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Mesons and tachyons with confinement and chiral restoration
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In this paper the spectrum of quark-antiquark systems, including light mesons and tachyons, is studied
in the true vacuum and in the chiral invariant vacuum. The mass gap equation for the vacua and the
Salpeter-RPA equation for the mesons are solved for a simple chiral invariant and confining quark model.
At T = 0 and in the true vacuum, the scalar and pseudoscalar, or the vector and axial vector are not
degenerate, and in the chiral limit, the pseudoscalar groundstates are Goldstone bosons. At 7 = 0 the
chiral invariant vacuum is an unstable vacuum, decaying through an infinite number of scalar and
pseudoscalar tachyons. Nevertheless the axialvector and vector remain mesons, with real masses. To
illustrate the chiral restoration, an arbitrary path between the two vacua is also studied. Different families
of light-light and heavy-light mesons, sensitive to chiral restoration, are also studied. At higher
temperatures the potential must be suppressed, and the chiral symmetry can be restored without tachyons,
but then all mesons have small real masses. Implications for heavy-ion collisions, in particular, for the

recent vector meson spectra measured by the NA60 collaboration, are discussed.
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I. INTRODUCTION

Very recently, the precise di-muon measurement in
heavy-ion indium-indium collisions by NA60 [1-5] col-
laboration provided an exceptional probe to observe vector
mesons in excited vacua. The masses of vector mesons in
excited vacua, have been extensively modeled, with differ-
ent results, since Brown and Rho [6—9] proposed the
scaling of the light-light vector mesons with the restoration
of chiral symmetry. Notice that tachyons may also occur.
When there are only mesons in the vacuum, the vacuum is a
minimum. It is then stable when the minimum is absolute,
or metastable when the minimum is local because then the
vacuum can decay through tunnelling. However when both
mesons and tachyons occur, the vacuum is a saddle point.
The tachyons indicate the decay directions of the vacuum,
and thus the vacuum is unstable, it is a false vacuum.

Here I compare the mesons and tachyons in the false
chiral invariant vacuum and in the true vacuum, in the
framework of a chiral invariant and confining potential.
Notice that, in the true vacuum of QCD, quarks are con-
fined. On the other hand, in the excited vacuum, chiral
restoration is expected. Therefore a framework with a
confining and chiral invariant quark interaction is conve-
nient to study mesons and tachyons in the two vacua. The
present study, with confinement, upgrades our knowledge
of vacua and of vacuum fluctuations in hadronic models.

Similar studies, before this one, have only been per-
formed in nonconfining models. For instance vacua prop-
erties of the nonconfining sigma model [10-12] and
Nambu and Jona-Lasinio model [13] have been explored
in detail [14], including suprising unstabilities led by the "t
Hooft U,(1) breaking determinant [15]. In the simplest
scenarios, the vacua manifold of these models has the well
known Mexican hat shape, where the chiral invariant un-
stable vacuum has a finite number of tachyons. The tachy-
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ons in the flavour SU(2) sigma model occur in the scalar o
and in the pseudoscalar 77+, 7%, 7~ channels. So in the
sigma model there are four tachyons in the false chiral
invariant vacuum, while in the true chiral symmetry break-
ing vacuum there is one massive meson, the scalar o and
three pseudoscalar mesons 7, 79, 7~ . In the chiral limit
the pseudoscalar mesons are goldstone bosons, in the
borderline between mesons and tachyons.

However, when quarks suffer a confining potential, the
tachyon structure of the false chiral invariant vacuum
possibly differs from the one of the sigma model or the
one of the Nambu and Jona-Lasinio model. In the true
vacuum, the confining quark models have an infinite num-
ber of states in each channel, while the sigma model of the
Nambu and Jona-Lasinio model only have a finite number
of mesons. Other differences also occur. Le Yaouanc et al.
[16] found that, even at high temperatures, the confining
potential prevents a phase transition from the chiral sym-
metry breaking vacuum to the chiral invariant vacuum. Le
Yaouanc, Oliver, Ono, Pene and Raynal, [17] also found
that, with a harmonic confinement, there is an infinite
tower of excited vacua, interpolating between the true
chiral symmetry breaking vacuum to the highest chiral
invariant vacuum. This result was recently generalized to
any confining potential by PB and Nefediev [18]. The
existence of tachyons in the chiral invariant vacuum of a
confining quark model was already signalled by Le
Yaouanc, Oliver, Ono, Péne and Raynal, [17]. Here these
tachyons are studied in detail.

Because the present problem is quite technical, and
because it is not clear yet what is the best chiral invariant
and confining quark model, for clarity I now use the frame-
work of the simplest confining and chiral invariant quark
model [17,19,20].

Notice that a calibration problem exists in chiral com-
putations. The full hadron spectrum remains to be correctly
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reproduced. When the quarks were discovered, it was
realized that the main difficulty of the quark model con-
sisted in understanding the low pion mass. But Nambu and
Jona-Lasinio [13] had already shown that the spontaneous
dynamical breaking of global chiral symmetry provides a
mechanism for the generation of the constituent fermion
mass and for the almost vanishing mass of the pion. This
mechanism was extended to the quark model by le
Yaouanc, Oliver, Ono, Péne and Raynal with the Salpeter
equations in Dirac structure [17] and by PB and Ribeiro
with the equivalent Salpeter equations in a form [19]
identical to the Random Phase Approximation (RPA) equa-
tions of Llanes-Estrada and Cotanch [21]. These chiral
quark models also comply with the PCAC theorems, say
the Gell-Mann Oakes and Renner relation [17,20], the
Adler Zero [22-24], the Goldberger-Treiman Relation
[22,25], or the Weinberg Theorem [22,23,26]. Possibly a
chiral quark model with the correct spin-tensor potentials
will eventually reproduce the full spectrum of hadrons
[19]. Nevertheless this is only a quantitative problem,
qualitatively the simple model used here is sufficient to
study several implications of chiral symmetry and
confinement.

Recently, the full mesonic spin-tensor potentials of the
present simple model were determined for a quark and an
antiquark with different isospin [27]. Here I exactly solve
these boundstate equations of mesons and tachyons in
different vacua. Importantly, the hamiltonian of this model
can be approximately derived from QCD,

H= [ d3x[¢f (x)(mo B — id - V)g(x)
+ %gz f d*y(x)yH % P(x)

b
XALWALDIOY S o)+ (D)

up to the first cumulant order, of two gluons [28-31],
which can be evaluated in the modified coordinate gauge,

SALOIALD = = 8202l K3x — ¥ — U] @)
and this is a simple density-density harmonic effective
confining interaction. my is the current mass of the quark.
The infrared constant U confines the quarks but the meson
spectrum is completely insensitive to it. The important
parameter is the potential strength K|, the only physical
scale in the interaction. In the true chiral symmetry break-
ing vacuum K, = 0.3 = 0.05 GeV fits reasonably the had-
ron spectra. However in the chiral invariant vacuum the
potential strength K|, is supposed to be greatly suppressed.
For simplicity, I will consider a vanishing light quark m
and all physical results will scale only with the potential
strength K.

I now address the meson and tachyon spectrum in differ-
ent vacua. In Sec. II the quark mass gap equation and the
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bound state quark-antiquark equation are reviewed. In
Sec. III the mass gap and boundstate equations are solved
numerically and the spectrum is studied in an arbitrary
interpolation between the true and the chiral invariant
vacuum. In Sec. IV the tachyons solutions of the bound-
state equation are analytically studied. These first studies
are performed at vanishing temperature. However in
heavy-ion collisions finite temperatures are reached, suffi-
cient for a QCD phase transition. The conclusion is pre-
sented in Sec. V, including the estimation of temperature
effects on the spectra.

II. T = 0 MASS GAP AND BOUNDSTATE
EQUATIONS

The relativistic invariant Dirac-Feynman propagators
[17], can be decomposed in the quark and antiquark
Bethe-Goldstone propagators [20], close to the formalism
of nonrelativistic quark models,

> i
Sbirac ko, k) = ——
Dll'dC( 0 ) ](—m+i6

_ ! t
ko — E(k) + ie D usis B

N

_ i t
—ko — E(k) + i€ 2”3”5 F

0l = [ 57+ 5k s [u0),

1+S 1-S8,
vl =[5 =k s o)
= —ioyysu; ), @

where S = sin(¢) = ﬁ C = cos(p) = \/ﬁk+7§and )
is a chiral angle. In the non condensed vacuum, ¢ is equal
to arctan%, but ¢ is not determined from the onset when
chiral symmetry breaking occurs. In the physical vacuum,
the constituent quark mass m.(k), or the chiral angle
o(k) = arctan’"#(k), is a variational function which is de-
termined by the mass gap equation. Examples of solutions,
for different light current quark masses m, are depicted in
Fig. 1. For simplicity in the remaining of this paper my, = 0
will be assumed, nevertheless the effect of a finite current
quark mass can be estimated with a small increase of the
dynamically generated constituent quark mass m,..

Then there are three equivalent methods to find the true
and stable vacuum, where constituent quarks acquire the
constituent mass. One method consists in assuming a
quark-antiquark *P, condensed vacuum, and in minimiz-
ing the vacuum energy density. A second method consists
in rotating the quark and antiquark fields with a
Bogoliubov-Valatin canonical transformation to diagonal-
ize the terms in the hamiltonian with two quark or anti-
quark second quantized fields. A third method consists in
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FIG. 1. The constituent quark masses m.(k), solutions of the

mass gap equation, for different current quark masses .

solving the Schwinger-Dyson equations for the propaga-
tors. Any of these methods lead to the same mass gap
equation and to the quark dispersion relation. Here I re-
place the propagator of Eq. (3) in the Schwinger-Dyson
equation,

dw' &K ,
{k mofB - ] Gy V=K
u(k)gut (k)¢ v(K)g vt (k)
|:w —EK)+ie —w —EWK)+ ie:”US”(k)
W/ 31/
E(k) = ul( ){k Gt mof — fd (g k)slV(k K)
u(k')yut (k)y v(k) vt (k)
|:W —EK)+ie —w —EK)+ ie}}uS(k)’

“4)

where, with the simple density-density harmonic interac-
tion [17], the integral of the potential is a laplacian and the
mass gap equation and the quark energy are finally,

Ag(k) = 2kS(k) — 2myC(k) — % )
'(k)>  C(k)?
E(k) = kC(k) + myS(k) — £ e 5{2 v

Numerically, this equation is a nonlinear ordinary differ-
ential equation. It can be solved with the Runge-Kutta and
shooting method. Examples of solutions for the current
quark mass m.(k) = ktang, for different current quark
masses m, are depicted in Fig. 1.
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The Salpeter-RPA equations for a meson (a color singlet
quark-antiquark bound state) can be derived from the
Lippman-Schwinger equations for a quark and an anti-
quark, or replacing the propagator of Eq. (3) in the
Bethe-Salpeter equation. In either way, one gets [20]

ul (ky) x(k, P)v(ky)
+M(P) — E(k,) — E(k)

= _ vt k) x(k, Pu(k,)
¢k P) = ) - By — Ey)

31,/
vk P) = f (‘21 ")3 Vik —

+ vk}~ (K, P)ul (k5)] (6)

where k; = k + £, ky = k — £ and P is the total momen-
tum of the meson. Notice that, solving for y, one gets the
Salpeter equations of Le Yaouanc et al. [17].

The Salpeter-RPA equations of PB et al. [19] and of
Llanes-Estrada et al. [21] are obtained deriving the equa-
tion for the positive energy wave function ¢* and for the
negative energy wave function ¢~ . The relativistic equal
time equations have the double of coupled equations than
the Schrodinger equation, although in many cases the
negative energy components can be quite small. This re-

¢+(kr P) =

K)u(ky) ™ (K, P)vt (k)

TABLE I. Matrix elements of the spin-dependent potentials.
28+, 8s,s, S¢S (84 +85)-L (S, —S;) - L tensor
1S, 1 -3/4 0 0 0
P, 1 1/4 -2 0 -1/3
38, 1 1/4 0 0 0
D, 1 1/4 -3 0 -1/6
35, 3D, | 0 0 0 0 216
'p, 1 -3/4 0 0 0
P, 1 1/4 -1 0 1/6
'p, =3P | 0 0 0 V2 0
TABLE II. The positive and negative energy spin-independent,

spin-spin, spin-orbit and tensor potentials are shown, for the
simple density-density harmonic model of Eq. (2). ¢'(k), C(k)
and G(k) = 1 — S(k) are all functions of the constituent quark
(antiquark) mass.

V++ — V——
spin-indep. k2 + 241 (go o) + L (gq +G;) —
spin-spin vl g G S
spin-orbit  £[(G, + gq)(s + S, ) + (gq Qq)(S -S,)1-L
tensor - 2G,G,[(S, k)(S k) — ¢S5l
yt- =yt
spin-indep. 0
spin-spin — ;—‘[% PLes+ 1 5C,C31S, - S5
spin-orbit 0 . .
tensor [—2¢, 0L + ZC,CS, - b)(S; - k) — 1S, - S;]
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sults in four potentials VP respectively coupling »* =
r¢® to vP. The Pauli ¢ matrices in the spinors of Eq. (3)
produce the spin-dependent [32] potentials of Table II.
Notice that both the pseudoscalar and scalar equations
have a system with two equations. This is the minimal
number of relativistic equal time equations. However the
spin-dependent interactions couple an extra pair of equa-
tions both in the vector and axialvector channels. While the

coupling of the s-wave and the d-wave are standard in
|

2
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vectors, the coupling of the spin-singlet and spin-triplet in
axialvectors only occurs if the quark and antiquark masses
are different, say in heavy-light systems. I now combine
the algebraic matrix elements of Table I with the spin-
dependent potentials of Table I, to derive the full Salpeter-
RPA radial boundstate equations (where the infrared U is
dropped from now on). I get the J* = 07, 1S, pseudoscalar
(P) equations,

& o7+ @F 1-8,5,\[1 0 eLeh  C,Ca\[0 1 10 7| v (k)
{( S ER) + Eql) + — )[0 1}+< 094 20 )[1 0}—M[0 _1” ) =0
@)
the J* =07, 3PO scalar (S) equations,
d? e7tef 1+S8,5)\1 0 ey C,CN\TO 17 . T1 0 vip (k)
(-t a0+ e o I o) Ml A () e
®)
the J* = 17, coupled 3S, and *D, vector (V and V*) equations,
1 000
& P2+ 2 7—4S,—4S,;+5,5,\|] 0 1 0 0
+ E, (k) + E;(k) + +
(dk2 oK)+ E5(0) 4 3k? >oooo
0000
0100
o chq> 1 000 d? o7+ @f  8+4S,+4S, +25,8,
+ (- — + + E (k) + E;(k) + +
( 6 3 J{ o 0 0 0 (dk2 o (k) + Eq(k) 4 3k? )
0000
0 00O 00 00 0 0 2 o0
(0000 +<¢'q¢; 2ch6> 0000 (1-S)1-5) 0 0 0 +2
001 0 6 3k )10 0 0 1 3k? 2 0 0 0
0 0 0 1 0010 0 V2 0 0
0 0 0 2 1 0 0 0 v3s, (k)
_(qo;sog_cch) 0 0 v2 0| fO ~1 0 0 B0 o)
3 3 )l 0 V2 0 0 0 0 1 0 vip, (k) ’
V2.0 0 0 0 0 0 vip, (k)

the J¥ = 1%, coupled ' P, and 3P, axialvector (A and A*) equations
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ITII. NUMERICAL SOLUTION OF THE MASS GAP
AND BOUNDSTATE EQUATIONS AT T = 0

Notice that this model, like any chiral model, has the
same number of meson states in the spectrum as the normal
quark model. The mass splittings can de related, as usual,
to spin-tensor potentials. It is interesting to study chiral
symmetry when the quark and antiquark are light, and to
study the chiral and heavy-quark symmetry when, say, the
quark is light and the antiquark is heavy.

In the light-light case, the chiral invariant vacuum is
reached in the limit of m, = mg; — 0. The chiral angle, the
sine and the cosine of the chiral angle have limits ¢ — 0,
S — 0, C— 1. Then, if we transform Eq. (8) with the

transformation matrix,
V3P (k) 1 0 V;PO(k) (11
vip, (k) 0 —1 |\ v3p,(0) )
it is clear that both Eq. (7) and (8) become identical to,
(—L+2k—L—Mrr (k) +Lv (k=0
Lotk + (=L +2k =L+ M)r~ (k) =0
The vector and axialvector equations have the double of
solutions of the pseudoscalar and scalar. To separate them,
they are from now on, respectively, called V, V* and A, A*.

In the same light-light limit, Eq. (9) can be block diago-
nalized [17] with the transformation,

+ ko0 o]
Vs, (k) 1 . V3s, (k)
v, (0 0~ 0 Bl vgw
V;—D, (k) \/Z o L o V;—D, (k)
Vip, (k) 3 N Vip, (k)
L 0 5 0 5
(13)
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0 0 010 0
0 0 +<¢q¢;+cch> 1 0 0 0
0 0 2 2 Jlo o o0 o
0 0 00 0 0
0 00 0 07
0 +<_¢q¢q> 0 0 0O
0 2 Jlo o o1
1 001 0]
0 1 0 0 0 vip, (k)
2 0 -1 0 0 vip, (k)
V2 -M P =0, (10)
0 0 0 1 0 vip, (k)
0 0 0 0 -1 vip, ()

{
and each block V and V*, with mixed s-wave and d-wave,
is identical one of the two independent blocks of Eq. (10),

(L +2k+ %
pV+(k)+(

M)+ () + L~ (0) = 0

dk,+2k+ +M)r—(k) =0 (14
)
{(—dka+2k M)v*(k) =0

( dk2+2k+M)1/ (k)=0

This checks that the chiral partners P-S and V, V*-A, A™ are
degenerate in the false chiral symmetric vacuum.

Another interesting case is the heavy-light case [27]
where, say, the antiquark has a mass m; = my; > K.
Then the negative energy components v~ vanish, like in
nonrelativistic quark models, and there are no Tachyons. In
the infinite m; case, S; =1, C; =0, G; =0, and the
antiquark spin becomes irrelevant, see Table II, complying
with the Isgur-Wise heavy-quark symmetry.

In this case the degeneracy is even larger than in the
light-light case. Because the heavy-quark spin does not
contribute to the spectrum, the 'S, pseudoscalar P and the
38, vector V are degenerate, for any light quark mass my.
Now in the limit of a vanishing light quark mass m, — 0,
chiral symmetry implies that the scalar S is degenerate with
the pseudoscalar P and that the axialvector A is degenerate
with the vector V. Thus in the chiral invariant vacuum all
four mesons P, V, S, A are degenerate.

In what concerns the second vector V* and the second
axial A*, they are degenerate with tensor mesons. Notice
also that the heavy antiquark mass kills the tensor poten-
tial, and thus the d-wave component of the vector decou-
ples from the s-wave. The V* is a pure d-wave vector.
Differently from the light-light case, now the axialvector A
equation is not diagonal. In the limit of the massless quark,
the axialvector equation can be diagonalized with the
transformation,
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vin @\ | R (i@ (15)
vip, (k) NI \/2 vip, (k) |
NG 3

and the two diagonalized axialvector equations are identi-
cal to the vector V and V* equations.

For the numerical solution, I change the sign of the
second and fourth lines in Egs. (7) to (10) and then I get
a simple eigenvalue equation. I solve the equation diago-
nalizing the Salpeter-RPA matrix replacing the second
derivative with finite differences. Other numerical methods
can also be used [19]. The results are shown in Figs. 2—5.

In Fig. 2, the pseudoscalar P and scalar S light quark and
light antiquark meson masses are interpolated from the true
spontaneously chiral symmetry breaking vacuum to the
false chiral restored vacuum. In Fig. 3, the vector V, V*
and axial A, A* light quark and light antiquark meson
masses are interpolated from the true spontaneously chiral
symmetry breaking vacuum to the false chiral restored

101,
" (a)
K08
6 /
4
2 /
02 04 06 038 1 1.2 1.4
m/m.,
10~ ( b)
M
K08
6
4
2 K
02 04 06 0.8 1 1.2 1.4

m/m,

FIG. 2. Light-light meson masses, in (a), pseudoscalar P,
in (b), scalar S, when the light quark mass interpolates from
the zero mass of the chiral invariant false vacuum to the solution
m, of the mass gap equation in the true vacuum. The dark curves
correspond to mesonic real masses and the light curves corre-
spond to tachyonic imaginary masses.
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vacuum. In Fig. 4, the pseudoscalar P and vector V, and
the scalar S and axialvector A, light quark and heavy
antiquark meson masses are interpolated from the true
spontaneously chiral symmetry breaking vacuum to the
false chiral restored vacuum. In Fig. 5, the vector V* and
axialvector A™ light quark and heavy antiquark meson
masses are interpolated from the true spontaneously chiral
symmetry breaking vacuum to the false chiral restored
vacuum. Notice that in the false chiral restored vacuum,
all Figs. 2—5 are compatible with the chiral degeneracies
predicted in Egs. (12) and (14).

A remarkable result of the numerical finite difference
solutions is that all studied light-light pseudoscalar and
scalar mesons, including all radial excitations, become
tachyons, with arbitrarily large imaginary masses. This
will be confirmed in the next Sec. I'V.

On the other hand, all the other mesons suffer small
mass over potential strength M /K, corrections from one
vacuum to the other. Notice however that the potential

=

Wit

B

! (a)
2
02 04 06 0.8 1 1.2 14
m/m,
10
M
KOS (b)
6
4
2

02 04 0.6 0.8 1 1.2 1.4
m/m.

FIG. 3. Light-light meson masses, in (a), vector V, V* and
in (b), axialvector A, A*, when the light quark mass interpolates
from the zero mass of the chiral invariant false vacuum to the
solution m, of the mass gap equation in the true vacuum. The
dark curves correspond to mesonic real masses and the light
curves correspond to tachyonic masses.
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02 04 06 038 1 12 14

m/me

FIG. 4. Heavy-light meson masses minus the infinitely heavy
antiquark mass, in (a), pseudoscalar and first vector, in (b), scalar
and first axialvector, when the light quark mass interpolates from
the zero mass of the chiral invariant false vacuum to the solution
m, of the mass gap equation in the true vacuum. In this case
there are no tachyonic imaginary masses.

strength K|, is expected to change significantly when the
vacuum is changed. This will be discussed in detail in
Sec. V.

A remarkable feature of the light-light vector meson
groundstate in Fig. 2 may be relevant for the p and w
mesons. Although the M /K| corrections from one vacuum
to the other are small, at small but nonvanishing quark
mass the groundstate vector meson is a tachyon. This
occurs just before the vector and axial vector are degener-
ate. Because the actual light current quark masses are small
but nonvanishing, this will be addressed in Sec. V.

IV. ANALYTICAL STUDY OF THE TACHYONS

I now study in detail the properties of the eigenvalues of
the Salpeter or RPA equations. Here only the light-light
systems is studied in detail, because tachyons do not occur
in the heavy-light systems.

PHYSICAL REVIEW D 74, 065001 (2006)

(a)

M—mg
107 Ky

02 04 06 038 1 1.2 14

N m/m,
107 & -
5l (D)
6f
4l
o

02 04 06 038 1 12 14

m/m.

FIG. 5. Heavy-light meson masses minus the infinitely heavy
antiquark mass, in (a), second vector V* and in (b), second
axialvector A*, when the light quark mass interpolates from
the zero mass of the chiral invariant false vacuum to the solution
m,. of the mass gap equation in the true vacuum. In this case
there are no tachyonic imaginary masses.

The boundstate equation can be decoupled,

Hvt + Vv~ = Mpvt
{HV+ + Vv =—-Mv~
- {(H + VT +rv)=MuEpT —v)
H-WV@"—v)=Mut+v)
~ {(H —-WH+WV@+ v ) =M@ +v)
H+VH-V T —v)=M>p"—v)
(16)

Thus we get a pair of eigenvalue equations, where H and V
are hermitean, but (H — V)(H + V) and (H + V)(H — V)
are not hermitean. Nevertheless M? can be proved to be
real. if one considers two different eigenvalues M7 and M3,
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H-V)H+ V)" +v,7)=M>*(v,* +v,7)
k%+_%juH—VWfHU=@f—V[ﬁMﬁ

= {(Mli - Mzi*)(szr
(Mz - M, >k)(7/1-'—

v, )y, T +ry,7)=0
-, )@, +rv,7)=0
(17)

Notice that the orthonormalization condition [17,19,20] of
the Salpeter-RPA equation is,

S T

Thus, either the two eigenvectors are orthogonal or the
squared eigenvalue M? is real. This shows that the solu-
tions of the boundstate equation can only have real or
purely imaginary masses. While the real masses corre-
spond to mesons, the imaginary masses correspond to
tachyons.

I now study in detail the solutions in the chiral invariant
vacuum and in the chiral limit, where both the current mass
mq and the constituent mass m, vanish. In general the
boundstate equations decouple in two different equations,
one for J = 0 with,

H= -2 42k -+ 5D
V=g
and another for J = 1 with,
H=—& 2k — 2+ 10
{V o dk? k2 (20)

k2
The Egs. (12) and (14) constitute particular cases of
Egs. (19) and (20). Notice that the different potentials
dkzz, 2k, 1 are bound from below and positive definite
in the sense that all their eigenvalues are positive. However
— klz is unbound from below. Thus, in Eq. (17) all terms
H+V or H—V are positive definite and bound from
below, except for the H — V of the J = 0 pseudoscalar
and scalar tachyons in Eq. (19).

Notice that Fig. 2 suggests that all pseudoscalars and
scalars become tachyons in the chiral invariant vacuum. To
confirm this suggestion of an infinite number of tachyons it
is convenient to regularize the scalar and pseudoscalar
equations, because the wave-functions are concentrated
at extremely small distances. A very small quark mass m
is assumed constant for simplicity, and the momentum and
mass are rescaled,

k/m—k,  Mm*— M. 1)

Notice that any finite solution M’ in fact corresponds to an
infinite mass M = M’/m?, and that a wave-function with a
finite k' corresponds to a wave-function with infinitesimal
momentum k = k'm. Then, starting from Eq. (7) one gets
for the pseudoscalar,
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{H +V=- k’2 22)
_ 4 2 1 ’
H=V=—0z 2% @y

respectively positive definite and with negative eigenval-
ues, and from Eq. (8) one gets for the scalar,

2 1
dk’z + k’z(k’2+1) ®7+17

2 _ 2
k’2 + k”(k’2+1) S

H-V=-4
{ . (23)

H+V=

respectively positive definite and with negative eigenval-

ues. An irrelevant term m>2k’/vVk™? + 1 is also present in
the rescaled equations.

The Bohr-Sommerfeld quantization condition can be
used to count the number of negative eigenvalues of the
H — V pseudoscalar operator and of the H + V scalar
operator. The leading term at high momentum, assuming
the highest possible negative mass M’ = 0, is,

o [ 1
! = oo
]0 r+ x2 ' @9

This shows that the number of tachyons in the pseudoscalar
and scalar channels are both infinite.

This is confirmed by the numerical solution of the
regularized Salpeter equation. In Table III we show the
masses of the different light-light tachyons and mesons in
the chiral invariant false vacuum and in the chiral limit. Le
Yaouanc et al. [17] have already shown that the pseudo-
scalar Eq. (7) and the scalar Eq. (8) possess takyonic
solutions. Here we find that the number of tachyons is
infinite, and that they all have infinite masses in the chiral
invariant false vacuum and in the chiral limit

Notice that, because the rescaled equations depend on a
quark mass m, very small but finite, there is no
pseudoscalar-scalar degeneracy in the rescaled equations.
Since the equations are different, Mg # M). Nevertheless
in the limit m — O of the chiral invariant vacuum, both

TABLE III. Masses of the first angular and radial excitations
of the different light-light tachyons and mesons in the chiral
invariant false vacuum and in the chiral limit. Each column
includes both positive and negative parity degenerate states,
except for the pseudoscalar and scalar tachyonic states. Notice
that the tachyon masses are infinite and that they are regularized
by an arbitrarily small quark mass m. The meson masses are
separated in two different families with the same J because two
different equations decouple for each J.

Pse Sca J=1J=1J=2J=2J=3J=3
21075 3x10°% 371 459 615 645 7.65 7.84

m2 m
2x107% 3“0“ 649 7.15 843 869 972 9.89
219 7 *X“;" 876 932 1045 10.68 11.61 11.76

nm m

A WO = O3
o
><
5

2% x0T 10,77 1127 1230 1251 1338 13.52
207 3100 1261 1308 14.05 1425 1512 1526
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pseudoscalar and scalar tachyons have infinite imaginary
masses. Because the infinites are identical, in the m — 0
limit one gets Mg = Mp = ooi. Tachyons comply with the
chiral degeneracy in a subtle way.

V. CONCLUSION, INCLUDING TEMPERATURE
EFFECTS

Assuming a confining potential, the mass M spectrum of
mesons is studied in the true chiral symmetry breaking
vacuum and in the unstable vacuum where chiral symmetry
restoration occurs. The only parameter is the strength K|, of
the potential. Chiral models have the same number of
meson states in the spectrum as the normal quark model.
The mass splittings can de related, as usual, to spin-tensor
potentials. In the limit of vanishing constituent quark
masses, all spin-dependent potentials are quite simple,
proportional to K3 /k>.

In the chiral limit the mesons suffer small M/K,
changes from one vacuum to the other, except for the J =
0 pseudoscalars and scalars. All the J = 0 mesons, includ-
ing all possible radial excitations, are transformed in tachy-
ons with infinite imaginary masses, when the true vacuum
is replaced by the chiral invariant vacuum. A detailed
analytical proof and a precise numerical study of the
tachyons are also presented here.

However, before moving to the conclusions, these beau-
tiful mathematical results should be matched with our
knowledge of the deconfined phase of QCD.

My first comment concerns the calibration problem of
any chiral symmetric model. The Sigma Model, the Nambu
and Jona-Lasinio model and Chiral Lagrangian estimations
are not confining and thus are not expected to address
correctly hadrons with spin, angular or radial excitations.
The present model is adequate to study the angular or
radial excitations of hadrons, and in this sense it already
upgrades previous estimations of the meson spectra in the
chiral restored vacuum. Nevertheless the present density-
density interaction suffers from uncalibrated spin-tensor
potentials. But I assume that the under development chiral
invariant quark models with a confining funnel interaction
[21,33] a vector interaction [20,34], or long range scalar
interactions [35,36], can be correctly calibrated.
Nevertheless, for a qualitative study, the present density-
density harmonic confining interaction should be suffi-
cient, since PB and Nefediev [18] have shown that this
interaction has similar mass gap solutions to the other
possible confining potentials in Coulomb gauge QCD.

My second comment concerns the parameters of the
present model. The potential strength K, the dominant
scale of the present study, is expected to change from the
ordinary QCD vacuum to the deconfined phase of QCD.
This is quite important because the meson masses scale

My first conclusion concerns corrections due to the
current quark mass. The light current quark mass is small
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but not vanishing. The u# or d quarks correspond to and
increase the chiral limit quark constituent mass by 1% to
2% of m,, while the s quark amounts to increase the chiral
limit quark constituent mass by up to 50%. For instance in
the true vacuum the s constituent quark mass is of the order
of 1.5m,, while in the chiral restored vacuum the s con-
stituent quark mass is of the order of 0.5m,. These simple
factors are sufficient to estimate from the Figs. 2-5, the
masses of the vectors p, w or ¢, or of the pseudoscalar and
vector D and Dy, relevant for the new di-muon measure-
ments of NA60. In the light-light systems, with a u or d
quark and a i or d antiquark, the number and the imaginary
mass of pseudoscalar and scalar tachyons are not infinite,
nevertheless they are very large. Also, with a finite current
quark mass, the pseudoscalar unstability may be larger
(more tachyons, with larger imaginary mass) than the
scalar unstability.

Interestingly, in Fig. 3 the vector meson has real mass for
zero quark masses, but for a small mass the vector meson is
a tachyon. Thus it is possible that the p meson, or the w
meson, simply disappear in the chiral restored vacuum.
Because the quark mass interval, where the vector meson is
a tachyon, is quite small, it is plausible that the p meson
and the w meson may have a different tachyonic behavior,
although the present study cannot explore the differences
between the p and the w. Notice that the NA60 collabora-
tion saw differences between the production rate of the p
and the w [1-5], but this may also be due to p interactions
with 7 at the periphery of the deconfined QCD bubble
[37].

My second conclusion is that the chiral invariant vacuum
is too unstable to be reached, unless confinement is lost.
This is clearly signalled by the infinite, (or very large)
number of infinite (or very large) imaginary mass of
tachyons in the pseudoscalar and scalar channels. This
extreme unstability confirms a result of Le Yaouanc et al.
[16], who studied the deconfinement transition, using the
present confining potential, and concluded that the transi-
tion does not occur for any finite temperature. Therefore a
change in the potential must happen before the chiral
restoration transition occurs. This also confirms the lattice
QCD simulations initiated by Kogut, Wyld, Karsch and
Sinclair [38—40], and the Schwinger-Dyson calculations
initiated by Bender, Blaschke, Kalinovsky and Roberts,
[41,42] who also found a restoration of chiral symmetry
coincident with the loss of confinement at temperatures of
the order of 150 MeV.

The third conclusion of this paper is that all the meson
masses are much smaller in the high temperature chiral
invariant vacuum, than they are in the low temperature
symmetry breaking vacuum. Notice for instance that the
apparently constant vector and axialvector masses of Fig. 5
are proportional to the potential strength K, thus they
decrease when the potential strength decreases. This is an
educated conclusion, based on Lattice QCD simulations of
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the dependence of the confining potential with temperature
and also with dynamical fermions. when confinement is
lost, [40] at temperatures of the order of 150 MeV, the
strength of the potential is also decreased. These two
effects are necessary for chiral symmetry restoration.
Assuming these two changes, both in shape and strength
of the potential, the spectra computed in this paper can be
reinterpreted. Assuming that confinement disappears, the
infinite number of infinite imaginary mass tachyons go
away. Moreover, a smaller strength of the potential is
also necessary to remove any tachyon in the chiral sym-
metric vacuum. Then the chiral symmetric vacuum is the
only and true vacuum. Notice that, for light quarks, the
largely dominant scale, including the scale ruling the con-
stituent quark mass, is the strength of the potential. All the
spectra are proportional to the strength of the potential, see

PHYSICAL REVIEW D 74, 065001 (2006)

Figs. 2-5. Then, with a much weaker potential, the masses
and widths of any possible mesons are much smaller (ex-
cept for the contribution of the heavy-quark mass, say the ¢
mass in D or D; mesons) than the masses of ordinary
mesons listed by the Particle Data Group [43]. Thus the
vector mesons identified by the NA60 collaboration, with
masses close to the ordinary masses, are not expected to be
probed inside the deconfined phase of QCD, where all
mesons, if any, are much lighter.
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