The first constituent three-gluon calculations [13,14]
utilized a nonrelativistic potential model. They reported
[14] the nearly degenerate lightest states, JPC � 0��, 1��,
and 3��, with masses about 4.8 times the constituent gluon
mass. Hyperfine splittings breaking this degeneracy were
considered in the bag model [15] but the global mass scale
was too low [3]. Another problem confronting early mod-
els was a spurious two-gluon J � 1 state (unlike photons,
constituent gluons have 3 spin projections) which violates
boson statistics (Yang’s theorem). This issue is naturally
resolved in the Coulomb gauge effective QCD formulation
[16] in which the Fock operator commutation relations
permit only transverse gluons respecting Yang’s theorem.
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The connection between constituent gluons and QCD via a
dynamical mass generation mechanism is well docu-
mented [17,18].

Our calculation is based on this relativistic many-body
Hamiltonian formulation which unifies the quark and glue
sectors. This approach dynamically generates constituent
gluon and quark masses [while respecting chiral symmetry
[19,20] ], produces reasonable quark and gluon conden-
sates, describes flavored meson spectra, including hyper-
fine splittings [21], and predicts exotic hybrids [22] and
C � �1 glueballs [4,16] consistent with lattice gauge
results. Also noteworthy, this formulation entails only
two dynamical parameters (same for both quark and glue
sectors). Consult Refs. [20,21,23] for further details.

The effective QCD Hamiltonian in the gluon sector is

Hg
eff � Tr

Z
dx��a�x� 	�a�x� �Ba

A�x� 	Ba
A�x�


�
1

2

Z
dxdy�ag�x�V�x; y��ag�y�; (1)

with color charge density �ag�x� � fabcAb�x� 	�c�x�,
gauge fields Aa, conjugate momenta �a � �Ea, and
Abelian components Ba

A � r�Aa, for a � 1; 2; . . . ; 8.
The normal mode expansions are

A a�x� �
Z dq
�2��3

1���������
2!k
p �aa�q� � aay��q�
eiq	x; (2)

� a�x� � �i
Z dq
�2��3

������
!k

2

r
�aa�q� � aay��q�
eiq	x; (3)

with the Coulomb gauge transverse condition, q 	 aa�q� �
��1��q�aa���q� � 0. Here aa��q� (� � 0;�1) are the
bare gluon Fock operators from which, by a Bogoliubov-
Valatin canonical transformation, the dressed gluon or
quasiparticle operators, �a��q� � cosh��q�aa��q� �
sinh��q�aay� ��q�, emerge. This similarity transformation
is a hyperbolic rotation similar to the BCS fermion treat-
ment. These operators excite constituent gluon quasi-
particles from the BCS vacuum, j�>BCS , and satisfy
the transverse commutation relations, ��a��q�; �

by
� �q0�
 �

�ab�2��
3�3�q� q0�D���q�, with D���q� � ���� �

��1��
q�q��
q2 
. Finally, the quasiparticle or gluon self-

energy, !�q� � qe�2��q�, satisfies a gap equation [16].
Both confinement and the leading QCD canonical interac-
tion are contained in the Cornell type potential V � �r�
�s
r with string tension, � � 0:18 GeV2, determined by
lattice gauge calculations and �s � 0:42. For this interac-
tion the calculated gluon constituent mass from the gap
equation, which uses the cutoff or renormalization parame-
ter � � 1:1 GeV, is mg  !�0� � 0:8 GeV. Previous two
constituent applications (q �q mesons and gg glueballs)
involved Tamm-Dancoff (TDA) and random phase ap-
proximation (RPA) Hamiltonian diagonalizations whereas
three-body (q �qg hybrids) predictions utilized a variational
calculation which was found to be accurate when tested in
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two-body systems. We therefore adopt the variational
method for predicting the ggg oddballs which is the mini-
mum Fock space assignment for C � �1 glueballs. The
three-gluon variational wave function is

j�JPCi �
Z
dq1dq2dq3��q1�q2�q3�FJPC

�1�2�3
�q1;q2;q3�

�Cabc�ay�1
�q1��by�2

�q2��cy�3
�q3�j�iBCS; (4)

with summation over repeated indices. The color tensor
Cabc is either totally antisymmetric fabc (for C � 1) or
symmetric dabc (for C � �1). Boson statistics thus re-
quires the C � �1 oddballs to have a symmetric space-
spin wave function taken here to have form

FJPC
�1�2�3

�q1;q2;q3� � �c12f�q1; q2� � c23f�q2; q3�

� c13f�q1; q3�
�Y
�
L�q̂1� � Y

�
L�q̂2�

� Y�L�q̂3�
; (5)

c12 � h1�11�2js�sihs�s1�3jS�ihL�S�jJMi; (6)

appropriate for this analysis of the lightest states which are
either s or d wave oddballs with a single L excitation. The
other two coefficients in Eq. (5) can be obtained by per-
muting the indices in Eq. (6). A more comprehensive
treatment would include other orbital angular (or radial)
excitations but since these are considerably separated in
energy (more so than for conventional meson states) this
mixing is small. Several forms for the variational radial
wave function, f�q; q0�, involving two variational parame-
ters, 	 and 	0, were investigated including a separable
form, f�q�f�q0�, which only involves one parameter. From
previous experience [22], reliable, accurate variational
solutions can be obtained if these functions have a bell-
shaped form with scalable variational parameters. In par-
ticular, we found numerical solutions of the � meson TDA
problem for the same potential to be especially accurate.

The variational equation for the JPC glueball with mass
MJPC is

h�JPCjHg
effj�

JPCi

h�JPCj�JPCi
� MJPC: (7)

For clarity and insight it is worthwhile to express Hg
eff �

Hse �Hsc �Han as a sum of three terms corresponding to
self-energy (two-body contributions), Hse, scattering (in-
stantaneous exchange interaction between two gluons),
Hsc, and annihilation, Han, of two gluons. Figure 1 depicts
the three-gluon diagram for each interaction. The contri-
bution from the self-energy term is

h�jHsej�i

h�j�i
� 18

Z
dq1dq2F��1�2�3

�q1;q2�F�1�2�3
�q1;q2�

�D�1��q1�D�2�2
�q2�D�3�3

�q3�D	�1
�q1�

�

�
!2

1 � q
2
1

2!1
��	 �

3

4

Z dq
�2��3

V̂�q�

�
!2

1 �!
2
6

!1!6
D�	�q6�

�
; (8)
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FIG. 1. Interaction diagrams for the ggg state in the Hg
eff

approach. Top to bottom corresponds to the gluonic self-energy,
scattering, and annihilation interactions, respectively.

TABLE I. Glueball quantum numbers and masses in MeV. The
errors in our Hg

eff (from Monte Carlo calculations only) are
100 MeV or less; the quoted lattice errors are typically 200–
300 MeV. Within these bounds the agreement is encouraging.
Notice our calculation is adjusted independently to the lattice
0��.

Model JPC 0�� 1�� 2�� 3�� 5�� 7��

color f d d d d d
S 0 1 2 3 3 3
L 0 0 0 0 2 4

Hg
eff (this work) 3900 3950 4150 4150 5050 5900

HM (this work) 3400 3490 3660 3920 5150 6140

Lattice [25] 3640 3850 3930 4130
Lattice [5] 3250 3100 3550 4150
Wilson loops [28] 3770 3490 3710 4030
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where we have suppressed the JPC superscript and the
dependent variable q3 � �q1 � q2. Again !i � !�qi� is
the solution to the gluon gap equation [4,20], q6 � q1 � q,
and q is the momentum transferred by the interaction.
Similarly the scattering contribution is

h�jHscj�i

h�j�i
� �

9

2
F�sc

Z
dq1dq2dqF��1�2�3

�q1;q2�V̂�q�

� F�1�2�3
�q4;q5�

�!1 �!4��!2 �!5�������������������������
!1!2!4!5
p

�D�3�3
�q3�D�2	�q2�D	�2

�q5�D�1��q1�

�D��1
�q4�; (9)

with q4 � q1 � q, q5 � q2 � q. Finally the annihilation
contribution is

h�jHanj�i

h�j�i
�

9

4
F�an

Z
dq1dq2dqF��1�2�3

�q1;q7�V̂�q�

� F�1�2�3
�q8;q2�

�!1 �!7��!2 �!8�������������������������
!1!2!7!8
p

�D�3�3
�q�D�1��q1�D�2��q7�D�1	�q8�

�D	�2
�q2�; (10)

with q7 � q� q1 and q8 � q� q2. The first two contri-
butions exactly cancel the infrared singularity in the in-
stantaneous potential. The color factors F C�� depend
upon the C parity and follow directly from the expectation
value of the density-density (fabcfaef) term in the
Coulomb kernel: F�sc �

fabcfaeffbeifcfi

fabcfabc
� �36

24 � �
3
2 , F�sc �

dabcdaeffbeifcfi

dabcdabc
� �20

40=3 � �
3
2 , F�an �

fabcfaeffbcifefi

fabcfabc
� 72

24 � 3,

and F�an �
dabcdaeffbcifefi

dabcdabc
� 0

40=3 � 0, using the orthogonal-
ity relation dabcfabc � 0 and computer algebra [FORM

[24] ]. The Han interaction splits the 0�� s wave glueball
state from the 1�� and 3�� levels, all calculated degener-
ate in the work of Ref. [14]. Also, annihilation is not
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present in simple ggg potential models as well as all
models for gg states which is why it has not been studied
previously in investigations of the lightest 0�� mass, in-
volving p wave two-gluon states, calculated between
2.1 GeV [16] and 2.6 GeV [25].

The variational calculation entails nine-dimensional in-
tegrals which were performed using the Monte Carlo
method with the adaptive sampling algorithm VEGAS

[26]. In general, numerical convergence was achieved
with about 105 samples. A study of the glueball mass
sensitivity to both statistical and variational uncertainties
yielded error bars at the 3 to 5% level.

For comparison we also calculated oddball masses using
a simpler nonrelativistic constituent model Hamiltonian
[27]

HM �
X
i

q2
i

2mg
�V0�

X
i<j

�
�rij�

�
rij
�VssSi 	Sj

�
; (11)

with rij � jri � rjj and parameters taken from the q �q
funnel potential: V0 � �0:90 GeV, � � 0:27, � �
0:25 GeV2. The gap equation gluon mass value, mg �

0:8 GeV, is also used. Exactly diagonalizing, HM�JPC �
MJPC�JPC, and only adjusting Vss � 0:085 GeV to opti-
mize agreement with lattice, yields the predicted J��

glueball Regge trajectory, �MP � 0:23t� 1:0, consistent
with the Pomeron. In the gg glueball calculation an alge-
braic color factor of 2 multiplies each bracketed term in the
potential. With these fixed parameters the ggg oddball
spectrum was then obtained by exact diagonalization using
Jacobi coordinates and an expansion in a harmonic oscil-
lator basis. Further details will be reported in a future
communication.

The glueball masses and quantum numbers investigated
are listed in Table I. Note that the Hg

eff ground state for the
ggg glueball is technically not an oddball but the 0�� with
mass 3900 MeV. Also, the model ggg glueballs are heavier
than gg states (both having low excitations) which is
consistent with predictions deduced from the holographic
1-3
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FIG. 2 (color online). Odderon trajectory from three-gluon
spectroscopy and lattice compared to the ! meson Regge
trajectory.
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dual theory of QCD [29]. Figure 2 summarizes our key
findings and displays predicted oddball Regge trajectories
from the alternative approaches. Lattice results are repre-
sented by diamonds [5] and open circles [25], while boxes
[28] are constituent model predictions using a Wilson-loop
inspired potential. Solid circles and triangles correspond to
the Hg

eff and HM models, respectively. The resulting odd-
eron trajectories are represented by the solid lines, �eff

O �
0:23t� 0:88 and �MO � 0:18t� 0:25, whose differences
provide an overall theoretical uncertainty. The dashed
line is the ! trajectory.

Several conclusions follow. First, this work predicts an
odderon having slope similar to the Pomeron but intercept
even lower than the! value. Second, the first odderon state
is the 3�� and not the 1�� which falls on a daughter
trajectory. Unfortunately, the other approaches did not
report a 5�� glueball which could confirm this point.
Since at least two points are necessary to establish a
trajectory we strongly recommend that future studies cal-
culate higher J states. Lastly, there appears to be general
model consensus that the 3�� mass is close to 4 GeV and
also support for the 0�� as a ground state candidate for the
ggg system.

In summary, we have compared existing oddball predic-
tions to our large-scale model evaluations for J�� glue-
balls. The results document an odderon trajectory
subdominant to the Pomeron which can explain its non-
observance in reactions with Pomeron exchange. Should
the odderon intercept be comparable to the ! value it may
be possible to see it in pseudoscalar [30] or tensor meson
[31] electromagnetic production where the Pomeron is
absent. However, if the intercept is below 0.5, as we
predict, it is unlikely the odderon will be observed.
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