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Abstract

It is shown that the neutrino mass matrices in the flavour basis yielding a vanighiraye char-
acterized by invariance under a classZaf symmetries. A specifi@; in this class also leads to a
maximal atmospheric mixing angi»s. The breaking of thaZ, can be parameterized by two di-
mensionless quantities,ande’; the effects ok, €’ # 0 are studied perturbatively and numerically.
The induced value ofU,3| strongly depends on the neutrino mass hierarchy. We find that is
less than @7 for a normal mass hierarchy, even wher’ ~ 30%. For an inverted mass hierarchy
|U.3| tends to be around.D but can be as large asld. In the case of quasi-degenerate neutrinos,
|U,3| could be close to its experimental upper bourtl th contrast|cos 2»3| can always reach its
experimental upper boundZB. We propose a specific model, based on electroweak radiative cor-
rections in the MSSM, foe ande’. In that model, bothU,3| and|cos @53, could be close to their
respective experimental upper bounds if neutrinos are quasi-degenerate.
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1. Introduction

In recent years, the observation of soJar2] and atmospheri¢3] neutrino oscilla-
tions has dramatically improved our knowledge of neutrino masses and lepton mixing.
The neutrino mass-squared differen¢ag, and Aam, and the mixing angles tafsynand
Sin? 26am, are now quite well determined. The third mixing angle, represented by the ma-
trix elementU,3 of the lepton mixing matrixJ (MNS matrix [4]), is constrained to be
small by the non-observation of neutrino oscillations at the CHOOZ experifsEnt

In spite of all this progress, the available information on neutrino masses and lepton
mixing is not sufficient to uncover the mechanism of neutrino mass generation. In partic-
ular, we do not yet know whether the observed features of lepton mixing are due to some
underlying flavour symmetry, or they are mere mathematical coincidd6tes the see-
saw mechanism. Two features of lepton mixing which would suggest a definite symmetry
are the small magnitudes bf3 and cos 2»3, whered,s is one of the angles in the standard
parameterization of the MNS matrix and coincides with the atmospheric mixing ésqgle
whenU,3 = 0. The best-fit value faf,3 in a two-generation analydi8] of the atmospheric
data isfp3 = /4, corresponding to co®2; = 0. Likewise,|U.3| is required to be small:
|U.3| < 0.26 at 3 from a combined analysis of the atmospheric and CHOOZ [fjta
This smallness strongly hints at some flavour symmetry.

There are many examples of symmetries which can foggeand/or cos &3 to vanish.

Both quantities vanish in the extensively studied bi-maximal mixing Angatk1], which
can be realized through a symmeffy2]. One can also make botti.3 and cos 2,3 zero
while leaving the solar mixing angle arbitrgd/3,14] Alternatively, it is possible to force
only U,3 to be zero, by imposing a discrete Abeli®] or non-Abelian[16] symmetry;
conversely, one can obtain maximal atmospheric mixing but a 8fgeby means of a
non-Abelian symmetry or a non-standard CP symmgiry.

The symmetries mentioned above need not be exact. It is important to consider per-
turbations of those symmetries from the phenomenological point of view and to study
guantitatively[18] the magnitudes of/.3 and cos 2,3 possibly generated by such pertur-
bations.

This paper is a study of a special class of symmetries and of the consequences of their
perturbative violation. We show in Secti@rthatU,3 vanishes if the neutrino mass matrix
in the flavour basis is invariant under a classZefsymmetries. The solar and atmospheric
mixing angles, as well as the neutrino masses, remain unconstrained byzZthegm-
metries. Thos&, symmetries thus constitute a general class of symmetries leading only
to a vanishingl.3. We point out that there is a speci@j in this class which leads, fur-
thermore, to maximal atmospheric mixing. We consider more closely that spggifit
Section3, wherein we study departures from the symmetric limit. We parameterize pertur-
bations of theZ-invariant mass matrix in terms of two complex parameters, and derive
general expressions fdf,3 and cos .3 in terms of those parameters; we also present
detailed numerical estimates bf3 and cos 2»3. Section4 is devoted to the study of the
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specific perturbation which is induced by the electroweak radiative correctionge a
invariant neutrino mass matrix defined at a high scale. We discuss a specific model for this
scenario. In the concluding Sectiérwe make a comparison of the predictions fo3|

and cos 8,3 obtained within various frameworks.

2. Vanishing U,3 from a class of Zo symmetries

The neutrino masses and lepton mixing are completely determined by the neutrino mass
matrix in the flavour basis—the basis where the charged-lepton mass matrix is diagonal—
which we denote as,¢. In this section we look for effective symmetries.®t, ; which
may lead to a vanishing.,s.

One knowd19] that the lepton-number symmetty, — L,, — L. implies (i) a vanish-
ing solar mass-squared differenggyn, (i) @ maximal solar mixing anglé»3, and (iii)

a vanishingU,s, while it keeps the atmospheric mixing angle unconstrained; one must in-
troduce[20] a significant breaking of, — L, — L. in order to correct the predictions

(i) and (ii). A better symmetry seems to be ther interchange symmetrfi3], which
implies vanishing/.3 and maximab,3, but leaves both the neutrino masses and the solar
mixing angle unconstrained,; this is consistent with the present experimental results. The
u—t interchange symmetry can be physically realized in a model based on the discrete
non-Abelian groupD4 [14]; a variation of this moddlL6] keeps the predictioty,3 = 0 but

leaves the atmospheric mixing angle arbitrary. Recently, [} has considered models
whereinM, ¢ has, due to a discrete Abelian symmetry, a structure leadibgzte- 0.

We now show that there exists a clags(y, «) of discrete symmetries of th&, type
which encompasses all the models discussed above and enforces a oy déading
to U.3 = 0. This class is parametrized by an anglé0 < y < 2x) and aphase (0< a <
2m). The symmetnZ,(y, «) is defined by the X 3 matrix

1 0 0
Sly,a)= (0 cosy e '@ siny). (1)
0 e'*siny —cosy

This matrix is unitary; indeed, it satisfies
[S(r. )] = 1axa, @
[So. o] =[St. ] ©)

Eq.(2) means thaS(y, «) is a realization of the grou@,. We define theZa(y, «) invari-
ance ofM, s by

[S(r. )] MusS(y, @) = My @)
If one writes
X A B
Muf=(4 ¢ o) ®
B D E
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where all the matrix elements are complex in general, ther{&ds equivalent to

B .

2 _eiegant = 0,

A 2

(¢'“E —e™"*C) siny + 2D cosy =0. (6)

Let us first prove that th&,(y, o) invariance ofM, s implies U,3 = 0. The matrix
S(y,a) has a unigue eigenvaluel corresponding to the eigenvector

0
v=| exp(—ia/2)sin(y/2) |. @)
—expia/2)cosy/2)

Eq. (4), together withS(y, «)v = —v, imply that[S(y, oe)]T(/\/lva) = —(M,rv). Then,

Eq. (3), together with the fact that the eigenvalud of S(y, «) is unique, implies that
M, v xv*. Now, M, determines the lepton mixing matrix—MNS matrixg—accord-

ing to

M, = U* diagimy, ma, ma)U”, (8)

wherem1, mp, andmg are the (real and non-negative) neutrino masses. Thus, if we write
U = (u1, uz, u3), then the column vectous; satisfy M, ru; = mjuj for j =1,2,3. The

fact that M, sv oc v* therefore means that, apart from a phase faatds one of the
columns of the MNS matrix, hendé,z = 0.

Let us next prove the converse of the above, i.e.,that= 0 implies that there is some
angley and phasex such thatM,r is Z>(y, a)-invariant. If U,3 = 0 thenU may be
parametrized by two angles > and five phaseg1 2345 as

et X1 cosy e X2 sing 0
U= —¢X3sin®icosty e X2tx3—x1 cosyy cosdy e x4 sing,
exssingysing,  —el(X2txs—XD cospy sing, el XatX5—X3) cos,y

©)
When one computed,; through Eq.(8) one then finds that it satisfies E() with
y/2=12anda = x5 — x3+ 7.

One has thus proved tleguivalence of U.3 = 0 with the existence of some angteand
phasex such thatM, is Z(y, a)-invariant.

It should be stressed thab(y, «) will not usually be a symmetry of the full model,
nor is it necessarily the remaining symmetry of some larger symmetry operating at a high
scale. Some examples may help making this clear:

e The u—t interchange symmetr§i 3], which corresponds to cgs= 0, ¢/ siny =1,
cannot be a symmetry of the full theory, since the masses qi tiedt charged lep-
tons are certainly different; thus, that symmetry must be broken in the charged-lepton
mass matrix, but that breaking must occur in such a way that it remains unseen—at
least at tree level—in the form of1, ;. Moreover, theu—t interchange symmetry
predicts cos&3 = 0 together withU,3 = 0.
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¢ Many models based ob= L, — L, — L, lead to[19]

X y ry
M=y z rz|. (10)
ry rz rzz
In this case cog = (1—|r|?)/(1+|r|?) ande'® siny = 2r*/(1+ |r|2). The symmetry
Z>(y, @) is not a subgroup of the origindl symmetry, rather it occurs accidentally as
a consequence of the specific particle content of the models and of the particular way
in which L is softly broken. The mass matrix in Ed.0) predictsms = 0 together with
U, =0.
e The softly-brokenD4 model[16] has

X
M;fl =1y (11)
t

o N =<
N O~

together with the condition ang? = args2. In this case cog = (y2 — 1) /(y2 + 1)
ande’® siny = 2yt /(y% +1?). The fact that théy, ) matrix element of\1 * is zero,
and the fact that itéu, ) and(z, t) matrix elements remain equal, are just reflections
of the limited particle content used to break the origibalsymmetry softly.

Thus, the symmetrZa(y, @) may be fundamental, effective, or accidental, depending on
the specific model at hand.

Considering Eq(9) more carefully one notices that the phase x5 — x3+ 7 is physi-
cally meaningless, since it can be removed through a rephasing of the charged-lepton fields.
Let us then sek = 0. In that case, thé,; satisfying Eq(6) can be written in the form

X V2Acody/2) ~/2Asin(y/2)
M, = | ~/24cogy/2) B+ Ccosy Csiny ) (12)
V2Asin(y /2) Csiny B — C cosy

The eigenvalue corresponding to the eigenvector ifBqgs B — C.
Specific choices of the parameters in EtR) give different models. The model with
B =C =X =0 corresponds td, — L, — L, symmetry[19]. The model withy = /2
corresponds tau—t interchange symmetrfi3]. The D4 model in[16] hasX = A2/D.
Likewise, various models if15] can be shown to have&, ; which is formally identical
to the matrix in Eq(12).
In this paper we modify the standard parametrizatiorlfdsy multiplying its third row
by —1,i.e., we use
€13€12 €13512 s1ae ™"
U = | —co3s12— s23s13c12¢"®  c23012 — 523513512 23013
—s523512 4 c23513c12¢"  s23c12+ 235135106 —C23013

x diag(e'”, €', 1). (13)
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Then, if we letU,3 = s13¢ 7% = 0, Eq.(8) reduces to Eq12) with y /2 = 63 and

X = c%zmle_zw + sfzmze_zm,

C12512 _92i
A=— (mle 2ip

_mze—Zia),
V2
1 » N
B = E(sfzmle 2p 4 c%zmze 2o 4 m3),
1 2io

C= E(sfzmle_Zip + c%zmze_ —m3). (14)

3. Non-zero U,3, cos260,3 from Z, breaking

Models withU,3 = 0 can be divided in two different categories:

e Those in which the solar scale also vanishes, along With These are obtained by
settingm1 = m» in Eq. (14). In these models, the perturbation which generates the
solar scale can be expected to also gendigieand one may finiL8,21]correlations
between them.

e Models in which the solar scale is present already at the zeroth order. These are rep-
resented by Eq12) without additional restrictions on its parameters, except possibly
y =m/4.

We consider here the more general second category, byt fixr /4, i.e., we consider
models with vanishind/.3 and cos 223. M,y can be explicitly written in this case as

M,y = Ug diagimy, ma, m3)Ug, (15)
whereUy is obtained from Eq(13) by settings;3 = 0 andd,3 = /4. One then has

X A A
A C B

Consider a general perturbatiéov, s to Eq. (16). The matrixéM,r is a general
complex symmetric matrix, but part of it can be absorbed through a redefinition of the
parameters in Eq16). The remaining part can be written, without loss of generality, as

0 e —€a
My = ( €1 e 0 ) . a7

—€1 0 —e

The perturbation is controlled by two parameteisande,, which are complex and model-
dependent. We want to study their effects perturbatively, i.e., we want to agsuamde;

to be small. This smallness can be quantified by saying either that they are smaller than
the largest element in, ¢, or that the perturbation to a given matrix elemeni\df,; is
smaller than the element itself. We adopt the latter alternative and define two dimensionless
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parameters:
€1=¢€A, e2=¢€'B. (18)
Thus, we have the neutrino mass matrix withbreaking as follows:
X A(l4+e) A(l—e)
M, = <A(1+e) B+¢€) C ) (19)
A(l—e) c B(1—-¢€)

where we shall assunweande’ to be smallje|, |€'| « 1.

One finds that, to first order ia ande’, the only effect of th& M, ¢ in Eq. (17)is to
generate non-zerd,3 and cos 2,3. The neutrino masses, as well as the solar angle, do not
receive any correctiong/,3 and cos 83 are of the same order asande’. Define

1 =mye %P, (20)
o =moe 27, (22)
and
€ = (m1 — mo)e, (22)
A2 ~ 2
B miSy, +mocs, +m3
6/ = 12 12 6/. (23)
2
Then, we get
§12€12 ~ - -/ A -
Us=—5—— (esfzmg + e*sfzmg —&'mb —&*m3)
—m
3 2
§12€12  ,_ ~ - —/ A~ _
+ ﬁ(ecfzm’{ + & cfomz + Emy + & *m3), (24)
mg —mg

2

2
COS do3 = Re{ Lzz (ES%Z — 5/) (mo +m3)*
mz —m3
2% 2 - 25
—ﬁ(fclz%)(mﬁms)*} (@3)
mgz—my
The meaningful phases i, ; are the ones of rephasing-invariant quartets. Sivtg
is symmetric, there are three such phases which are linearly independent. (Correspond-
ingly, there are three physical phases in the MNS ma#ri2o, and 2 .) One easily sees
that, in the first-order approximation énande’, the imaginary parts of those two small pa-
rameters are meaningless when taken separately; oiiB¢ k') is physically meaningful
to this order. Indeed, one can manipulate EQ4) and (250 obtain

2

C

12 2 2 2 2 A A A

COSDr3 = { 2 — m2 [m§ + ciom5 + si, ReGiyms + mims)
2 ™3

+ (1 + C%Z) Re(rf’lzmg)]

S
12 2,2 2, 2 A .
+ —5—=—[m3 + s{ym] + ¢, Retiam] + iipm3)
my —mg
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+(1+ sfz) Re(iims)| } Ree’

2 A A ~ ~

PR m5 — Re(mam’ + mims — nipzms3)
C12512 2 _ 2
m2 m3

+ 2 2

m% — Re(n%y?z; — myim3 + moms3)
Ree
my—mg

N cizsfz(m% - m%) Im(@iym3 + mimz + mims3) Im(2e — ¢’y (26)
(m3 —m%)(m§ —m3)

Usg 1 1 2 A n 2 A 2\ 2, 2. 2
=513 5 [slzmlmz + s{omim3 + (1 + clz)m§m3 +m5+ Clzmz]
c12s12 2| m5—m3
1 A . .
+ ﬁ[cfzm"im2+c§2m’2ﬁm3+ (1+ 52 ma+m5+s2,m7]  Ree’
ms—m
3 1

s
12 2 A A ~ o
+ [ﬁ (mz — mymy —mims+ m§m3)

my — gy
sz 2
+ ﬁ(ml —mima + n%img — n%;mg):| Ree
mg—my

, 2
1 S
12 S A
T3 [ﬁ (3 = gy + it ims = riczma)
mz —m3
2
+ 12— Z(ml—n%’{rhz—n%im3+ﬁ1§m3):| Im(2e — €"). (27)

mgz —my

The induced values ofU,3| and|cos 23| are strongly correlated to neutrino mass
hierarchies. This makes it possible to draw some general conclusions even if we do not
know the magnitudes of, ¢’. In Table 1we give expressions and values f@f.3| and
|cos D3| in case of the hierarchicaly < ma < m3), inverted (i1 ~ ma ~ /Aagim > m3)
and quasi-degenerate neutrino spectrum. CP conservation is assumed but we distinguish
two different cases (a) the Dirac solar pair corresponding te o = 0 and the pseudo-
Dirac solar pair with p = 7/2, o = 0. We have also given approximate values in some
cases assuming the common degenerate mas$.3 eV.

It follows from theTable 1land Eqs(26), (27)that:

e The first-order contribution td/,.3 given in Eq.(27) vanish identically ifiiy = mo.
As a consequence of thi&,3 gets suppressed by a fac’(@(%:) for the inverted or
quasi-degenerate spectrum with= o = 0. Similar suppression also occurs in case of
the normal neutrino mass hierarchy even whes o. U,3 need not be suppressed in
other cases and can be large.

1 The physically different case with=0, o = 7/2 has similar results.



W. Grimus et al. / Nuclear Physics B 713 (2005) 151-172 159

Table 1

Leading order predictions fdlU,3/|, |cos D3| in case of different neutrino mass hierarchies with CP conserva-

tion. The numerical estimates are based on the best fit values of neutrino parameters and the quasi-degenerate
massn =0.3 eV

. ! ’
Normal hierarchy |Uesl & c12512,/ 75 (e + &) ~ 0.09(¢ + &)
m1 < ma; m3~ Asur m3 ~ Aatm lcos D3| ~ €
Inverted hierarchy |U,3| 25;;2151%12( ) ~0.009¢ — &)
c=0;p=0 |cos Doz ~ €’
0c=0;p=m/2 |U,3| ~ 25|n4912(e——) 04(6——)
|COS Dog| ~ 2(e SiP 2012+ & , cof 2617)
. 2 A
Quasi-degenerate |Up3| & 2€'c12512 A”;tm Ao~ 1.6¢
2
c=0;p=0 |cos D3| ~ 442 e’%lBOs/
c=0;,p=m/2 |U,3| ~ Aatmclzslz(eslz + < 6‘12) 81(5&12 +5 612)

2 2 & , ‘
|c0S P3| ~ Mn‘lz(eslz+ g2, ~259est, + 5 b))

o In contrast toU,3, cos @3 is almost as large as, ¢’ if neutrino mass spectrum is
normal or inverted. It gets enhanced compared to these parameters if the spectrum is
quasi-degenerate.

e In case of the quasi-degenerate spectrum, bmik 2,3| and|U,3| can become quite
large and reach the present experimental limits. Especially, the enhancement factors
are large in case of the pseudo-Dirac solar paie(/2, o0 = 0). U,3 and cos 2,3
are in fact proportional to each other in this particular case. The parametérare
constrained to be lower than 19for the quasi-degenerate spectrum.

The perturbative expressions given above may not be reliable for some valags of
due to large enhancement factor@f;— =) and one should do a numerical analysis. We
now discuss results of such anaIyS|s in various circumstances. Scattered plots of the pre-
dicted values foilcos @,3| and |U,.3| are given inFig. 1in the case of normal neutrino
mass hierarchy. CP conservatign=£ o = 0, reale, €’) is assumed. Neutrino masses and
01> do not receive any corrections ék(e, ¢’) and hence do not appreciably change by
perturbations. We therefore randomly varied these input parameters in the experimentally
allowed regionsm; was varied up tan,. On the other hang, ¢’ are unknown unless the
symmetry breaking is specified, so these are varied randomly in the rah8e0.3 with
the condition that the output parameters should lie in the 90% C.L. [layt:

Asun<8.8x107°eV?, 90% C.L,
Aam<3.4x103eV?, 90% C.L. (28)

0.33< tarf Hsyn< 0.49, 7.7x10°°
0.92< Sir? 20am, 15%x10°3

NN

The |U.3| is forced to be small less than025, inFig. 1 as would be expected from
the foregoing discussion. The value0.025 at the upper end arises from the (assumed)
bound|e|, |¢’| < 0.3. Since|U.,3| is proportional tce, €/, it increases if the bound an €’
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| Ues | 0.1}

0.075¢

0.05¢

0.025 g

0.05 0.1  0.15 0.2 0.
| cos 2 013 |

Fig. 1. The scattered plots showing the allowed valugsas 23| and|U,3| in case of the normal neutrino mass
hierarchy.e, ¢’ are randomly varied in the range0.3-0.3. The Majorana phases are chosen a9, o = 0.

o

-

3 .

w
PRI

0.05 0.1  0.15 0.2  0.25
| cos 2 8o |

Fig. 2. The allowed valuegos P3| and|U, 3| for p = /4, o = 0 and the normal neutrino mass hierarchy. The
other parameters are the same aBiq 1

is loosened. Howevefl¢| < 0.3 is a reasonable bound due to assumgjifbreaking is
perturbative. On the other hanidos 2»3| can assume large values as seen fleg L
The present bound si26,3 > 0.92 from the atmospheric experiments gets translated to
|cos P»3| < 0.28 which constraing’| < 0.2 in our analyses.

The non-maximal value fak3 gives rise to interesting physical effects such as excess of
thee-like events in the atmospheric neutrino data in the sub-GeV r¢gjndifferent mat-
ter dependent survival probabilities for the and thev,, [23]. These can be searched for in
the future atmospheri@4] and the long baseline experiments. The valges 2»3| > 0.1
are expected to be probed in these experimfk These values occur quite naturally
for a reasonably large range of parameters. In order to find the phase dependence of our
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| Ues | o0

0.1 ;
| cos 2 093 |

Fig. 3. The allowed valueigos &»3| and|U,3| for p = /2, 0 = 0 and the normal neutrino mass hierarchy. The
other parameters are the same aBiq 1

| U | 0.1}

0.075}

0.025}

0.05 0.1 0.15 0.2 0.25

| cos 20y |

Fig. 4. The allowed values ¢€os 23| and|U,3| for p =0, o = 0 in case of the inverted neutrino mass hierarchy.
Thee, ¢’ are varied randomly in the range0.3—-0.3 whilems is varied up to 102 eV.

results, we show the results in the caseswi(r /4,0 =0) and p = /2,0 =0). The
phase dependence is found in the predictiofi®$|, which increases up to@75.

The regionU.3| > 0.07 is expected to be probed in the long baseline experiments with
the conventional or super bearf6] and in the reactor experimeni7]. The smaller
values forU.3| ~ 0.025 can be reached only at the neutrino facf@s}. Most of the region
displayed inFigs. 1-3therefore seem inaccessible to the near future neutrino experiments
aimed at searching fat/,3|.

Scattered plots for the predicted values|igss| and|cos 23| are given irFig. 4in case
of the inverted hierarchy of the neutrino masses. The valligaf is even more suppressed
compared to the corresponding case displayeBign 1 This suppression is due to the
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| Ue3 |

Fig. 5. The allowed values dtos@,3| and |U,3| for p = 7/4, o = 0 in case of the inverted neutrino mass
hierarchy.

| Uz |

| cos 2 893 |

Fig. 6. The allowed values dtos 3| and |U,3| for p = n/2, 0 = 0 in case of the inverted neutrino mass
hierarchy.

strong cancellation betweem andmy, which is seen ifTable 1 However, the Majorana
phases spoil this cancellation, and|8Q3| could be larger as seenkfigs. 5 and where
the two casesd= /4,0 =0) and p = /2, 0 = 0) are displayed, respectively. Thus,
the effect of the Majorana phases is very important in the inverted hierarchy. The isolated
points inFig. 6follows from the tuning of the parameterande’. Apart from this tuning,
the allowed values ofU,3| are moderate~ 0.1 but will be explored in the future long
baseline and reactor experiments.

The parametet’ is constrained stronglje’| < 0.03 in case of the quasi-degenerate

neutrino masses due to an enhancement fa(@l(oj%) present in this case, as seen in
Table 1 |¢| is however not constrained as strongTy and we tiake< 0.3. The scattered
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0.075

0.025

Fig. 7. The scattered plots of the allowed valuesools 2,3 and |U,3| with || < 0.3 and|e’| < 0.03 and the
quasi-degenerate neutrino masses. The Majorana phases are chpsefas = 0. The degenerate mass scale
is fixed atm = 0.3 eV.

0.175

0.125
| Ue3 | 0.1
0.075
0.05f

0.025p

Fig. 8. The allowed values ¢€os D3| and|U,3| in the quasi-degenerate neutrino masses. The Majorana phases
are chosen as = /4,0 = 0. The degenerate mass scale is fixea at 0.3 eV.

plots for the predicted values fot/.3| and|cos 2»3| are given inFig. 7. The value of
|U.3| is expected to b&(0.01). There are partial cancellations among contributions from
m1, mp, m3z when p = o. However, different choice for the Majorana phases spoil this
cancellation andU,3| could be large as seen figs. 8 and 9which correspond tog(=
/4,0 =0)and p = /2,0 = 0), respectively. Itis found that/, 3| could increase to.Q

in these cases.

In the above analyses, we fixed= 0 because only the relative phage- o is es-
sential in determining the masses and mixing angles in the case of the hierarchical and
inverted hierarchical neutrino masses. Howeweependence is non-trivial for the de-
generate masses. We show the results foe=0, 0 = /2) and p = n/4, 0 =n/2) in
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.1 0.15 0.2 0.25
| cos 20,3 |

Fig. 9. The allowed values ¢€os D3| and|U,3| in the quasi-degenerate neutrino masses. The Majorana phases
are chosen gs = /2,0 = 0. The degenerate mass scale is fixea at 0.3 eV.

0.1 0.15 0.2 0.25
| cos 20,3 |

Fig. 10. The allowed values ¢dos o3| and|U,3| in the quasi-degenerate neutrino masses. The Majorana phases
are chosen as =0, 0 = /2. The degenerate mass scale is fixea at 0.3 eV.

Figs. 10 and 1Xespectively. It is noted thgU,3| could be as large asDfor the case

p=m/4,0 =m/2 butvalues< 0.1 are more probable as seen from the density of points.
Before ending this section, we wish to point out an interesting aspect of this analysis.

SincelU.,3 is zero in the absence of the perturbation, the CP-violating Dirac phatevant

for neutrino oscillations is undefined at this stage. CP violation is present through the

Majorana phasep ando. Turning on perturbation leads to non-zdvgs and also to a

non-zero Dirac phase even if perturbation is real. Moreavgenerated this way can be

large and independent of the strength of perturbation parameters. This phenomenon was

noticed[29] in the specific case of the radiative generatiorUgi. This occurs here also

for a more general perturbation.
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Fig. 11. The allowed values ¢dos D3| and|U,3| in the quasi-degenerate neutrino masses. The Majorana phases
are chosen as = /4,0 = /2. The degenerate mass scale is fixea at 0.3 eV.

As an example, let us consider the lirlit= 0 and areat. SinceU 3 is almost maximal
and realg is approximately given by

mqmoSiN2(p — o) —m3m1 Sin2p + mom3sSin2o + O(ﬁ;‘r:) Im(2)

tans ~ 55 53 = ,
M{CTo — M55 — m1m COS P12C0SAp — o) + m3m1 COSP — moym3zCoOS + O(ﬁ) Re(2)

(29)

where Z = (m3 (i1 — m2) + m3(ry — rﬁz)*)sfz. It follows from above that irrespective
of the specific mass hierarchy, the indudedould be large ifo ando are large and not
finetuned.

4. Radiatively generated U,3 and cos2653

Thee, ¢/ were treated as independent parameters so far. They can be related in specific
models. We now consider one example which is based on the electroweak breaking of the
Z, symmetry in the MSSM. We assume that neutrino masses are generated at some high
scaleMy and the effective neutrino mass operator describing the symmetric with
the result that/,3 = cos 2»3 = 0 at Mx. This symmetry is assumed to be broken sponta-
neously in the Yukawa couplings of the charged leptons. This breaking would radiatively
induce non-zerd/,3 and cos 223 [30]. This can be calculated by using the renormalization
group equations (RGESs) of the effective neutrino mass ope€figtef33] These equations
depend upon the detailed structure of the model by We assume here that theory
below My is the MSSM and use the RGEs derived in this case. Subsequently we will give
an example which realizes our assumptions.

Integration of the RGEs allows [i31-33]to relate the neutrino mass matix, s (Mx)
to the corresponding matrix at the low scale which we identify here wittZtheassM;:

Myp(Mz) = I I (IMyp (Mx)T), (30)
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where I, ; are calculable numbers depending on the gauge and top quark Yukawa cou-
plings. I is a flavour dependent matrix given by

I ~diagl+ 8., 1+8,,1+8;) (31)
with
5y~ o ) M (32)
o« N v Mz’
3 1

wherec = 3, ~oF in case of the Standard Model (SM) and the Minimal Supersymmetric
Standard Model (MSSM) respective]$1]. v refers to the vacuum expectation value for
the SM Higgs doublet.

We have implicitly neglected possible threshold effects. Inclusion of these effects would
not modify the analysis if threshold effects are flavour blind as would be approximately
true[34] in case of the minimal supergravity scenario with universal boundary conditions.

M, r(Mx) is given by Eq(16). From this we can write\,, s (Mz) as follows when the
muon and the electron Yukawa couplings are neglected:

X A A 0 Ale —Ale
MVf(Mz):(A’ B’ C/)+(A’e B¢ 0 )+0(5$), (33)

A C' B —Ale 0 -B¢
where
C'=C(1+36,), A’:A<1+%’>, B'=B(1+56,), e:%:—%
(34)

and A, B, C are defined in Eq(14). Note thatm1, m2 andmgs defined previously are no
longer mass eigenvalues because of the chaagesA’, B — B’ andC — C’. Using the
above equations, we get from Eg4)

_8es12c12
Z(mg — mi)
5fsfz 2 ~ 2 5rc§2 2 ~x 2
C0S Doz~ —— [m7 + 2mam] + m3| + ——=5[m5 + 2hsmz+m3].  (35)
mgz—my 3~ My
It is easily seen that the effect of the radiative corrections is enhanced in the case of the
guasi-degenerate neutrino masses with opposite ghaser| = 7/2 as previous works
presented32,33] In the MSSM, the parametég is negative and its absolute value can
become quite large for large t@ne.qg., for targ ~ 50, |5, | ~ 0.075. However, large taf
is not favoured because the renormalization of paramdteBs C as in Eq(34)also shifts
the value of the solar angle and solar mass compared to their valuesdn-the limit.
One now gets

drs12€12

2 ~ 2
2m32 — m3 [m3 + 2i5ms + m3].

Ues =~ %+ 2marc + m3] +

~ —2ip 2 —2ic 2 |2
AsunCOS@sunN A21COS$12+251|I’}11€ lpS12+m2€ 10012 . (36)

Here,Az1 = m% — m{ and61, correspond to the values of the solar scale and angitxat
The radiative corrections add a negative contributiondg,cos @synin case of the MSSM
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|Ue3 | 0.15

Fig. 12. The scattered plots of the allowed valuegof 2»3| and|U,3| in case of the radiatively brokefi, and
the quasi-degenerate neutrino masses 0.3 eV. The Majorana phases are chosep &s0,0 = /2.

and can spoil the LMA solution (which need positixg,ncos Dsyn) if Az is small or|d;|

is large. This provides a constraint on possible value$, adnd consequently ofU.3|,

|cos D3| that can be generated in the model. For example, requiring that the first term
dominates over the second term in E86) implies

A1 ~11=3
1821 < (2m2cos 2912) ~ 1072, (37)
where we assumed CP conservation, the quasi-degenerate specteunm2; p =0, m =

0.3 eV, andAy; ~ 8 x 107° eV2. The values fotU,3| and|cos @3] implied by the above
constraint are quite small. Notice however that one can loosen the boundgrthoosing
significantly larger valuei,; than 8x 10~° eV2. The cancellations between two terms in

Eq. (36) can still lead to physical solar scale.

Results of the numerical analysis are showifrig. 12in case of the quasi-degenerate
spectrum withn = 0.3 eV;o = /2, p = 0. Thef1,, Ap1 and targ at high scale are varied
randomly, then the allowed choices which reproduce the parameters as(28[tat the
low scale are determined. Botthl,3| and|cos 2,3| can reach their respective experimental
bound. The near proportionality between the two can be understood from their expressions
given in Table 1 We find numerically that taf is constrained to be lower than 20 in
this case. The forthcoming experiments will be able to test this relationship betgegn
and|cos &»3|. It may be useful to note our numerical results|&fs| in the cases of the
normal-hierarchy and inverted-one of the neutrino masses. In both ¢&sgisieaches at
most Q025. These results are consistent with one in F3€X.

Let us now give an example which realizes our assumptions. One nekdmeariant
neutrino mass matrix and a charged lepton mass matrix which break it at the high scale.
This breaking is required to be spontaneous. This can be done without invoking additional
Higgs doublets provided one introduces several singlet fields. The model below is based
on the MSSM augmented with two pairs of the standard model singlet fields denoted by
(n1, n2) and @71, 72). We impose a discretéq x Z4 symmetry under which various super-
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fields transform as follows:

(Mca ‘Ccv ﬁls nzlk_) ~ (is 1)a (Dea nZa 7_7;) ~ (17 i)’
ecw(la_l)a wa(_lv 1)’ (38)

where D, («¢) denote the leptonic doublets (singlets) with flaveue e, u, t; DL =
DDy The D4 and the standard Higgs superfields ; transform as singlets. We assume

that theZ4 x Z4 symmetry is broken by the vacuum expectation values ofjtfields at a
scale only slightly lower than the neutrino mass sddle. As a result, non-renormalizable
terms involving these fields can give sizable contributions to Yukawa couplings as in the
Froggatt—Nielsen mechanig35].

The following dimension 5 terms in the superpotential contribute to the charged lepton
masses:

Hin , Hyn cHanz
D_(Iu¢+rz° I,D.e .
Myx + ( uht” T 17 ) Myx +

Wy = Do (Fup’ + ) (39)

The neutrino masses follow from the following non-renormalizable operators invariant
under theZ, x Z4 symmetry:

Wy = % (Dy Hy) (D Hy) + - (D_H)T(D_H,)
v MX + iy + 1y MX — L1y — L1y

14 T n2
— (D1 H,)" (D.H,)—, 40
+MX( + L) ( e u)MX ( )

where we have suppressed the Lorentz 8dd?) indices. Eq(39) leads to the charged
lepton mass matrix

de 0 0
Mi=|0 a,—a, a—a;|, (41)

0 ay+a, ar+a;

where

(HJ) (n2) Ty (HP)(n1)

ap=I,———, ay = ,
My ﬁ MX
Iy (H) (i)

a, = 5 My (=, 7). (42)

The neutrino mass matrix has th® invariant form of Eq.(16) but with X = 0. This
together with the charged lepton mass matrix in Eq.) imply that theU.3 = 0 at the

tree level. In the limi, = a,,, Eq. (41)leads to a massless muon and also corrections to
623 from the charged leptons vanish. In this limit, the model is equivalent t&thaodel

with y = w/4. The imposition of equality,, = a,, is technically natural in the context

of supersymmetric theory. Small departure from it would lead to the muon mass and a
contributionfog ~ O(’,’;—’:) from the diagonalization of the charged lepton matrig4e In

this case one gets the more general model represented B¥HqU,3 still remains zero
atMy.
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The model discussed above reduces to the MSSM below the Z4 breaking scale.
M, in this case is invariant underZp, symmetry which interchanges,, with D.. This
Z> however is not a symmetry of the charged lepton Yukawa couplingg38j§.Even in
the neutrino sector, th&, invariance is only approximate one and is broken by the terms
of O((n>2/M§) where(n) generically denotes the vacuum expectation value for any of the
singlet fields. The parametgr~ (n)/ My determines the tau lepton mass in 2R)and is
required to be> O(10~2) if the Yukawa couplingd’, are to remain below 1. This means
that the neglected non-leading terms in H§9), (40)are typically®(10-2) smaller than
the leading ones.

The breakdown of th&Z, symmetry and a non-zer@,3 arise in the model from the
non-leading terms not displayed in E¢39), (40) The charged lepton mass matrix gets
additional contributions from the following x Z4 invariant dimension six terms in the
super potential:

2,73 72
~ ni72 Bens + Pell
De(lgeuﬂc + BerT )Hd— + Dye“Hy LZEZ. (43)
MX MX
The corrected charged lepton mass matrix then has the following form
de Aeu Aet
Mi=1 2 a,— al’L ar —a. |. (44)

e aﬂ-l—a;L ar +a.
Here, A, o..0: Can be read-off from Eq43). These are suppressed compared to the leading
terms in Eq.(39) by A = % where(n) refers to a typical vacuum expectation of any of
the singlet fields. An estimate af can be obtained by noting that it determines the tau
lepton mass in Eq(39) and is required to bez O(1072) if the Yukawa couplingsly,
are to remain below 1. This means that the teaqs A, in Eqg. (44) can beO(m,,) if
the relevant Yukawa couplings a@(1). They can therefore significantly affect theu
sector and would lead to a large electron masseandmixing. This requires assuming
suppression in some of the Yukawa couplings. While different choices are possible, we give
an example which is particularly interesting. This corresponds to choagsiagm.; a, =
ay, ~ O(mz); her ~ hep ~ O(m,) andr, ~ O(m,). The i, contribute to the electron
mass and the corresponding Yukawa couplifgsneed to be suppresse@d, ~ (9(”’“)

One gets correct pattern for the charged lepton masses and a Contl‘lbL(ﬂ()ﬁ—le'[O Ueg
from the charged lepton sector. The radiatively indutggican be larger than this as seen
from Fig. 12

The non-leading terms break in the neutrino sector also and lead to a direct contri-
bution toU,3. This comes from the terms of the type

(3 ,n 2 2 _
L (D H) D_H,, 1 —= (nf. 73)(D_H,)" D H,,
X MX
(r. ”2) (D, Hy)" D, H,. (45)

X
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These terms are typically suppressed®§.0~2) compared to the corresponding leading
terms displayed in Eq40).

5. Conclusions

The neutrino mixing matrix contains two small parametérss| and cos 2,3 which
would influence the outcome of the future neutrino experiments. This paper was devoted
to study of these parameters within a specific theoretical framework. The vanishing of
|U.3| was shown to follow from a class @, symmetries ofM,,r. This symmetry can be
used to parameterize all models with zéfg. A specificZ; in this class also leads to the
maximal atmospheric neutrino mixing angle. We showed that breaking of this can be char-
acterized by two dimensionless parameteks and we studied their effects perturbatively
and numerically.

It was found that the magnitudes|df.3| and|cos D3| are strongly dependent upon the
neutrino mass hierarchies and CP-violating phases.|Thg gets strongly suppressed in
case of the inverted or quasi-degenerate neutrino spectrpe # while similar suppres-
sion occurs in the case of normal hierarchy independent of this phase choice. The choice
p # o can lead to a larger values0.1 for |U,3| which could be close to the experimental
value in some cases with inverted or quasi-degenerate spectrum. In contraststiies|
could be large, near its present experimental limit in most cases studied. For the normal
and inverted mass spectrum, the magnitude of égsi2 similar to the magnitudes of the
perturbationg, ¢’ while it can get enhanced compared to them if the neutrino spectrum is
guasi-degenerate.

The phenomenological implications of the present scheme are distinct from various
other schemes discussed in the literaf@rel1,18,21] Ref. [21] considered various neu-
trino mass textures which lead to zero solar scélg,= 0 and cos&y3 = 0, and applied
random perturbations to them. In this approach, Qo3| and|cos 2,3| were found to
be similar in contrast to the present case which prediéts| < |cos 2»3|. The approach
of [21] predicts largécos D3| of O(y/Asur/ Aatm) for the normal neutrino mass hierarchy
and smallO(Asun/ Aarm) in the other cases. This is quite different from our results as seen
in Table 1

An alternative proposal is to make assumptions on the leptonic mixing matfices
The cases considered correspond to a bi-maximal forn/fowith a small corrections
from U; [9] or its conversdl0]. If U, is bi-maximal andJ; gives small corrections than
one finds rather largd/.3| near the present limit and moderates 23|, €.9.,/C0S Do3z| <
0.12 in the specific scheme consideredit]. The converse case with the bi-maxintal
andU, with a typical form of the CKM matrix is characterized by small.3| ~ 0.02 and
small|cos D3| < 0.08[11].

One sees clear distinctions in the predictions of various models and it should be possible
to rule out some of them once the challenging task of the experimental determination of
|U,3| and|cos do3| is accomplished.

Note. After this work was completed, we found a paper by Mohapatra with the similar
discussion based on the-t interchange symmetij{a6].
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