
PHYSICAL REVIEW D 71, 123517 (2005)
Gravitational baryogenesis in Gauss-Bonnet braneworld cosmology
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The mechanism of gravitational baryogenesis, based on the CPT-violating gravitational interaction
between the derivative of the Ricci scalar curvature and the baryon-number current, is investigated in the
context of the Gauss-Bonnet braneworld cosmology. We study the constraints on the fundamental five-
dimensional gravity scale, the effective scale of B-violation and the decoupling temperature, for the above
mechanism to generate an acceptable baryon asymmetry during the radiation-dominated era. The scenario
of gravitational leptogenesis, where the lepton-number violating interactions are associated with the
neutrino mass seesaw operator, is also considered.
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I. INTRODUCTION

The origin of the baryon asymmetry is an outstanding
problem in particle physics and cosmology. Sufficient
conditions for baryogenesis are the violation of baryon
number, the violation of C and CP symmetries and the
existence of nonequilibrium processes [1]. Alternatively, if
CPT and baryon number are violated, a baryon asymmetry
could arise even in thermal equilibrium [2,3]. In Ref. [4],
the effects on baryogenesis of certain CPT-violating terms
arising in a string-based framework were investigated and
it was shown that a large baryon asymmetry could be
produced at the grand-unified scale. Recently, a new baryo-
genesis mechanism, where the baryon asymmetry is gen-
erated via a dynamical breaking of CPT while maintaining
thermal equilibrium, was proposed in Ref. [5]. The crucial
ingredient is an interaction between the derivative of the
Ricci scalar curvature R and the baryon-number (B) cur-
rent J� (or any current that leads to a net B� L charge in
equilibrium, where L is the lepton number, so that the
asymmetry will not be erased by the electroweak anomaly
[6]):
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�

Z
d4x
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where M� characterizes the scale of the interaction in the
effective theory. Such an operator is expected to arise in the
low-energy effective field theory of quantum gravity or in
supergravity theories from a higher-dimensional operator
[7].

The interaction in Eq. (1) violates CP and, in an ex-
panding universe, it also dynamically breaks CPT. If one
requires the existence of B-violating processes in thermal
equilibrium, then a net baryon asymmetry can survive after
their decoupling at a temperature TD [5],
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For this mechanism to work, a nonvanishing time deriva-
tive _R � 0 is necessary.1 Although in an expanding uni-
verse R�H2 is nonzero in four-dimensional general
relativity (GR), its time derivative _R � 0 during the
radiation-dominated (RD) epoch. It turns out, however,
that _R � 0 can be easily realized in the braneworld sce-
nario, which suggests that higher-dimensional gravity ef-
fects can offer a novel way to generate a baryon asymmetry
through the dynamics of spacetime [9].

In the past few years, stimulated by the development of
string theory, the braneworld ideas, and particularly, the
Randall-Sundrum (RS) model [10], have been actively
investigated. The RS braneworld cosmology is based on
the five-dimensional Einstein-Hilbert action; at high ener-
gies, it is expected that this action will acquire quantum
corrections, in the form of higher-order curvature invari-
ants in the bulk action. String theory and holography
indicate that such terms arise in the action at the perturba-
tive level. In five dimensions, the Gauss-Bonnet (GB)
invariant has special properties: it represents the unique
combination that leads to second-order gravitational field
equations linear in the second derivatives and is ghost-free
[11–14]. Moreover, the graviton zero mode remains local-
ized in the GB braneworld [15] and deviations from
Newton’s law at low energies are less pronounced than in
the RS case [16].

In this paper we examine gravitational baryogenesis in
the context of GB braneworld cosmology. The case when
the GB contribution is absent and cosmology is of RS type
is also considered. We show that the observed baryon-to-
entropy ratio can be successfully explained in both frame-
works. The possibility that B� L violation is associated
with the neutrino mass seesaw operator is also studied. In
1For a more general form of the derivative coupling of the
Ricci scalar to ordinary matter, L / @�f�R�J�, see Ref. [8].
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the latter case, the limits coming from low-energy neutrino
physics when combined with the GB inflationary con-
straints allow us to put bounds on the fundamental scale
of gravity, the effective scale of B-violation and the decou-
pling temperature, which are required to generate an ac-
ceptable baryon asymmetry in the gravitational
leptogenesis scenario.
II. GAUSS-BONNET BRANEWORLD

The five-dimensional bulk action for the Gauss-Bonnet
braneworld scenario is given by

S �
1

2�2
5

Z
d5x

������������
��5�g

q
	�2�5 
 R
 ��R2 � 4RabRab


 RabcdRabcd�� �
Z
brane

d4x
�������
�g

p
�
 Smat; (3)

where �> 0 is the GB coupling, � > 0 is the brane ten-
sion, �5 < 0 is the bulk cosmological constant and Smat

denotes the matter action. The fundamental energy scale of
gravity is the 5D scale M5 with �2

5 � 8�=M3
5, and M4 is the

4D Planck scale with �2
4 � 8�=M2

4.
The GB term may be viewed as the lowest-order stringy

correction to the 5D Einstein-Hilbert action with � � ‘2,
where ‘ is the bulk curvature scale, jRj � 1=‘2. The
Randall-Sundrum type models are recovered for � � 0.
Moreover, for an anti-de Sitter bulk, it follows that �5 �
�3�2�2� !�, where � � 1=‘ is the extra-dimensional
energy scale and

! � 4��2 � 1: (4)

Imposing a Z2 symmetry across the brane in an anti-de
Sitter bulk and assuming that a perfect fluid matter source
is confined to the brane, one gets the modified Friedmann
equation [12,17]
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This can be rewritten in the useful form [17]

H2 �
�2
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�
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3

	
� 1

�
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where $ is a dimensionless measure of the energy density
# on the brane such that

#
 � � m4
� sinh$; (7)

with

m� �

�
8�2�1� !�3

!�4
5

�
1=8

(8)

the characteristic GB energy scale. The GB high-energy
regime ( sinh$ � 1) corresponds then to # � m4

�. Notice
also that we must have m� >m� � �1=4, where m� is the
123517
characteristic RS energy scale. This in turn implies ! &

0:15 [18].
The requirement that one should recover general rela-

tivity at low energies leads to the relation [12,19]

�2
4 �

�
1
 !

�2
5: (9)

Since ! � 1, we have � � M3
5=M

2
4. Furthermore, the

brane tension is fine-tuned to achieve a zero cosmological
constant on the brane [19]:

�2
5� � 2��3� !�: (10)

Expanding Eq. (6) in $, we find three regimes for the
dynamical history of the brane universe [18]

# � m4
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# � m4
� ) H2 �

�2
4

3
# �GR�: (13)

Eqs. (11)–(13) are considerably simpler than the full
Friedmann equation and in many practical cases one of
the three regimes can be assumed. In this case, it is useful
to consider a single patch with the effective Friedmann
equation [20]

H2 � !2
q#

q; (14)

where q � 1; 2; 2=3 for GR, RS and GB regimes, respec-
tively. For each regime, the coefficients !q > 0 are deter-
mined in accordance with Eqs. (11)–(13).

III. GRAVITATIONAL BARYOGENESIS

Let us now consider the gravitational baryogenesis
mechanism in the GB braneworld. In an expanding uni-
verse, the interaction term in Eq. (1) gives rise to an
effective chemical potential �b �

_R=M2
� for baryons. In

thermal equilibrium, the net baryon-number density does
not vanish as long as �b � 0, and for mb;�b � T one has
[21]

nB �
gb
6
�bT

2; (15)

where gb is the number of intrinsic degrees of freedom of
the baryon. During the RD epoch, this leads to a baryon-to-
entropy ratio given by

nB
s

� �c
_R

M2
�T

��������TD

; (16)

with
c �

15gb
4�2g�s

: (17)

We have used s � 2�2g�sT3=45 for the entropy density,
-2



GRAVITATIONAL BARYOGENESIS IN GAUSS-BONNET . . . PHYSICAL REVIEW D 71, 123517 (2005)
where g�s is the total number of degrees of freedom which
contribute to the entropy of the universe.

The Ricci scalar in the Friedman-Robertson-Walker
brane is defined in terms of the expansion law as

R � �6� _H 
 2H2�: (18)

Using the full GB Friedmann Eq. (6), we get for the time
derivative of the Ricci scalar,
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(19)

where w � p=# is the equation of state. During the RD
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era, w � 1=3, r1�$� � 0 and Eq. (19) simplifies to

_R � �
32�2�1� !�

!m8
�
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�
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3
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2$
3
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�
2$
3
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�
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Combining Eqs. (16) and (20), it is then possible to
compute the decoupling temperature, TD, required to pro-
duce an acceptable baryon-to-entropy ratio nB=s. In Fig. 1
we plot this temperature as a function of the scale M� for
different values of the GB coupling ! and the fundamental
gravity scale M5, assuming the observed value nB=s ’ 9�
10�11 [22]. We have used the fact that in the RD era the
energy density is # � �2g�T

4=30, where g� is the total
number of relativistic degrees of freedom. In the standard
model g� ’ g�s ’ 100 above the electroweak scale and,
assuming gb �O�1�, one gets c�O�10�2�.

In order to establish the transition between the different
regimes, we can consider the simplified expansion law
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given by Eq. (14). In this case,

_R � �48q�q� 1�H3 (21)

and the baryon asymmetry reads as

nB
s

� 48cq�q� 1�
�
�2g�
30

	
3q=2

!3
q
T6q�1
D

M2
�

: (22)

If the decoupling occurs in the RS regime, where q � 2
and !q � ��2

4=6��
1=2, we obtain

TD ’ 3:2� 10�2�M2
�M

9
5�

1=11; (23)

for ! � 1. For the decoupling to occur in this regime, it is
required that #�TD� � m4

�, which implies in turn that
M� � MRS

� with

MRS
� ’ 1:9� 105

�
M5

M4

	
11=4

M5: (24)

On the other hand, in the GB regime, where q � 2=3 and
!q � ��2�2

5=4!�
1=3, the decoupling temperature is given

by

TD ’ 1:6� 10�4 �!M
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so that the transition from the GB to the RS regime, defined
by the condition #�TD� � m4

�, occurs for

MGB
� ’

5:9� 104

!11=16

�
M5

M4

	
11=4

M5: (26)

The transition values MRS
� and MGB

� are represented in
Fig. 1 by the two vertical dashed lines. We see that the
decoupling of the baryon-number violating interactions
can generally occur in either (GB, RS or GR) regime. We
also notice that the RS transition region shrinks as the
Gauss-Bonnet coupling ! increases.

An important constraint on the decoupling temperature
comes from reheating and inflation. Obviously, we must
require TD < Trh <MI, where Trh is the reheating tem-
perature (at which the universe becomes radiation domi-
nated) and MI is the inflation scale. In the conventional
scenario, reheating occurs as the inflaton field oscillates
around its minimum and decays into matter. In this case,
Trh crucially depends on the details of the inflaton coupling
to matter. Here we restrict our discussion to the inflation
scale MI. Assuming that inflation occurs in the high-energy
(RS or GB) regime of the theory and that it is driven by a
quadratic potential, we find MI � m�sinh

1=4$e, where $e
is evaluated at the end of inflation (see the Appendix for
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details). In Fig. 1, we have plotted MI for different values
of ! and M5. We note that for M� � M5 the constraint
TD <MI is always verified.

We have also performed a random scan of the parameter
space �M�;M5; !� in order to find the allowed region for
the gravitational baryogenesis mechanism considered here
to generate an observationally acceptable nB=s with TD <
MI <M5. The results are presented in Fig. 2. A similar
analysis was done for the case when the GB terms are
absent, i.e. ! � 0, and braneworld cosmology is of RS
type (see Fig. 3). We notice that in the RS case the gravity
scale M5 can take considerably lower values [cf. Fig. 3(a)],
only constrained to be larger than 105 TeV, if one requires
the theory to reduce to Newtonian gravity on scales larger
than 1 mm. The above bound yields TD * 105 GeV.

Up to now we have not taken into account possible
effects which could dilute the baryon asymmetry generated
by the mechanism described above. It is well known that
electroweak sphaleron transitions, which are unsuppressed
at temperatures above the electroweak phase transition, are
a potential source of dilution [6]. Sphaleron-induced
baryon-asymmetry dilution occurs when B� L vanishes.
In this case, the B and L-number densities will be typically
diluted by a factor 0:02m2

0=T
2
sph [4], where m0 is the 0

lepton mass and Tsph is the sphaleron freeze-out tempera-
ture. Assuming Tsph to be the electroweak scale, one finds
that the baryon asymmetry is diluted by a factor of about
10
8

10
10

10
12

10
14

10
16

10
18

10
4

10
6

10
8

10
10

10
12

10
14

10
16

M
5
  (GeV)

T
D

  (
G

eV
)

(a)

10
0

10
3

10
6

10
9

10
12

10
15

10
18

10
4

10
6

10
8

10
10

10
12

10
14

10
16

M
*
  (GeV)

T
D

  (
G

eV
)

(c)

T
ν
QD

T
ν
QD

T
ν
HI

T
ν
HI

FIG. 3 (color online). The parameter space that generates the ob
Randall-Sundrum braneworld cosmology (! � 0). In this case, MI
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10�6. Hence, according to Eq. (2), the scale M� would have
to be, in this case, smaller by a factor of 10�3 to reproduce
the correct value of nB=s via the gravitational interaction of
Eq. (1). On the other hand, if B� L � 0, essentially no
sphaleron dilution occurs. In the latter case, the baryon
asymmetry generated will remain after the decoupling of
the �B� L�-violating interactions. An example of this
possibility will be presented in the next section.
IV. GRAVITATIONAL LEPTOGENESIS

In the standard model of electroweak interactions, the
B� L symmetry is exactly conserved. This symmetry is
however violated in many of its extensions. In general, it is
possible that the B-violating interactions are generated by
an operator OB of mass dimension D � 4
 n. The rate of
such interactions is �B � T2n
1=M2n

B , where MB is the
mass scale associated with the operator OB. In the standard
electroweak model the lowest-dimensional operator that
violates B� L is the dimension five operator

L L6 �
1

M
‘‘11
 H:c:; (27)

where ‘ and 1 are the left-handed lepton and Higgs
doublets, respectively; M is the scale of new physics which
induces B� L violation. This interaction represents a
typical term that gives rise to the seesaw mechanism and
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is responsible for the light neutrino masses mi � v2=M,
v ’ 174 GeV. In the early universe the L-violating rate
induced by the interaction (27) is [23]

�L6 �
T3

M2
B

; MB �
10v2

�
P

m2
i �

1=2
: (28)

The decoupling of the �B� L�-violating processes oc-
curs when �L6 falls below the Hubble rate, i.e. when MB ’

	T3
D=H�TD��

1=2. In the gravitational baryogenesis scenario
considered here, the decoupling temperature that produces
an acceptable baryon asymmetry is fixed by Eq. (16), and it
determines the required scale of B� L violation. In Fig. 1
we have plotted MB as a function of M� for different values
of ! and M5. We notice that the requirement TD <MB <
M5 imposes an upper bound on M�. We find
M� & 1016 GeV.

If the scale MB is associated with the neutrino mass
seesaw operator, as in Eq. (28), then the value of this scale
will be fixed by the light neutrino mass spectrum. The
current cosmological limit coming from the Wilkinson
Microwave Anisotropy Probe (WMAP) impliesP

mi & 0:69 eV [22]. If neutrinos are quasidegenerate
(QD) in mass, the above limit requires m1 ’ m2 ’ m3 ’
0:23 eV. In this case,

MQD
B � 7:6� 1014 GeV: (29)

Instead, if neutrinos masses are hierarchical (HI) with m1 ’

0 � m2 � m3, then m2’�"m2
sol�

1=2 and m3’�"m2
atm�

1=2,
where the squared mass differences measured in solar and
atmospheric neutrino oscillation experiments are "m2

sol ’
8:1� 10�5 eV2 and "m2

atm ’ 2:2� 10�3 eV2 [24], re-
spectively. In the latter case,

MHI
B � 6:3� 1015 GeV: (30)

Eqs. (29) and (30) yield a decoupling temperature in the
range

TQD
, � TD � THI

, : (31)

Clearly, the specific values of TQD
, and THI

, depend on
whether the decoupling of B� L violation occurs in GB,
RS or GR regime and, thus, on the values of the Gauss-
Bonnet coupling ! and the fundamental scale M5. In
standard cosmology with H�TD� ’ 1:66g1=2� T2

D=M4, one
finds TQD

, � 7:9� 1011 GeV and THI
, �5:5�1013 GeV.

Some other examples are presented in Fig. 1. While in
Figs. 1(a) and 1(b), the decoupling corresponding to TQD

,

and THI
, (horizontal dot-dashed lines) occurs in standard

cosmology, in Figs. 1(c) and 1(d) such decoupling takes
place in the high-energy Gauss-Bonnet regime for the case
of hierarchical neutrinos. We also remark that for gravita-
tional leptogenesis to be successful we must require TD �

TQD
, , which implies the lower bound M� * 100 GeV for

! & 0:1, as can be seen from the figure.
123517
Let us now consider the inflation bound. Since TD <
MB, the requirement MB <MI is more stringent in this
case. We find that this bound strongly constrains the scale
of B� L violation and, consequently, the mechanism of
gravitational leptogenesis. For instance, it can be seen that
for the case presented in Fig. 1(d), the above constraint
implies the bound TD < TQD

, and, therefore, the leptogen-
esis mechanism cannot generate the required baryon asym-
metry. The allowed region for gravitational leptogenesis is
presented in Fig. 2 (black dots). The horizontal dot-dashed
lines correspond to the GR decoupling temperatures TQD

,

and THI
, [Fig. 2(c)] and the scales MQD

B and MHI
B [Fig. 2(d)]

associated with the neutrino mass seesaw operator. We
conclude that

10 15 GeV & M5 & 1017GeV;

102 GeV & M� & 1010 GeV:
(32)

One can compare the above results with the ones that are
obtained in the case when braneworld cosmology is of RS
type, i.e. when ! � 0. The allowed range of values for the
parameters is shown in Fig. 3. We notice that a successful
gravitational leptogenesis in RS cosmology requires

10 16 GeV & M5 & 1017 GeV;

102 GeV & M� & 106 GeV:
(33)
V. CONCLUSION

In this work we have considered the possibility that the
observed baryon asymmetry arises via the spacetime dy-
namics of Gauss-Bonnet braneworld cosmology. The
framework presented here is based on the CPT-violating
gravitational interaction between the derivative of the Ricci
scalar curvature and the B (or B� L) current [5]. We have
shown that it is possible to generate the correct magnitude
of the baryon asymmetry in different cosmological scenar-
ios, depending on whether the decoupling of the B- or �B�
L�-violating interactions occurs in standard cosmology or
in the high-energy Randall-Sundrum or Gauss-Bonnet bra-
neworld regimes.

We have also studied the case when baryogenesis occurs
via leptogenesis, and the B� L current is associated with
the neutrino mass seesaw operator. In this framework, the
produced nB�L asymmetry will be converted to a baryon
asymmetry, once sphaleron transitions enter thermal equi-
librium. We have seen that for this scenario to be viable, a
rather high fundamental scale of gravity M5 is required [cf.
Eq. (32)], as well as an effective interaction scale M� above
the electroweak scale but below 1010 GeV. At this point it is
worth noticing that, although in four-dimensional gravity it
is natural to expect M� of the order of the Planck mass M4,
this may not be necessarily the case. For instance, M� ’

�MRM4�
1=2 could be possible, if the right-handed neutrino

Majorana mass MR softly violates baryon number [5].
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Moreover, this scale can be much lower, if the effective
four-dimensional theory comes from a higher-dimensional
theory. Indeed, AdS/CFT correspondence [25] and brane-
world holography [9,26] indicate that interaction terms
such as given by Eq. (1) are expected in the effective action
on the brane with M� ’ 1=‘ ’ M3

5=M
2
4. If this is the case,

the bound M5 ’ 1015 � 1017 GeV would then imply
M� ’ 107 � 1013 GeV, well within the range allowed by
gravitational baryogenesis and leptogenesis in the high-
energy GB regime.
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APPENDIX: INFLATION IN A GAUSS-BONNET
BRANEWORLD

In this Appendix we briefly review inflation in GB brane
cosmology [17,18,27]. For simplicity we assume that in-
flation is driven by the simple quadratic potential

V�1� � V012: (A1)

We are interested in slow-roll inflation which occurs in
the GB or RS high-energy regime. In this case, V � # �
� and Eq. (7) implies V � m4

� sinh$. Moreover, the bound
V >m4

� together with the quantum gravity upper limit V <
M4

5 imply �
m�

m�

	
4
< sinh$<

�
M5

m�

	
4
: (A2)
123517
The slow-roll parameters 5 and 6 are given by

5 �
16�V0

27�2
4m

8
�
f�$�; 6 �

8�V0

9�2
4m

8
�

1

g�$�
; (A3)

where

f�$� � g�2�$� tanh$ sinh
�
2$
3

	
; (A4)

g�$� � cosh
�
2$
3

	
� 1: (A5)

The number of e-folds of inflation is given by

N? �
3�2

4!V0

Z $?

$e

g�$� coth$d$ �
9�2

8!V0
I�$�

��������$?

$e

; (A6)

where

I�$� � g�$� � ln
�
1


2

3
g�$�

�
; (A7)

$? is evaluated when cosmological scales leave the hori-
zon and $e is evaluated at the end of inflation, when
maxf5; 6g � 1.

The amplitude of scalar perturbations is

A2
S �

35=2�4�
5

16�2V0�1=2!5=2

g3�$?�

sinh$?
: (A8)

Using the COBE normalized value AS ’ 2� 10�5 for the
density perturbations and 55 � N? � 65, we can obtain
the scale of inflation MI � V1=4�1e� � m�sinh

1=4$e. This
scale is plotted in Fig. 1 for given values of ! and M5,
taking N? � 60. A more complete analysis is presented in
Fig. 2(a) and 2(b). Notice that, for consistency, one should
require m� <MI <M5.
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