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Relativistic description of the np → ηd reaction near threshold
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Relativistic effects in a three-body calculation of the np → ηd process are considered. Parametrizations for the
ηN interaction obtained from phenomenological meson-nucleon models are probed. Relativistic effects on the
range and strength of the pion exchange contribution to the reaction mechanism are seen to be large, while boost
effects of the two-body interactions are negligible. The relativistic calculation confirms previous nonrelativistic
results, showing that the shape of the cross section near threshold is essentially determined by the ηd final-state
interaction alone. As for the region away from threshold, the relativistic pion exchange contribution is seen
to dominate the other mechanisms of the reaction. It turns out that, within the relativistic reaction model, the
np → ηd experimental data call for a comprehensive study to find parameters of the meson-nucleon interactions
which are consistent with η production, both on the nucleon as well as on the deuteron.
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I. INTRODUCTION

We investigate relativistic effects in the reaction np → ηd,
in a calculation that considers the ηd final-state three-body
distortion. The inclusion of this interaction is crucial for the
interpretation of the observed behavior of the cross section
at threshold [1,2]. In previous works [3–5] we concluded
that the shape of the cross section very near threshold is
indeed determined by the three-body nature of the final state
interaction. Those calculations were, however, made within a
nonrelativistic formalism.

Given the high threshold energy for η production, the
inclusion of relativity in the calculation of the np → ηd

cross section needs to be pursued. Moreover, it is known
that there is a considerable dispersion of the empirical values
for the ηN scattering length aηN originated by different data
analyses. This uncertainty spreads from values for the real
part of aηN as Re (aηN ) = 0.20 fm, from a calculation of
η and K photoproduction in Ref. [6], to values as 0.55 fm,
from a calculation of the pd → η3He reaction in Ref. [7],
to even the large values in the 0.72 − 1.07 fm range, from
analysis of the πN − πN, πN − ηN πN − γN transition
amplitudes in Refs. [8–11]. More recently a model from the
Julich group, based on a coupled channel formalism, led to the
value Re (aηN ) = 0.42 fm [12]. Therefore, relativistic effects
have to be considered to narrow the large uncertainty region
for that scattering length. Importantly, the knowledge of this
strength is crucial to establish or confirm the possibility for
exotic eta-mesic nuclei or nuclear matter, of great astrophysics
interest.

Here we introduce and solve a relativistic formalism with
the following features:

(i) On one hand, covariant meson-nucleon amplitudes based
on different data analyses [8–12] of the coupled reactions
πN → ηN, ηN → ηN , and γN → ηN are constructed for
the first time. The covariant meson-nucleon amplitudes are
moreover conveniently boosted (including their Dirac spin
structure) to be embedded in the meson production mechanism

through which the reaction proceeds. This mechanism is the
meson-exchange box diagram with the excitation of the S11

resonance, represented in Fig. 1.
(ii) On the other hand, for the calculation of the ηd

final-state distortion, a relativistic version of the three-
body equations is used here, which incorporates relativistic
kinematics and the boost of the two-body meson-nucleon
and nucleon-nucleon interactions. The boost effects are
assessed.

The next section describes the formalism. In Sec. II A the
relativistic meson-exchange driving term is introduced and in
Sec. II B the three-body relativistic formalism for the ηd final
state interaction is addressed. In Sec. III the results are shown
and discussed. Section IV summarizes the conclusions.

II. FORMALISM

A. The covariant np → ηd box diagram

We will start our discussion with the box diagram shown
in Fig. 1 which, together with the impulse term, has been
considered as the basic production mechanism [4,5,13–15].

If one evaluates this Feynman diagram by putting the
spectator nucleon in the intermediate state on-its-mass-shell,
the four-dimensional integral reduces to the integration in the
three-momentum �pN of that nucleon as

A
µ1µ2
Md

= 1

(2π )3

∑
µ

∫
d �pN

M

EN

v̄
µ

NV
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/p3 + M

p2
3 − M2
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µ2
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k2
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m

ū
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where V
Md

dNN, VmNN , and tmN→ηN are, respectively, the
deuteron-nucleon-nucleon vertex, the m meson-nucleon-
nucleon vertex, and the meson-nucleon → η nucleon t matrix.
The spinors u

µ1
1 , u

µ2
2 , u

µ

N , correspond, respectively, to the two
initial and the intermediate nucleon spinors, and v̄

µ

N is the
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FIG. 1. Meson-exchange mechanism for the reaction np → ηd .

charged-conjugated spinor. The three-momentum variables are
defined as shown on the diagram of Fig. 1.

One expects the effect of relativity to be important in the
left-hand side of the box diagram where the exchanged meson
m is very far-off-the-mass-shell. However, on the right-hand
side of the diagram the final η is restricted to the energy
region of E < 100 MeV, so that the effects of relativity are
not so crucial. Therefore, we will write the propagator for the
intermediate nucleon in terms of positive and negative energy
spinors and keep only the positive energy part:

/p3 + M

p2
3 − M2

= M

E3

∑
µ3

u
µ3
3 ( �p3)ūµ3

3 ( �p3)

p03 − E3

+ M

E3

∑
µ3

v
µ3
3 (− �p3)v̄µ3

3 (− �p3)

p03 + E3

→ M

E3

∑
µ3

u
µ3
3 ( �p3)ū3

µ3
( �p3)

p03 − E3
. (2)

If we now consider the deuteron wave function �∗
Md,µµ3

( �p )
defined by the identification that is valid in the rest frame of
the deuteron (which in the region near threshold is very near
the ηd rest frame) [16]

M

E3
v̄

µ

N ( �pN )V Md

dNNu
µ3
3 ( �p3)

1

p03 − E3

≡
√

2ωd (2π )3/2�∗
Md,µµ3

( �p ), (3)

where �p is the NN relative momentum in the center of mass
(c.m.), we obtain from Eq. (1)

A
µ1µ2
Md

= 1

(2π )3/2

∑
µ,µ3

∫
d �pN

M

EN

√
2ωd�

∗
Md,µµ3
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× ū
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m

× ū
µ

N (pN )VmNNu
µ1
1 (p1). (4)

In Eq. (4) we made explicit the momentum dependence of the
nucleon spinors.

The deuteron wave function is on the other hand calculated
from

�∗
Md,µµ3

( �p) =
∑

L=0,2

∑
mL,mS

CL 1 1
mL mS Md

φL(p)Y ∗
LmL

(p̂)C1/2 1/2 1
µ µ3, mS

,

(5)

where φ0(p) and φ2(p) are the S- and D-wave components
which we obtained from the Paris potential.

For the m meson-nucleon-nucleon vertex we take

VmNN = gmγ5fm

(
k2
m

)
, m = π, η, (6)

and

VmNN = gmfm

(
k2
m

)
, m = σ, (7)

where k2
m is the meson four-momentum squared and the form

factor fm is chosen to have the monopole form

fm

(
k2
m

) = �2 − m2
m

�2 − k2
m

, (8)

with � = 1800 MeV/c which is a typical value for meson-
exchange models [17,18].

Since the η production near threshold is dominated by the
S11 resonance, the m meson-nucleon →η-nucleon t transition
operator is assumed to be generated by a variable-mass
isobar model consisting of a single isobar, the S11. As in
the framework introduced in Ref. [19] for the study of the
pion induced eta production reaction, the isobar model for
meson-nucleon scattering used here is covariant, and reads

tmN→ηN ( �p2, �p′2,MS)

= (2π )2

M

√
ωm( �p2)ωη( �p′2)EN ( �p2)EN ( �p′2)

×hm( �p2)
� kN+ � k2 + MS

2MS

hη( �p′2)τ (MS), (9)

where ωm( �p2) = √
m2

m + �p2, EN ( �p2) =
√

M2 + �p2 are the
on-shell energies, respectively, of the m meson and of the
nucleon in the c.m. frame. Also one has

MS =
√

(km + k2)2 =
√

(kη + k3)2. (10)

The meson-nucleon-isobar vertices are

hm( �p2) =
√

2M

M + EN ( �p )
gm( �p2), m = π, η, (11)

and

hm( �p2) = M√
�p2

√
2M

M + EN ( �p )
gm( �p2)γ5, m = σ. (12)

Here, three-momentum squared �p2 ( �p′2) is the meson-nucleon
relative initial (final) three-momentum in the c.m. frame. In
particular, it is related to Lorentz invariant quantities as

�p2 =
(
M2

S + M2 − k2
m

)2

4M2
S

− M2. (13)

The isobar propagator τ (MS) is obtained from a separable
potential model describing the coupled ηN − πN − σN two-
body subsystem. The corresponding two-body t matrix (9) is
also separable in any reference frame. We note that the σN

channel stands for the ππN inelasticity. Also, in variance with
Ref. [20] we do not consider ρ exchange. Recently in Ref. [14]
it was shown that the exact numerical treatment of the initial
state interaction reduces significantly the ρ-exchange diagram,
relative to the other meson exchanges.

In the basis states of the nucleon spinors the matrix
element of the transition operator on Eq. (9) in the two-body
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meson-nucleon c.m. system, where �km + �k2 = �kη + �k3 = 0, is
given by

ū
µ3
3 tmN→ηNu

µ2
2 = 2π

M
δµ2µ3

√
ωm( �p2)ωη( �p′2)EN ( �p2)EN ( �p′2)

×gm( �p2)τ (MS)gη( �p′2), (14)

and a completely similar expression in the case of the transition
mN → m′N with m or m′ any of the three mesons.

We consider nucleon 2 with momentum �qN in the positive
direction of the z axis and the η meson three-momentum in the
xz plane with polar angle θ . Then the amplitude A of Eq. (4)
satisfies the symmetry property

A
µ1µ2
M (�qN, θ ) = −(−1)M+µ1+µ2A

µ1µ2
M (−�qN, π − θ ). (15)

In the isospin formalism the neutron and proton are identical
particles, so that the initial np state must be antisymmetrized
under the exchange of nucleons 1 and 2. However, the system
is in a pure total isospin-0 state, which means that the initial np
state must be symmetric under the exchange of space and spin
variables. Therefore, the correctly antisymmetrized amplitude
Ā

µ1µ2
M for the np → ηd process is

Ā
µ1µ2
M = 1√

2

[
A

µ1µ2
M (�qN, θ ) + A

µ2µ1
M (−�qN, θ )

]

= 1√
2

[
A

µ1µ2
M (�qN, θ )− (−1)M+µ1+µ2A

µ2µ1
M (�qN, π− θ )

]
.

(16)

B. The ηd scattering and the boost of the two-body interactions

In our previous work [5] we presented the formalism to
calculate ηd scattering based on nonrelativistic Faddeev equa-
tions. Since we are now discussing relativistic effects in the
np → ηd process, it becomes necessary to perform here also
a relativistic calculation of the ηd elastic channel responsible
for the final-state interaction in the np → ηd reaction. To
generate the necessary ηd distorted waves, we apply to the
ηd elastic channel the relativistic formalism in momentum
space presented in Ref. [21]. This formalism generalizes in
a straightforward way the nonrelativistic Faddeev equations.
It incorporates relativistic kinematics and, importantly, also
the boosts of the two-body interactions to the three-body c.m.
frame. Since the energies that we consider in this work are in
the continuum, we deal with the three-body singularities by
using the method of contour rotation [22].

Firstly, the main feature of the formalism of [21] consists of
a set of relativistic but three-dimensional integral Faddeev-type
equations obtained from a field theory in which the three
particles are kept on their mass shell in all intermediate states.
Accordingly, in what follows the quantity ki does not refer
to the four-momentum of particle i, but to the magnitude
of its three-momentum �ki . Secondly, in order to transform
correctly all physical quantities from the two-body to the
three-body reference frames, and after considering the energy
conservation constraint, one writes the invariant momentum
space volume element for the three particles in terms of the

two relative Jacobi variables �pi and �qi ,

dV = d�k1

2ω1(k1)

d�k2

2ω2(k2)

d�k3

2ω3(k3)
δ(�k1 + �k2 + �k3)

= ω(pi)

8Wi(piqi)ωi(qi)ωj (pi)ωk(pi)
d �pid �qi. (17)

The variable �pi is the relative momentum of the pair jk
measured in the c.m. frame of the pair (that is, the frame
in which particle j has momentum �pi and particle k has
momentum − �pi), and �qi = −�ki is the relative momentum
between the pair jk and the spectator particle i, measured in
the c.m. frame of the three particles, (in which the pair jk has
total momentum �qi and particle i has momentum −�qi). The
energy of the jk pair in its c.m. frame is

ω(pi) =
√

m2
j + p2

i +
√

m2
k + p2

i , (18)

the total energy of the pair is

Wi(piqi) =
√

ω2(pi) + q2
i , (19)

and the invariant energy of the three particles is written as

W (piqi) = ωi(qi) + Wi(piqi), (20)

with

ωi(qi) =
√

m2
i + q2

i . (21)

Equations (17)–(21) determine the transformation of the
matrix elements of the two-body potential V, given in the
two-body c.m. frame by V ( �pi, �p′

i), to the three-body c.m.
reference frame, as found in [21]:

〈 �pi �qi |V | �p′
i �q ′

i〉

=
[
Wi(piqi)ωj (pi)ωk(pi)Wi(p′

iqi)ωj (p′
i)ωk(p′

i)

ω(pi)ω(p′
i)

]1/2

× 8ωi(qi)δ(�qi − �q ′
i)V ( �pi, �p′

i), (22)

which in turn defines the boosted matrix elements of the two-
body t matrix. These are given by

〈 �pi �qi |t | �p′
i �q ′

i〉

=
[
Wi(piqi)ωj (pi)ωk(pi)Wi(p′

iqi)ωj (p′
i)ωk(p′

i)

ω(pi)ω(p′
i)

]1/2

× 8ωi(qi)δ(�qi − �q ′
i)t( �pi, �p′

i ; qi), (23)

where t( �pi, �p′
i ; qi) satisfies the Lippmann-Schwinger equation

with a propagator corresponding to relativistic kinematics
defined by Eq. (20):

t( �pi, �p′
i ; qi) = V ( �pi, �p′

i) +
∫

d �p′′
i V ( �pi, �p′′

i )

× 1

W0 − W (p′′
i qi) + iε

t( �p′′
i , �p′

i ; qi). (24)

The variable W0 is the invariant energy of the
system. For only S-wave two-body interactions Eq. (24)
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becomes

t(pi, p
′
i ; qi) = V (pi, p

′
i) +

∫ ∞

0
p′′

i

2
dp′′

i V (pi, p
′′
i )

× 1

W0 − W (p′′
i qi) + iε

t(p′′
i , p

′
i ; qi). (25)

In the particular case of the coupled ηN − πN − σN sub-
system (we take mσ = 2mπ , since the σN channel simulates
the ππN inelasticity), these three different meson-nucleon
channels are connected among each other through the S11

partial wave. For each transition, we use rank-one separable
potentials of the form

Vmm′ (pi, p
′
i) = −gm(pi)gm′(p′

i); (m,m′ = η, π, σ ), (26)

where we considered two types of models for the functions gm.
In order to evaluate the sensitivity of the numerical results to
the functional form of gm, we tested two types of functions with
different “fall-off ” behavior for large values of the momenta:
models of type I, with the same form as in Ref. [5],

gm(pi) =
√

λm

Am + p2
i(

α2
m + p2

i

)2 ; (m = η, π ), (27)

gm(pi) =
√

λm

pi(
α2

m + p2
i

)2 ; (m = σ ), (28)

and models of type II, which have a tail of gaussian form,

gm(pi) =
√

λm

(
Am + p2

i

)
e−p2

i /2α2
m ; (m = η, π ), (29)

gm(pi) =
√

λmpie
−p2

i /2α2
m ; (m = σ ). (30)

The solution of Eq. (25) for the potential (26) is

tmm′ (pi, p
′
i ; qi) = gm(pi)τ (W0, qi)gm′(p′

i), (31)

with

τ−1(W0, qi) = −1 −
∑

m=η,π,σ

∫ ∞

0
p2

i dpi

g2
m(pi)

W0 − W (piqi) + iε
.

(32)
On one hand, the energy behavior of the meson-nucleon t

matrix in Eq. (31) is determined by the dynamical
equation (32) and therefore is not arbitrary. On the other hand,
since the fits of the meson-nucleon scattering data test two
different types of vertex functions gm(pi), we assess the extent
of model dependence in the final results obtained.

We will now check the consistency between the result for
the boosted two-body t-matrix elements derived in this section,
and the result for the covariant two-body matrix elements
introduced in the previous section. For that, we take Eq. (23)
for qi = 0 and obtain

〈 �pi
�0|t | �p′

i �q ′
i〉 = [ωj (pi)ωk(pi)ωj (p′

i)ωk(p′
i)]

1/2

× 8miδ(�0 − �q ′
i)t( �pi, �p′

i ; 0). (33)

From Eqs. (33) and (14) we conclude that the t-matrix
element dynamically generated from the separable potential
model of Eq. (26) and the relativistic scattering equation,
coincides with the covariant matrix element of Eq. (14)
obtained in the basis states of the nucleon spinors. The

different multiplicative factors (8mi vs 2π
M

) originate from
the normalization convention for two-body momentum basis
states used in Faddeev-type formalisms.

The driving terms of the Faddeev equations for ηd elastic
scattering given by Eqs. (20)–(22) of Ref. [5] are here modified
by the inclusion of relativistic kinematics. By using the
invariant three-body volume element we make the replacement

1

E − p2
j

/
2µj − q2

j

/
2νj + iε

→
[
Wi(p′

iqi)ωj (p′
i)ωk(p′

i)Wj (pjqj )ωk(pj )ωi(pj )

ω(p′
i)ω(pj )ωi(qi)ωj (qj )

]1/2

× 1

ωk(qk)

1

W0 − W (pjqj ) + iε
, (34)

with p′
i , pj , and ωk(qk) defined by Eqs. (70), (71), and (66) of

Ref. [21].
The NN interaction appears in two different ways in the

description of the np → ηd reaction. First of all, there is the
np initial-state interaction at energies near the η threshold
(TN ≈ 1252 MeV), which acts mainly in the isospin-0 1P1

partial wave. Secondly, it appears in the three-body equations
which determine the final-state ηd distorted waves, where the
NN interaction is needed at energies near threshold (TN ≈ 0)
and for the isospin-1 3S1 partial wave.

In the case of the np initial-state interaction we used in
Ref. [5] the optical potential

V (p, p′) = VPARIS(p, p′) − iγ
pp′

(α2 + p2)(α2 + p′2)
, (35)

where the parameters γ = 0.6 and α = 0.75 fm−1 were
obtained by reproducing the np 1P1 amplitude of Arndt
et al. [23] at the η threshold within the nonrelativistic
Lippmann-Schwinger equation

T (p, p′) = V (p,p′) +
∫ ∞

0
p′′2dp′′V (p,p′′)

× M

p2
0 − p′′2 + iε

T (p′′,p′). (36)

Since in this work we are interested on a relativistic
description of the process we use instead the relativistic
Lippmann-Schwinger equation

T (p, p′) = V (p, p′) +
∫ ∞

0
p′′2dp′′V (p, p′′)

× 1

2

1√
M2 + p2

0 −
√

M2 + p′′2 + iε

T (p′′, p′).

(37)

In addition, we have now used as input the 1P1 amplitude of
the most recent analysis of Arndt et al. [24] from which we
extracted γ = 0.8 and α = 0.3 fm−1.

In the case of the NN interaction that appears in the three-
body equations which determine the final-state ηd distorted
waves, we used in [5] the PEST separable model of Ref. [25],

〈p|VNN |p′〉 = −gN (p)gN (p′), (38)
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TABLE I. Parameters of the ηN -πN -σN separable potential models of type I fitted to the S11 resonant amplitudes given in Refs. [7–10].

Model Ref. aηN αη Aη λη απ Aπ λπ ασ λσ

0 [12] 0.42 + i0.34 5.85798 7.20057 −202.573 0.384338 0.00306689 −0.0804278 0.808 −0.155061
1 [9] 0.72 + i0.26 29.9983 359.211 −5991.79 2.28053 1.08638 −0.0660518 8.0 −239.860
2 [10] 0.75 + i0.27 6.80695 409.632 −0.0735564 9.17614 1.46599 −701.087 8.0 −816.460
3 [11](D) 0.83 + i0.27 5.43840 74.9154 −0.387884 8.83448 0.449176 −654.504 8.0 −760.560
4 [11](A) 0.87 + i0.27 4.35990 30.3941 −0.376959 8.96712 0.270940 −687.477 8.0 −618.431
5 [11](B) 1.05 + i0.27 2.04950 2.60222 −0.102332 9.71806 0.192626 −849.271 8.0 −236.559
6 [11](C) 1.07 + i0.26 1.99979 2.28184 −0.105698 9.76374 0.0702236 −861.215 8.0 −174.670

where

gN (p) =
6∑

n=1

cn

β2
n + p2

, (39)

with the parameters given in Ref. [25]. This potential
when substituted into the nonrelativistic Lippmann-Schwinger
equation (36) has a bound-state solution at precisely the energy
of the deuteron and its wave function is identical to the
L = 0 component of the deuteron wave function of the Paris
potential. In order to make the potential (38) consistent with the
relativistic Lippmann-Schwinger equation (37) we multiplied
it by a factor, i.e., the relativistic version of the potential is

〈p|VNN |p′〉 = −0.78805gN (p)gN (p′), (40)

with gN (p) given by Eq. (39). The potential (40) when substi-
tuted into the relativistic Lippmann-Schwinger equation (37)
has a bound-state solution at the energy of the deuteron and
its wave function at low momenta coincides with the deuteron
wave function of the Paris potential.

As for the ηNN coupling constant, on one hand, it
was given the reasonable value g2

η/4π = 1. This quantity
is not well known [26–30]. The nucleon-nucleon potential
models, require 2 < g2

η/4π < 7 (Bonn potential models)
or g2

η/4π = 0.25 (Nijmegen potential). The analysis of η

photoproduction on the other hand gives 1.0 < g2
η/4π < 1.4,

or even smaller values. The light cone sum rule yields
g2

η/4π = 0.3 ± 0.15. As for the σNN coupling constant we
used the value of Ref. [31], g2

σ /4π = 8. The several meson-
nucleon coupled channel ηN − πN − σN models constructed
here, on the other hand, probe the wide range of uncer-
tainty for the η − N scattering lengths, from the low value
Re (aηN ) = 0.42 fm of the Julich model to the larger values in
the 0.72 − 1.07 fm region.

III. RESULTS

We organized this section into four parts. In part A the effect
of relativity on the parametrizations of the meson-nucleon
models is analyzed. In part B the results for the total cross
section are shown and the pion-exchange contribution is
discussed. In part C the effects of an exact treatment of the
initial NN interaction are presented. In part D the role of a
heavy-meson exchange is considered.

A. Comparison between relativistic and nonrelativistic models

We give in Table I the parameters of the seven models
of type I, as defined in the previous section, which fit the
meson-nucleon amplitude analysis of Refs. [8–12] by Eqs. (31)
and (32). In Table II we give the parameters of the models
for the same seven empirical amplitudes, but within the
parametrization of type II. The quality obtained for the fits
to the amplitudes of those analyses is at least as good as the
one shown in Fig. 1 in Ref. [5], and therefore we do not repeat
the corresponding figure.

Relativistic corrections are contained in the dressed prop-
agator given by Eq. (32). Naturally, the comparison of the
nonrelativistic models in Ref. [5] with the relativistic cases
presented in this work is more meaningful in the case of the
models in group I, since in each model of this group the vertex
momentum dependence is the same as in the nonrelativistic
corresponding case.

Thus, focusing on the cases in group I, in all with the
exception of model 0, the parameters for the σ exchange are
the ones that deviate less from the parameters obtained within
the nonrelativistic calculation of Ref. [5] and shown therein in
Table I. In contrast, due to its small mass, the pion contribution
is affected by the relativistic treatment.

TABLE II. Parameters of the ηN -πN -σN separable potential models of type II fitted to the S11 resonant amplitudes given in Refs. [7–10].

Model Ref. aηN αη Aη λη απ Aπ λπ ασ λσ

0 [12] 0.42 + i0.34 3.97583 36.5287 −1.37E ×10−4 1.33063 1322.81 −5.17E ×10−7 0.708750 −25.1019
1 [9] 0.72 + i0.26 25.8807 1108.42 −1.27E ×10−9 2.73805 29.8046 −4.9E ×10−7 11.1150 −1.41E ×10−5

2 [10] 0.75 + i0.27 25.7330 1123.75 −1.33E ×10−9 3.48693 0.269374 −1.52E ×10−5 1.52544 −1.42E ×10−4

3 [11](D) 0.83 + i0.27 2.77545 105.509 −3.88E ×10−7 6.18513 0.516560 −2.11E ×10−5 1.21418 −9.09E ×10−4

4 [11](A) 0.87 + i0.27 2.65296 117.486 −3.41E ×10−7 5.828627 0.196750 −2.68E ×10−5 7.71062 −5.85E ×10−5

5 [11](B) 1.05 + i0.27 2.16388 79.4167 −4.88E ×10−7 5.95292 0.100986 −1.43E ×10−5 17.4976 −1.59E ×10−5

6 [11](C) 1.07 + i0.26 2.20109 103.150 −3.56E ×10−7 6.44407 0.0358158 −1.67E ×10−5 8.91135 −1.84E ×10−5
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TABLE III. ηd scattering length (in fm) predicted by the seven separable potential
models of the coupled ηN -πN -σN system, in both types I and II studied here. We give the
results obtained including only η exchange, η and π exchange, and η-π and σ exchange
in the driving terms. Comparison with results of Ref. [5] is provided on the lines labeled
“NR”.

Model aηN η η + π η + π + σ

0 I 0.42 + i0.34 0.88 + i1.34 0.39 + i1.67 0.23 + i1.68
0 II 0.42 + i0.34 0.83 + i1.11 0.76 + i1.20 0.37 + i1.37

NR 0 0.42 + i0.34 1.01 + i1.24 1.00 + i1.28 0.99 + i1.28
1 I 0.72 + i0.26 2.59 + i1.84 2.67 + i1.90 2.67 + i1.90
1 II 0.72 + i0.26 2.23 + i1.15 2.30 + i1.18 2.30 + 1.18

NR 1 0.72 + i0.26 2.53 + i1.51 2.56 + i1.51 2.57 + i1.51
2 I 0.75 + i0.27 2.73 + i1.66 2.78 + i1.68 2.78 + i1.68
2 II 0.75 + i0.27 2.43 + i1.20 2.46 + i1.21 2.47 + i1.21

NR 2 0.75 + i0.27 2.75 + i1.64 2.75 + i1.62 2.76 + i1.62
3 I 0.83 + i0.27 3.23 + i1.88 3.28 + i1.91 3.29 + i1.91
3 II 0.83 + i0.27 3.16 + i1.91 3.21 + i1.94 3.23 + i1.95

NR 3 0.83 + i0.27 3.28 + i1.93 3.28 + i1.91 3.30 + i1.91
4 I 0.87 + i0.27 3.45 + i1.92 3.50 + i1.95 3.51 + i1.95
4 II 0.87 + i0.27 3.47 + i1.93 3.52 + i1.96 3.53 + i1.96

NR 4 0.87 + i0.27 3.55 + i2.07 3.56 + i2.05 3.57 + i2.04
5 I 1.05 + i0.27 4.72 + i2.47 4.80 + i2.52 4.80 + i2.52
5 II 1.05 + i0.27 4.75 + i2.48 4.82 + i2.53 4.83 + i2.53

NR 5 1.05 + i0.27 4.91 + i2.72 4.92 + i2.70 4.93 + i2.70
6 I 1.07 + i0.26 5.00 + i2.54 5.09 + i2.60 5.09 + i2.60
6 II 1.07 + i0.26 4.92 + i2.43 5.00 + i2.49 5.01 + i2.49

NR 6 1.07 + i0.26 4.77 + i2.25 4.79 + i2.25 4.79 + i2.24

In models 2–6 relativity increases slightly the pion mo-
mentum range parameter απ . But at the same time the pion
strength parameter Aπ increases. According to Eq. (27), the
last parameter defines the weight of the small versus the large
momentum region. Therefore the increasing of its magnitude
acts in the opposite direction of the increasing range parameter.
Since the relativistic fit of the meson-nucleon amplitudes has
the quality of the nonrelativistic one, the extra weight of the
high momentum tail is verified to compensate the increase of
Aπ . As for the ηN channel, in the same models 2–6, both
the range and strength parameters decrease, allowing also the
effects of both variations to act in opposite directions, and to
almost cancel out.

However, and still within group I, models 1, and specially
model 0, which lead to smaller values for the ηN scattering
lengths, behave differently than the other four models de-
scribed since the pion range is seen to decrease. Moreover,
for model 0 the pion low-momentum strength Aπ uniquely
decreases more, percentagewise, than the range parameter απ .
As a net result the weight of the high momentum range versus
the low momentum range is increased. Within group II, model
0 is singled out from the other models by its small values for
the pion range απ and strength Aπ .

The relative weight between small and large momenta in
the meson-nucleon interaction directly reflects on the behavior
of the three-body ηd system, and consequently also on the
cross section for np → ηd, as we will see next. In order to
show this, first, we turn now to the results obtained for the ηd

three-body elastic channel. We give in Table III the predictions

for the three-body ηd scattering length obtained using the
seven two-body ηN − πN − σN coupled interaction models
in both groups I and II. We present the results corresponding
to the box diagram in Fig. 1 as driving term of the Faddeev
equations (see Fig. 3 of Ref. [5] for their diagrammatic
representation) including the different meson-exchanges, one
by one, in successive cumulative steps: only η exchange, η + π

exchange, or η + π + σ exchange.
To conclude about the extent of the relativistic effects

we show for each model the nonrelativistic results of [5]
(lines labeled “NR”). As expected, the effect of the relativistic
treatment on the three-body scattering length is clearly seen to
be more accentuated in the contribution of the pion, which is
the lightest meson. Its contribution to the three-body scattering
length is negligible in all nonrelativistic models [5]. Compared
with the corresponding results of [5], the relativistic results are
still quite similar to those of the nonrelativistic case, with the
exception of model 0, in the case of group I. The pion exchange
contribution to the scattering length is now quite important in
the case of this model. This happens because in model 0 in
group I, the relativistic changes in the range απ parameter
do not compensate for the changes in the low-momentum
strength Aπ parameter, as it happens in the other models of
that group. As for model 0 in group II, the comparison with
the nonrelativistic case is not direct due to different functional
forms of the meson-nucleon interactions, but nevertheless we
note that the parametrization II of model 0 cuts the high
momentum tail such that the pion exchange contribution is
closer to the nonrelativistic case.
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σ
µ

σ
µ

FIG. 2. Total cross section of the reaction np → ηd for the seven
relativistic meson-nucleon interaction models considered. Only pion
exchange is considered in the box diagram represented by Fig. 1.
No ηd final state interaction included. The initial state distortion is
described by multiplication by a constant factor of 0.2. Data are from
Refs. [1,2]. Models I (II) are shown on the top (bottom) panel.

Besides the changes that the relativistic two-body models
induce on the pion exchange contribution, the comparison done
on Table III gives also indirect information on the magnitude of
the boosts of the two-body interactions within the three-body
system. Given the agreement in the three-body calculation of
the ηd scattering length observed for most cases between the
relativistic and nonrelativistic version of the models, boost
effects do not appear relevant. Since the energies involved
(∼100 MeV) are much smaller than the masses of the η and
the nucleon, this is expected.

To summarize, the relativistic effects on the parameters of
the two-body meson-nucleon interactions are large, but the
boost effects in the three-body system small.

B. Results for the cross section

In this section we compare the results obtained for the
cross section by the several models. In all figures of this
section the upper panel refers to the models of type I, while the

π σ η

σ
µ

π σ η
σ

µ

FIG. 3. The same as Fig. 2, but with inclusion of π, η, and σ

exchanges in the diagram represented by Fig. 1.

bottom panel is for models of type II, and a reduction factor
of 5 corresponding to the initial-state NN interaction was
introduced as derived in [5]. This last aspect will be improved
upon in the next section.

We show in Fig. 2 the cross section of the np → ηd process
when only pion exchange is included in the box diagram (see
Fig. 1) and no final-state interaction is included.

Although models 2–6 (those with a large ηN scattering
length) predict more or less the right magnitude for the cross
section at large energies, near threshold all models fail to
reproduce the enhancement shown by the data. We notice
that the models with larger absolute pion strength λπ and
smaller absolute η strength λη are closer to the data away from
threshold. This result is consistent with only small momentum
transfer being needed in this energy region, and is henceforth
common to group I and group II.

We show in Fig. 3 the corresponding results when in
addition the contribution of the exchanges of the η and σ

mesons are included in the box diagram. From both Figs. 2
and 3 it is clear that the dominant exchange mechanism
for the np → ηd process is pion exchange. This conclusion
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π σ ησ
µ

π σ η

σ
µ

FIG. 4. The same as Fig. 3, but with the inclusion of ηd final state
interaction.

was also found by the substantially different calculations of
Refs. [14,32].

We consider next the role of the final ηd distortion for
the np → ηd process at the energies considered. We show in
Fig. 4 the results when one includes the final-state interaction.
The models with a large ηN scattering length give a good
description of the data near threshold. This was already the
case for the nonrelativistic case in Ref. [5] (see Fig. 6 therein).
The new feature of the relativistic calculation is that the
high-energy end is now described by those models. However,
they fail to reproduce the shape of the cross section in the
intermediate region. The good description of the cross section
at the high energy end by models 2–6 is due to the modification
of the range and strength parameters for the pion in the
dynamical two-body models—and does not happen for models
0 and 1.

We stress that in general the two groups I and II of models
studied lead to very similar results for the cross section.
This indicates that the failure of all models in describing the
data, simultaneously very near and far away from threshold,
is not an artifact of the chosen regularization (or cutoff) of
the high momenta tail, or of the off-shell behavior of the

π σ η

σ
µ

π σ η

σ
µ

FIG. 5. The same as Fig. 4, but with the full ISI interaction.

meson-nucleon scattering transition matrix, which cannot be
assessed experimentally. The checked independence of the
results on that necessarily model-dependent input strengthens
the conclusions to be drawn at the end.

Further and more decisive conclusions demand an exact
treatment of the initial state reduction effect, which as
explained in Ref. [14], may be different for the different meson
exchanges. This will be addressed in the next section.

C. The N N initial state interaction

All the results shown in the previous section were obtained
with an approximation for the distortion from the NN

interaction in the initial state (ISI), more precisely, for the
convolution integral of the production amplitude with the
scattering transition matrix for the initial NN state. Given
the relatively high threshold energy for η production, one may
be led to neglect the energy dependent part, i.e., the principle
part of that integral. Then the distortion is simply described by
a constant factor, originated by the “iπδ,” or the two nucleon
unitarity cut contribution to that integral. However, since
different mesons have different ranges, the contribution to the
principle part is not the same for all the mesons. Moreover, as
explained in Ref. [14], there is a cancellation between the Born
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TABLE IV. Reduction factors from the initial state NN inter-
action in the several models, for the case where the π + η + σ

exchanges are present simultaneously.

Model Reduction factor

0 0.7014
1 0.1739
2 0.1298
3 0.0841
4 0.0874
5 0.0834
6 0.0818

term and the contribution from the unitarity cut. Consequently,
the principal part, although small, acquires a leading role in
the reduction effect of the cross section.

Therefore, in this section we present in Fig. 5 the results
corresponding to Fig. 4, but where the complete initial state
distortion is included. The main outcome visible in Fig. 5 is
that the models with larger ηN scattering length now also fail
in the description of the data for high energy region.

π σ η η

σ
µ

π σ η η

σ
µ

FIG. 6. The same as Fig. 5, but with the inclusion of η’ exchange
in the box diagram represented by Fig. 1.

We verified that model 0 is the one afected to the least
extent by the initial state interaction, as Table IV reports. This
finding is consistent with the specific content of that model:
the pion momentum range parameter απ and the scattering
length for the short-range ηN interaction are smaller than
in other models. Due to this feature, and since the initial
state interaction is induced by large three-momentum transfer
(short-distance interactions) between the two nucleons, in
model 0, both the pion and the heavier mesons are less affected
by the initial state reduction.

D. The heavy meson exchange

Finally, we introduced in the box diagram the contribution
of the η′ meson with its strength adjusted so as to reproduce
the cross section near threshold. Since this is a heavy meson
exchange, this process acts like a background correction to
the isobar model of the nucleon-meson amplitude. Therefore,
there is no S11 resonance propagation associated to this
exchange, but a simple contact or constant term.

The results in Fig. 6 indicate that a reasonable description
of the data could be obtained with a model in between model
0 and model 1, i.e., with a ηN scattering length larger than
0.42 fm and smaller than 0.72 fm.

IV. CONCLUSIONS

To summarize, the relativistic calculation of the np → ηd

presented here is based on meson exchange production mech-
anisms and confirms that the final state ηd interaction is very
important near threshold, as found before in nonrelativistic
models. This interaction alone explains the enhancement effect
observed in the cross section near threshold. This result is not
surprising since the system has a very strong ηd interaction in
the final state and therefore it follows from Watson’s theorem
[33] that the shape of the cross section will be determined
basically by this final-state interaction.

Although the pion exchange visibly does not describe the
data near threshold because it needs to be further enhanced
by the ηd final state interaction, an important conclusion is
that the relativistic pion exchange contribution dominates the
reaction exchange mechanisms.

Also, relativistic models corresponding to relatively lower
values of the ηd scattering length (e.g., the Julich model,
labeled here by model 0) when compared to their nonrelativis-
tic versions, have the large pion momentum range reduced,
and simultaneously the small momentum strength accentuated
relatively to the high momentum strength. The first feature is
important for the energy dependence of the cross section in
the threshold region, while the second is important away from
the threshold energy region. A fine balance in the combination
of the two features seem to be needed to describe successfully
the overall energy dependence of the cross section.

Another important conclusion is that the NN initial state
interaction cannot be described by the same constant factor
for all the meson-nucleon models, due to the accidental
cancellation between the undistorted term and the unitarity
cut contribution.
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Therefore, the control of relativistic effects, as well as of
the distortions by initial and final state interactions, is needed
in the phenomenological analysis of the reaction. Namely,
it may help narrowing the uncertainty in the knowledge of
the ηN scattering length. A value for this one between 0.42
(model 0) and 0.72 fm (model 1) seems to be indicated by this
study, together with the exchange of a very short-range heavy
meson. Nevertheless, our results call for a comprehensive
study to search for the ηN model parameters which describe

η production, both on the nucleon and on the deuteron, very
near as well as away from the threshold energy.
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