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Abstract

It is shown that the neutrino mass matrices in the flavour basis yielding a vanishingUe3 are char-
acterized by invariance under a class ofZ2 symmetries. A specificZ2 in this class also leads to
maximal atmospheric mixing angleθ23. The breaking of thatZ2 can be parameterized by two d
mensionless quantities,ε andε′; the effects ofε, ε′ �= 0 are studied perturbatively and numerica
The induced value of|Ue3| strongly depends on the neutrino mass hierarchy. We find that|Ue3| is
less than 0.07 for a normal mass hierarchy, even whenε, ε′ ∼ 30%. For an inverted mass hierarc
|Ue3| tends to be around 0.1 but can be as large as 0.17. In the case of quasi-degenerate neutrin
|Ue3| could be close to its experimental upper bound 0.2. In contrast,|cos 2θ23| can always reach it
experimental upper bound 0.28. We propose a specific model, based on electroweak radiative
rections in the MSSM, forε andε′. In that model, both|Ue3| and|cos 2θ23|, could be close to thei
respective experimental upper bounds if neutrinos are quasi-degenerate.
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1. Introduction

In recent years, the observation of solar[1,2] and atmospheric[3] neutrino oscilla-
tions has dramatically improved our knowledge of neutrino masses and lepton m
The neutrino mass-squared differences∆sun and∆atm, and the mixing angles tan2 θsun and
sin2 2θatm, are now quite well determined. The third mixing angle, represented by the
trix elementUe3 of the lepton mixing matrixU (MNS matrix [4]), is constrained to b
small by the non-observation of neutrino oscillations at the CHOOZ experiment[5].

In spite of all this progress, the available information on neutrino masses and
mixing is not sufficient to uncover the mechanism of neutrino mass generation. In p
ular, we do not yet know whether the observed features of lepton mixing are due to
underlying flavour symmetry, or they are mere mathematical coincidences[6] of the see-
saw mechanism. Two features of lepton mixing which would suggest a definite sym
are the small magnitudes ofUe3 and cos2θ23, whereθ23 is one of the angles in the standa
parameterization of the MNS matrix and coincides with the atmospheric mixing anglθatm
whenUe3 = 0. The best-fit value forθ23 in a two-generation analysis[3] of the atmospheric
data isθ23 = π/4, corresponding to cos2θ23 = 0. Likewise,|Ue3| is required to be small
|Ue3| � 0.26 at 3σ from a combined analysis of the atmospheric and CHOOZ data[7].
This smallness strongly hints at some flavour symmetry.

There are many examples of symmetries which can forceUe3 and/or cos2θ23 to vanish.
Both quantities vanish in the extensively studied bi-maximal mixing Ansatz[8–11], which
can be realized through a symmetry[12]. One can also make bothUe3 and cos2θ23 zero
while leaving the solar mixing angle arbitrary[13,14]. Alternatively, it is possible to force
only Ue3 to be zero, by imposing a discrete Abelian[15] or non-Abelian[16] symmetry;
conversely, one can obtain maximal atmospheric mixing but a freeUe3 by means of a
non-Abelian symmetry or a non-standard CP symmetry[17].

The symmetries mentioned above need not be exact. It is important to conside
turbations of those symmetries from the phenomenological point of view and to
quantitatively[18] the magnitudes ofUe3 and cos2θ23 possibly generated by such pertu
bations.

This paper is a study of a special class of symmetries and of the consequences
perturbative violation. We show in Section2 thatUe3 vanishes if the neutrino mass matr
in the flavour basis is invariant under a class ofZ2 symmetries. The solar and atmosphe
mixing angles, as well as the neutrino masses, remain unconstrained by theseZ2 sym-
metries. ThoseZ2 symmetries thus constitute a general class of symmetries leading
to a vanishingUe3. We point out that there is a specialZ2 in this class which leads, fur
thermore, to maximal atmospheric mixing. We consider more closely that specificZ2 in
Section3, wherein we study departures from the symmetric limit. We parameterize p
bations of theZ2-invariant mass matrix in terms of two complex parameters, and d
general expressions forUe3 and cos2θ23 in terms of those parameters; we also pres

detailed numerical estimates ofUe3 and cos2θ23. Section4 is devoted to the study of the
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specific perturbation which is induced by the electroweak radiative corrections toZ2-
invariant neutrino mass matrix defined at a high scale. We discuss a specific model
scenario. In the concluding Section5 we make a comparison of the predictions for|Ue3|
and cos2θ23 obtained within various frameworks.

2. Vanishing Ue3 from a class of Z2 symmetries

The neutrino masses and lepton mixing are completely determined by the neutrin
matrix in the flavour basis—the basis where the charged-lepton mass matrix is diag
which we denote asMνf . In this section we look for effective symmetries ofMνf which
may lead to a vanishingUe3.

One knows[19] that the lepton-number symmetryLe − Lµ − Lτ implies (i) a vanish-
ing solar mass-squared difference∆sun, (ii) a maximal solar mixing angleθ23, and (iii)
a vanishingUe3, while it keeps the atmospheric mixing angle unconstrained; one mu
troduce[20] a significant breaking ofLe − Lµ − Lτ in order to correct the prediction
(i) and (ii). A better symmetry seems to be theµ–τ interchange symmetry[13], which
implies vanishingUe3 and maximalθ23, but leaves both the neutrino masses and the s
mixing angle unconstrained; this is consistent with the present experimental result
µ–τ interchange symmetry can be physically realized in a model based on the d
non-Abelian groupD4 [14]; a variation of this model[16] keeps the predictionUe3 = 0 but
leaves the atmospheric mixing angle arbitrary. Recently, Low[15] has considered mode
whereinMνf has, due to a discrete Abelian symmetry, a structure leading toUe3 = 0.

We now show that there exists a classZ2(γ,α) of discrete symmetries of theZ2 type
which encompasses all the models discussed above and enforces a form ofMνf leading
to Ue3 = 0. This class is parametrized by an angleγ (0< γ < 2π ) and a phaseα (0� α <

2π ). The symmetryZ2(γ,α) is defined by the 3× 3 matrix

(1)S(γ,α) =
(1 0 0

0 cosγ e−iα sinγ

0 eiα sinγ −cosγ

)
.

This matrix is unitary; indeed, it satisfies

(2)
[
S(γ,α)

]2 = 13×3,

(3)
[
S(γ,α)

]T = [
S(γ,α)

]∗
.

Eq.(2) means thatS(γ,α) is a realization of the groupZ2. We define theZ2(γ,α) invari-
ance ofMνf by

(4)
[
S(γ,α)

]T Mνf S(γ,α) = Mνf .

If one writes

(5)Mνf =
(

X̃ Ã B̃

Ã C̃ D̃

)
,

B̃ D̃ Ẽ
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where all the matrix elements are complex in general, then Eq.(4) is equivalent to

B̃

Ã
− e−iα tan

γ

2
= 0,

(6)
(
eiαẼ − e−iαC̃

)
sinγ + 2D̃ cosγ = 0.

Let us first prove that theZ2(γ,α) invariance ofMνf implies Ue3 = 0. The matrix
S(γ,α) has a unique eigenvalue−1 corresponding to the eigenvector

(7)v =

 0

exp(−iα/2)sin(γ /2)

−exp(iα/2)cos(γ /2)


 .

Eq. (4), together withS(γ,α)v = −v, imply that [S(γ,α)]T (Mνf v) = −(Mνf v). Then,
Eq. (3), together with the fact that the eigenvalue−1 of S(γ,α) is unique, implies tha
Mνf v ∝ v∗. Now,Mνf determines the lepton mixing matrix—MNS matrix—U accord-
ing to

(8)Mνf = U∗ diag(m1,m2,m3)U
†,

wherem1, m2, andm3 are the (real and non-negative) neutrino masses. Thus, if we
U = (u1, u2, u3), then the column vectorsuj satisfyMνf uj = mju

∗
j for j = 1,2,3. The

fact thatMνf v ∝ v∗ therefore means that, apart from a phase factor,v is one of the
columns of the MNS matrix, henceUe3 = 0.

Let us next prove the converse of the above, i.e., thatUe3 = 0 implies that there is som
angleγ and phaseα such thatMνf is Z2(γ,α)-invariant. If Ue3 = 0 thenU may be
parametrized by two anglesϑ1,2 and five phasesχ1,2,3,4,5 as

(9)

U =

 eiχ1 cosϑ1 eiχ2 sinϑ1 0

−eiχ3 sinϑ1 cosϑ2 ei(χ2+χ3−χ1) cosϑ1 cosϑ2 eiχ4 sinϑ2

eiχ5 sinϑ1 sinϑ2 −ei(χ2+χ5−χ1) cosϑ1 sinϑ2 ei(χ4+χ5−χ3) cosϑ2


 .

When one computesMνf through Eq.(8) one then finds that it satisfies Eq.(6) with
γ /2= ϑ2 andα = χ5 − χ3 + π .

One has thus proved theequivalence of Ue3 = 0 with the existence of some angleγ and
phaseα such thatMνf is Z2(γ,α)-invariant.

It should be stressed thatZ2(γ,α) will not usually be a symmetry of the full mode
nor is it necessarily the remaining symmetry of some larger symmetry operating at
scale. Some examples may help making this clear:

• Theµ–τ interchange symmetry[13], which corresponds to cosγ = 0, eiα sinγ = 1,
cannot be a symmetry of the full theory, since the masses of theµ andτ charged lep-
tons are certainly different; thus, that symmetry must be broken in the charged-
mass matrix, but that breaking must occur in such a way that it remains unsee
least at tree level—in the form ofMνf . Moreover, theµ–τ interchange symmetr

predicts cos2θ23 = 0 together withUe3 = 0.
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• Many models based on̄L = Le − Lµ − Lτ lead to[19]

(10)Mνf =

 x y ry

y z rz

ry rz r2z


 .

In this case cosγ = (1−|r|2)/(1+|r|2) andeiα sinγ = 2r∗/(1+|r|2). The symmetry
Z2(γ,α) is not a subgroup of the originalL̄ symmetry, rather it occurs accidentally
a consequence of the specific particle content of the models and of the particul
in which L̄ is softly broken. The mass matrix in Eq.(10)predictsm3 = 0 together with
Ue3 = 0.

• The softly-brokenD4 model[16] has

(11)M−1
νf =


 x y t

y z 0
t 0 z


 ,

together with the condition argy2 = argt2. In this case cosγ = (y2 − t2)/(y2 + t2)

andeiα sinγ = 2yt/(y2 + t2). The fact that the(µ, τ) matrix element ofM−1
νf is zero,

and the fact that its(µ,µ) and(τ, τ ) matrix elements remain equal, are just reflecti
of the limited particle content used to break the originalD4 symmetry softly.

Thus, the symmetryZ2(γ,α) may be fundamental, effective, or accidental, dependin
the specific model at hand.

Considering Eq.(9) more carefully one notices that the phaseα = χ5 −χ3 +π is physi-
cally meaningless, since it can be removed through a rephasing of the charged-lepto
Let us then setα = 0. In that case, theMνf satisfying Eq.(6) can be written in the form

(12)Mνf =

 X

√
2Acos(γ /2)

√
2Asin(γ /2)√

2Acos(γ /2) B + C cosγ C sinγ√
2Asin(γ /2) C sinγ B − C cosγ


 .

The eigenvalue corresponding to the eigenvector in Eq.(7) is B − C.
Specific choices of the parameters in Eq.(12) give different models. The model wit

B = C = X = 0 corresponds toLe − Lµ − Lτ symmetry[19]. The model withγ = π/2
corresponds toµ–τ interchange symmetry[13]. The D4 model in [16] hasX̃ = Ã2/D̃.
Likewise, various models in[15] can be shown to have aMνf which is formally identical
to the matrix in Eq.(12).

In this paper we modify the standard parametrization forU by multiplying its third row
by −1, i.e., we use

U =

 c13c12 c13s12 s13e

−iδ

−c23s12 − s23s13c12e
iδ c23c12 − s23s13s12e

iδ s23c13

−s23s12 + c23s13c12e
iδ s23c12 + c23s13s12e

iδ −c23c13




(
iρ iσ

)

(13)× diag e , e ,1 .
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Then, if we letUe3 = s13e
−iδ = 0, Eq.(8) reduces to Eq.(12)with γ /2 = θ23 and

X = c2
12m1e

−2iρ + s2
12m2e

−2iσ ,

A = −c12s12√
2

(
m1e

−2iρ − m2e
−2iσ

)
,

B = 1

2

(
s2
12m1e

−2iρ + c2
12m2e

−2iσ + m3
)
,

(14)C = 1

2

(
s2
12m1e

−2iρ + c2
12m2e

−2iσ − m3
)
.

3. Non-zero Ue3, cos 2θ23 from Z2 breaking

Models withUe3 = 0 can be divided in two different categories:

• Those in which the solar scale also vanishes, along withUe3. These are obtained b
settingm1 = m2 in Eq. (14). In these models, the perturbation which generates
solar scale can be expected to also generateUe3, and one may find[18,21]correlations
between them.

• Models in which the solar scale is present already at the zeroth order. These a
resented by Eq.(12) without additional restrictions on its parameters, except poss
γ = π/4.

We consider here the more general second category, but fixγ = π/4, i.e., we conside
models with vanishingUe3 and cos2θ23. Mνf can be explicitly written in this case as

(15)Mνf = U∗
0 diag(m1,m2,m3)U

†
0 ,

whereU0 is obtained from Eq.(13)by settings13 = 0 andθ23 = π/4. One then has

(16)Mνf =
(

X A A

A B C

A C B

)
.

Consider a general perturbationδMνf to Eq. (16). The matrixδMνf is a genera
complex symmetric matrix, but part of it can be absorbed through a redefinition o
parameters in Eq.(16). The remaining part can be written, without loss of generality, a

(17)δMνf =
( 0 ε1 −ε1

ε1 ε2 0
−ε1 0 −ε2

)
.

The perturbation is controlled by two parameters,ε1 andε2, which are complex and mode
dependent. We want to study their effects perturbatively, i.e., we want to assumeε1 andε2
to be small. This smallness can be quantified by saying either that they are smalle
the largest element inMνf , or that the perturbation to a given matrix element ofMνf is

smaller than the element itself. We adopt the latter alternative and define two dimensionless
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(18)ε1 ≡ εA, ε2 ≡ ε′B.

Thus, we have the neutrino mass matrix withZ2 breaking as follows:

(19)Mνf =
(

X A(1+ ε) A(1− ε)

A(1+ ε) B(1+ ε′) C

A(1− ε) C B(1− ε′)

)
,

where we shall assumeε andε′ to be small,|ε|, |ε′| � 1.
One finds that, to first order inε andε′, the only effect of theδMνf in Eq. (17) is to

generate non-zeroUe3 and cos2θ23. The neutrino masses, as well as the solar angle, d
receive any corrections.Ue3 and cos2θ23 are of the same order asε andε′. Define

(20)m̂1 ≡ m1e
−2iρ,

(21)m̂2 ≡ m2e
−2iσ ,

and

(22)ε̄ ≡ (m̂1 − m̂2)ε,

(23)ε̄′ ≡ m̂1s
2
12 + m̂2c

2
12 + m3

2
ε′.

Then, we get

(24)

Ue3 = s12c12

m2
3 − m2

2

(
ε̄s2

12m̂
∗
2 + ε̄∗s2

12m3 − ε̄′m̂∗
2 − ε̄′ ∗m3

)
+ s12c12

m2
3 − m2

1

(
ε̄c2

12m̂
∗
1 + ε̄∗c2

12m3 + ε̄′m̂∗
1 + ε̄′ ∗m3

)
,

(25)

cos2θ23 = Re

{
2c2

12

m2
3 − m2

2

(
ε̄s2

12 − ε̄′)(m̂2 + m3)
∗

− 2s2
12

m2
3 − m2

1

(
ε̄c2

12 + ε̄′)(m̂1 + m3)
∗
}
.

The meaningful phases inMνf are the ones of rephasing-invariant quartets. SinceMνf

is symmetric, there are three such phases which are linearly independent. (Corre
ingly, there are three physical phases in the MNS matrix:δ, 2ρ, and 2σ .) One easily see
that, in the first-order approximation inε andε′, the imaginary parts of those two small p
rameters are meaningless when taken separately; only Im(2ε−ε′) is physically meaningfu
to this order. Indeed, one can manipulate Eqs.(24) and (25)to obtain

cos2θ23 =
{

c2
12

m2
2 − m2

3

[
m2

3 + c2
12m

2
2 + s2

12Re(m̂1m̂
∗
2 + m̂1m3)

+ (
1+ c2

12

)
Re(m̂2m3)

]
s2
12 [ 2 2 2 2 ∗
+

m2
1 − m2

3

m3 + s12m1 + c12Re(m̂2m̂1 + m̂2m3)
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12

)
Re(m̂1m3)

]}
Reε′

+ 2c2
12s

2
12

[
m2

2 − Re(m̂1m̂
∗
2 + m̂1m3 − m̂2m3)

m2
2 − m2

3

+ m2
1 − Re(m̂1m̂

∗
2 − m̂1m3 + m̂2m3)

m2
1 − m2

3

]
Reε

(26)+ c2
12s

2
12(m

2
1 − m2

2) Im(m̂1m̂
∗
2 + m̂1m3 + m̂∗

2m3)

(m2
3 − m2

1)(m
2
3 − m2

2)
Im(2ε − ε′),

Ue3

c12s12
= 1

2

{
1

m2
2 − m2

3

[
s2
12m̂1m̂

∗
2 + s2

12m̂
∗
1m3 + (

1+ c2
12

)
m̂∗

2m3 + m2
3 + c2

12m
2
2

]

+ 1

m2
3 − m2

1

[
c2

12m̂
∗
1m̂2 + c2

12m̂
∗
2m3 + (

1+ s2
12

)
m̂∗

1m3 +m2
3 + s2

12m
2
1

]}
Reε′

+
[

s2
12

m2
2 − m2

3

(
m2

2 − m̂1m̂
∗
2 − m̂∗

1m3 + m̂∗
2m3

)

+ c2
12

m2
3 − m2

1

(
m2

1 − m̂∗
1m̂2 + m̂∗

1m3 − m̂∗
2m3

)]
Reε

+ i

2

[
s2
12

m2
2 − m2

3

(
m2

2 − m̂1m̂
∗
2 + m̂∗

1m3 − m̂∗
2m3

)

(27)+ c2
12

m2
3 − m2

1

(
m2

1 − m̂∗
1m̂2 − m̂∗

1m3 + m̂∗
2m3

)]
Im(2ε − ε′).

The induced values of|Ue3| and |cos2θ23| are strongly correlated to neutrino ma
hierarchies. This makes it possible to draw some general conclusions even if we
know the magnitudes ofε, ε′. In Table 1we give expressions and values for|Ue3| and
|cos2θ23| in case of the hierarchical (m1 < m2 < m3), inverted (m1 ≈ m2 ∼ √

∆atm
 m3)
and quasi-degenerate neutrino spectrum. CP conservation is assumed but we dis
two different cases (a) the Dirac solar pair corresponding toσ = ρ = 0 and the pseudo
Dirac solar pair with1 ρ = π/2, σ = 0. We have also given approximate values in so
cases assuming the common degenerate massm ∼ 0.3 eV.

It follows from theTable 1and Eqs.(26), (27)that:

• The first-order contribution toUe3 given in Eq.(27) vanish identically ifm̂1 = m̂2.
As a consequence of this,Ue3 gets suppressed by a factorO( ∆sun

∆atm
) for the inverted or

quasi-degenerate spectrum withρ = σ = 0. Similar suppression also occurs in case
the normal neutrino mass hierarchy even whenρ �= σ . Ue3 need not be suppressed
other cases and can be large.
1 The physically different case withρ = 0, σ = π/2 has similar results.
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Table 1
Leading order predictions for|Ue3|, |cos2θ23| in case of different neutrino mass hierarchies with CP conse
tion. The numerical estimates are based on the best fit values of neutrino parameters and the quasi-d
massm = 0.3 eV

Normal hierarchy |Ue3| ≈ c12s12

√
∆sun
∆atm

(
ε + ε′

2

) ≈ 0.09
(
ε + ε′

2

)
m1 � m2; m2

2 ≈ ∆sun; m2
3 ≈ ∆atm |cos2θ23| ≈ ε′

Inverted hierarchy |Ue3| ≈ ∆sun
2∆atm

s12c12
(
ε − ε′

2

) ≈ 0.009
(
ε − ε′

2

)
σ = 0; ρ = 0 |cos2θ23| ≈ ε′

σ = 0; ρ = π/2 |Ue3| ≈ 1
2 sin 4θ12

(
ε − ε′

2

) ≈ 0.4
(
ε − ε′

2

)
|cos2θ23| ≈ 2

(
ε sin2 2θ12 + ε′

2 cos2 2θ12
)

Quasi-degenerate |Ue3| ≈ 2ε′c12s12
m2

∆atm
∆sun
∆atm

≈ 1.6ε

σ = 0; ρ = 0 |cos2θ23| ≈ 4 m2

∆atm
ε′ ≈ 180ε′

σ = 0; ρ = π/2 |Ue3| ≈ 4 m2

∆atm
c12s12

(
εs2

12 + ε′
2 c2

12

) ≈ 81
(
εs2

12 + ε′
2 c2

12

)
|cos2θ23| ≈ 8 m2

∆atm
c2
12

(
εs2

12 + ε′
2 c2

12

) ≈ 259
(
εs2

12 + ε′
2 c2

12

)

• In contrast toUe3, cos2θ23 is almost as large asε, ε′ if neutrino mass spectrum
normal or inverted. It gets enhanced compared to these parameters if the spec
quasi-degenerate.

• In case of the quasi-degenerate spectrum, both|cos2θ23| and|Ue3| can become quite
large and reach the present experimental limits. Especially, the enhancement
are large in case of the pseudo-Dirac solar pair (ρ = π/2, σ = 0). Ue3 and cos2θ23
are in fact proportional to each other in this particular case. The parametersε, ε′ are
constrained to be lower than 10−2 for the quasi-degenerate spectrum.

The perturbative expressions given above may not be reliable for some valuesε, ε′

due to large enhancement factor ofO( m2

∆atm
) and one should do a numerical analysis.

now discuss results of such analysis in various circumstances. Scattered plots of t
dicted values for|cos2θ23| and |Ue3| are given inFig. 1 in the case of normal neutrin
mass hierarchy. CP conservation (ρ = σ = 0, realε, ε′) is assumed. Neutrino masses a
θ12 do not receive any corrections atO(ε, ε′) and hence do not appreciably change
perturbations. We therefore randomly varied these input parameters in the experim
allowed regions.m1 was varied up tom2. On the other hand,ε, ε′ are unknown unless th
symmetry breaking is specified, so these are varied randomly in the range−0.3–0.3 with
the condition that the output parameters should lie in the 90% C.L. limit[2,7]:

0.33� tan2 θsun�0.49, 7.7×10−5 �∆sun�8.8×10−5 eV2, 90% C.L.,

(28)0.92� sin2 2θatm, 1.5×10−3 �∆atm�3.4×10−3 eV2, 90% C.L.

The |Ue3| is forced to be small less than 0.025, inFig. 1 as would be expected from
the foregoing discussion. The value∼ 0.025 at the upper end arises from the (assum

bound|ε|, |ε′| � 0.3. Since|Ue3| is proportional toε, ε′, it increases if the bound onε, ε′
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Fig. 1. The scattered plots showing the allowed values of|cos2θ23| and|Ue3| in case of the normal neutrino ma
hierarchy.ε, ε′ are randomly varied in the range−0.3–0.3. The Majorana phases are chosen asρ = 0, σ = 0.

Fig. 2. The allowed values|cos2θ23| and|Ue3| for ρ = π/4, σ = 0 and the normal neutrino mass hierarchy. T
other parameters are the same as inFig. 1.

is loosened. However,|ε| � 0.3 is a reasonable bound due to assume ifZ2 breaking is
perturbative. On the other hand,|cos2θ23| can assume large values as seen fromFig. 1.
The present bound sin2 2θ23 > 0.92 from the atmospheric experiments gets translate
|cos2θ23| < 0.28 which constrains|ε′| � 0.2 in our analyses.

The non-maximal value forθ23 gives rise to interesting physical effects such as exce
thee-like events in the atmospheric neutrino data in the sub-GeV region[22], different mat-
ter dependent survival probabilities for theνµ and theν̄µ [23]. These can be searched for
the future atmospheric[24] and the long baseline experiments. The values|cos2θ23| > 0.1
are expected to be probed in these experiments[25]. These values occur quite natura

for a reasonably large range of parameters. In order to find the phase dependence of our
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Fig. 3. The allowed values|cos2θ23| and|Ue3| for ρ = π/2, σ = 0 and the normal neutrino mass hierarchy. T
other parameters are the same as inFig. 1.

Fig. 4. The allowed values of|cos2θ23| and|Ue3| for ρ = 0, σ = 0 in case of the inverted neutrino mass hierarc
Theε, ε′ are varied randomly in the range−0.3–0.3 whilem3 is varied up to 10−2 eV.

results, we show the results in the cases of (ρ = π/4, σ = 0) and (ρ = π/2, σ = 0). The
phase dependence is found in the prediction of|Ue3|, which increases up to 0.075.

The region|Ue3| > 0.07 is expected to be probed in the long baseline experiments
the conventional or super beams[26] and in the reactor experiments[27]. The smaller
values for|Ue3| ∼ 0.025 can be reached only at the neutrino factory[28]. Most of the region
displayed inFigs. 1–3therefore seem inaccessible to the near future neutrino experim
aimed at searching for|Ue3|.

Scattered plots for the predicted values for|Ue3| and|cos2θ23| are given inFig. 4in case
of the inverted hierarchy of the neutrino masses. The value of|Ue3| is even more suppresse

compared to the corresponding case displayed inFig. 1. This suppression is due to the
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Fig. 5. The allowed values of|cos2θ23| and |Ue3| for ρ = π/4, σ = 0 in case of the inverted neutrino ma
hierarchy.

Fig. 6. The allowed values of|cos2θ23| and |Ue3| for ρ = π/2, σ = 0 in case of the inverted neutrino ma
hierarchy.

strong cancellation betweenm1 andm2, which is seen inTable 1. However, the Majorana
phases spoil this cancellation, and so|Ue3| could be larger as seen inFigs. 5 and 6, where
the two cases (ρ = π/4, σ = 0) and (ρ = π/2, σ = 0) are displayed, respectively. Thu
the effect of the Majorana phases is very important in the inverted hierarchy. The is
points inFig. 6follows from the tuning of the parametersε andε′. Apart from this tuning,
the allowed values of|Ue3| are moderate∼ 0.1 but will be explored in the future lon
baseline and reactor experiments.

The parameterε′ is constrained strongly|ε′| � 0.03 in case of the quasi-degenera

neutrino masses due to an enhancement factorO( m2

∆atm
) present in this case, as seen
Table 1. |ε| is however not constrained as strongly and we take|ε| � 0.3. The scattered
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Fig. 7. The scattered plots of the allowed values of|cos2θ23| and |Ue3| with |ε| � 0.3 and|ε′| � 0.03 and the
quasi-degenerate neutrino masses. The Majorana phases are chosen asρ = 0, σ = 0. The degenerate mass sca
is fixed atm = 0.3 eV.

Fig. 8. The allowed values of|cos2θ23| and|Ue3| in the quasi-degenerate neutrino masses. The Majorana p
are chosen asρ = π/4, σ = 0. The degenerate mass scale is fixed atm = 0.3 eV.

plots for the predicted values for|Ue3| and |cos2θ23| are given inFig. 7. The value of
|Ue3| is expected to beO(0.01). There are partial cancellations among contributions f
m1, m2, m3 whenρ = σ . However, different choice for the Majorana phases spoil
cancellation and|Ue3| could be large as seen inFigs. 8 and 9, which correspond to (ρ =
π/4, σ = 0) and (ρ = π/2, σ = 0), respectively. It is found that|Ue3| could increase to 0.1
in these cases.

In the above analyses, we fixedσ = 0 because only the relative phaseρ − σ is es-
sential in determining the masses and mixing angles in the case of the hierarchic
inverted hierarchical neutrino masses. However,σ dependence is non-trivial for the d

generate masses. We show the results for (ρ = 0, σ = π/2) and (ρ = π/4, σ = π/2) in
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Fig. 9. The allowed values of|cos2θ23| and|Ue3| in the quasi-degenerate neutrino masses. The Majorana p
are chosen asρ = π/2, σ = 0. The degenerate mass scale is fixed atm = 0.3 eV.

Fig. 10. The allowed values of|cos 2θ23| and|Ue3| in the quasi-degenerate neutrino masses. The Majorana p
are chosen asρ = 0, σ = π/2. The degenerate mass scale is fixed atm = 0.3 eV.

Figs. 10 and 11respectively. It is noted that|Ue3| could be as large as 0.2 for the case
ρ = π/4, σ = π/2 but values� 0.1 are more probable as seen from the density of poi

Before ending this section, we wish to point out an interesting aspect of this ana
SinceUe3 is zero in the absence of the perturbation, the CP-violating Dirac phaseδ relevant
for neutrino oscillations is undefined at this stage. CP violation is present throug
Majorana phasesρ andσ . Turning on perturbation leads to non-zeroUe3 and also to a
non-zero Dirac phase even if perturbation is real. Moreover,δ generated this way can b
large and independent of the strength of perturbation parameters. This phenomen
noticed[29] in the specific case of the radiative generation ofUe3. This occurs here als

for a more general perturbation.
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Fig. 11. The allowed values of|cos 2θ23| and|Ue3| in the quasi-degenerate neutrino masses. The Majorana p
are chosen asρ = π/4, σ = π/2. The degenerate mass scale is fixed atm = 0.3 eV.

As an example, let us consider the limitε′ = 0 and a realε. SinceUµ3 is almost maxima
and real,δ is approximately given by

(29)

tanδ ≈
m1m2 sin 2(ρ − σ) − m3m1 sin 2ρ + m2m3 sin 2σ +O(

∆sun
∆atm

) Im(Z)

m2
1c2

12 − m2
2s2

12 − m1m2 cos2θ12cos 2(ρ − σ) + m3m1 cos 2ρ − m2m3 cos2σ +O(
∆sun
∆atm

)Re(Z)
,

whereZ ≡ (m̂∗
2(m̂1 − m̂2) + m3(m̂1 − m̂2)

∗)s2
12. It follows from above that irrespectiv

of the specific mass hierarchy, the inducedδ would be large ifρ andσ are large and no
finetuned.

4. Radiatively generated Ue3 and cos 2θ23

Theε, ε′ were treated as independent parameters so far. They can be related in s
models. We now consider one example which is based on the electroweak breaking
Z2 symmetry in the MSSM. We assume that neutrino masses are generated at som
scaleMX and the effective neutrino mass operator describing them isZ2 symmetric with
the result thatUe3 = cos2θ23 = 0 atMX . This symmetry is assumed to be broken spo
neously in the Yukawa couplings of the charged leptons. This breaking would radia
induce non-zeroUe3 and cos2θ23 [30]. This can be calculated by using the renormaliza
group equations (RGEs) of the effective neutrino mass operator[31–33]. These equation
depend upon the detailed structure of the model belowMX. We assume here that theo
belowMX is the MSSM and use the RGEs derived in this case. Subsequently we wi
an example which realizes our assumptions.

Integration of the RGEs allows us[31–33]to relate the neutrino mass matrixMνf (MX)

to the corresponding matrix at the low scale which we identify here with theZ massMZ :( )

(30)Mνf (MZ) ≈ IgIt IMνf (MX)I ,
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whereIg,t are calculable numbers depending on the gauge and top quark Yukaw
plings.I is a flavour dependent matrix given by

(31)I ≈ diag(1+ δe,1+ δµ,1+ δτ )

with

(32)δα ≈ c

(
mα

4πv

)2

ln
MX

MZ

,

wherec = 3
2,− 1

cos2 β
in case of the Standard Model (SM) and the Minimal Supersymm

Standard Model (MSSM) respectively[31]. v refers to the vacuum expectation value
the SM Higgs doublet.

We have implicitly neglected possible threshold effects. Inclusion of these effects w
not modify the analysis if threshold effects are flavour blind as would be approxim
true[34] in case of the minimal supergravity scenario with universal boundary condit

Mνf (MX) is given by Eq.(16). From this we can writeMνf (MZ) as follows when the
muon and the electron Yukawa couplings are neglected:

(33)Mνf (MZ) =
(

X A′ A′
A′ B ′ C′
A′ C′ B ′

)
+

( 0 A′ε −A′ε
A′ε B ′ε′ 0

−A′ε 0 −B ′ε′

)
+ O

(
δ2
τ

)
,

where

(34)

C′ = C(1+ δτ ), A′ = A

(
1+ δτ

2

)
, B ′ = B(1+ δτ ), ε = ε′

2
= −δτ

2

andA,B,C are defined in Eq.(14). Note thatm1, m2 andm3 defined previously are n
longer mass eigenvalues because of the changesA → A′, B → B ′ andC → C′. Using the
above equations, we get from Eq.(24)

Ue3 � − δτ s12c12

2(m2
3 − m2

1)

[
m2

1 + 2m3m̂
∗
1 + m2

3

] + δτ s12c12

2m2
3 − m2

2

[
m2

2 + 2m̂∗
2m3 + m2

3

]
,

(35)cos2θ23 � δτ s
2
12

m2
3 − m2

1

[
m2

1 + 2m3m̂
∗
1 + m2

3

] + δτ c
2
12

m2
3 − m2

2

[
m2

2 + 2m̂∗
2m3 + m2

3

]
.

It is easily seen that the effect of the radiative corrections is enhanced in the case
quasi-degenerate neutrino masses with opposite phase|ρ − σ | = π/2 as previous works
presented[32,33]. In the MSSM, the parameterδτ is negative and its absolute value c
become quite large for large tanβ, e.g., for tanβ ∼ 50, |δτ | ∼ 0.075. However, large tanβ
is not favoured because the renormalization of parametersA,B,C as in Eq.(34)also shifts
the value of the solar angle and solar mass compared to their values in theδτ → 0 limit.
One now gets

(36)∆suncos2θsun≈ ∆21cos2θ12 + 2δτ

∣∣m1e
−2iρs2

12 + m2e
−2iσ c2

12

∣∣2.
Here,∆21 ≡ m2

2 − m2
1 andθ12 correspond to the values of the solar scale and angle atMX .
The radiative corrections add a negative contribution to∆suncos2θsunin case of the MSSM



W. Grimus et al. / Nuclear Physics B 713 (2005) 151–172 167

term

in

te
d

tal
ssions
in

t

scale.
itional
based

ted by
Fig. 12. The scattered plots of the allowed values of|cos2θ23| and|Ue3| in case of the radiatively brokenZ2 and
the quasi-degenerate neutrino massesm = 0.3 eV. The Majorana phases are chosen asρ = 0, σ = π/2.

and can spoil the LMA solution (which need positive∆suncos2θsun) if ∆21 is small or|δτ |
is large. This provides a constraint on possible values ofδτ and consequently on|Ue3|,
|cos2θ23| that can be generated in the model. For example, requiring that the first
dominates over the second term in Eq.(36) implies

(37)|δτ | �
(

∆21

2m2 cos2θ12

)
≈ 10−3,

where we assumed CP conservation, the quasi-degenerate spectrum,σ = π/2; ρ = 0, m ≈
0.3 eV, and∆21 ∼ 8× 10−5 eV2. The values for|Ue3| and|cos2θ23| implied by the above
constraint are quite small. Notice however that one can loosen the bound onδτ by choosing
significantly larger value∆21 than 8× 10−5 eV2. The cancellations between two terms
Eq.(36)can still lead to physical solar scale.

Results of the numerical analysis are shown inFig. 12in case of the quasi-degenera
spectrum withm = 0.3 eV;σ = π/2,ρ = 0. Theθ12, ∆21 and tanβ at high scale are varie
randomly, then the allowed choices which reproduce the parameters as in Eq.(28) at the
low scale are determined. Both|Ue3| and|cos2θ23| can reach their respective experimen
bound. The near proportionality between the two can be understood from their expre
given in Table 1. We find numerically that tanβ is constrained to be lower than 20
this case. The forthcoming experiments will be able to test this relationship between|Ue3|
and |cos2θ23|. It may be useful to note our numerical results of|Ue3| in the cases of the
normal-hierarchy and inverted-one of the neutrino masses. In both cases,|Ue3| reaches a
most 0.025. These results are consistent with one in Ref.[30].

Let us now give an example which realizes our assumptions. One needs aZ2-invariant
neutrino mass matrix and a charged lepton mass matrix which break it at the high
This breaking is required to be spontaneous. This can be done without invoking add
Higgs doublets provided one introduces several singlet fields. The model below is
on the MSSM augmented with two pairs of the standard model singlet fields deno

(η1, η2) and (̄η1, η̄2). We impose a discreteZ4 × Z4 symmetry under which various super-
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fields transform as follows:(
µc, τ c, η̄1, η

∗
1

) ∼ (i,1), (De, η2, η̄
∗
2) ∼ (1, i),

(38)ec ∼ (1,−1), D− ∼ (−1,1),

whereDα(αc) denote the leptonic doublets (singlets) with flavourα = e,µ, τ ; D± ≡
Dτ ±Dµ√

2
. TheD+ and the standard Higgs superfieldsHu,d transform as singlets. We assum

that theZ4 × Z4 symmetry is broken by the vacuum expectation values of theη-fields at a
scale only slightly lower than the neutrino mass scaleMX . As a result, non-renormalizab
terms involving these fields can give sizable contributions to Yukawa couplings as
Froggatt–Nielsen mechanism[35].

The following dimension 5 terms in the superpotential contribute to the charged l
masses:

(39)WY = D+
(
Γµµc + Γτ τ

c
)Hdη1

MX

+ D−
(
Γ ′

µµc + Γ ′
τ τ

c
)Hdη̄1

MX

+ ΓeDee
c Hdη2

MX

.

The neutrino masses follow from the following non-renormalizable operators inva
under theZ4 × Z4 symmetry:

Wν = α

MX

(D+Hu)
T (D+Hu) + β

MX

(D−Hu)
T (D−Hu)

(40)+ γ

MX

(D+Hu)
T (DeHu)

η̄2

MX

,

where we have suppressed the Lorentz andSU(2) indices. Eq.(39) leads to the charge
lepton mass matrix

(41)Ml =

ae 0 0

0 aµ − a′
µ aτ − a′

τ

0 aµ + a′
µ aτ + a′

τ


 ,

where

ae = Γe

〈H 0
d 〉〈η2〉
MX

, aα = Γα√
2

〈H 0
d 〉〈η1〉
MX

,

(42)a′
α = Γ ′

α√
2

〈H 0
d 〉〈η̄1〉
MX

(α = µ,τ).

The neutrino mass matrix has theZ2 invariant form of Eq.(16) but with X = 0. This
together with the charged lepton mass matrix in Eq.(41) imply that theUe3 = 0 at the
tree level. In the limitaα = a′

α , Eq. (41) leads to a massless muon and also correction
θ23 from the charged leptons vanish. In this limit, the model is equivalent to theZ2 model
with γ = π/4. The imposition of equalityaα = a′

α is technically natural in the contex
of supersymmetric theory. Small departure from it would lead to the muon mass
contributionθ23l ≈ O(

mµ

mτ
) from the diagonalization of the charged lepton matrix toθ23. In

this case one gets the more general model represented by Eq.(12). Ue3 still remains zero

atMX .
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The model discussed above reduces to the MSSM below theZ4 × Z4 breaking scale
Mνf in this case is invariant under aZ2 symmetry which interchangesDµ with Dτ . This
Z2 however is not a symmetry of the charged lepton Yukawa couplings, Eq.(39). Even in
the neutrino sector, theZ2 invariance is only approximate one and is broken by the te
of O(〈η〉2/M2

X) where〈η〉 generically denotes the vacuum expectation value for any o
singlet fields. The parameterλ ∼ 〈η〉/MX determines the tau lepton mass in Eq.(39)and is
required to be� O(10−2) if the Yukawa couplingsΓα are to remain below 1. This mea
that the neglected non-leading terms in Eqs.(39), (40)are typicallyO(10−2) smaller than
the leading ones.

The breakdown of theZ2 symmetry and a non-zeroUe3 arise in the model from th
non-leading terms not displayed in Eqs.(39), (40). The charged lepton mass matrix g
additional contributions from the followingZ4 × Z4 invariant dimension six terms in th
super potential:

(43)De

(
βeµµc + βeτ τ

c
)
Hd

η1η̄2

M2
X

+ D+ecHd

βeη
2
2 + β̄eη̄

2
2

M2
X

.

The corrected charged lepton mass matrix then has the following form

(44)Ml =



ae λeµ λeτ

λe aµ − a′
µ aτ − a′

τ

λe aµ + a′
µ aτ + a′

τ


 .

Here,λe,eµ,eτ can be read-off from Eq.(43). These are suppressed compared to the lea
terms in Eq.(39) by λ = 〈η〉

MX
where〈η〉 refers to a typical vacuum expectation of any

the singlet fields. An estimate ofλ can be obtained by noting that it determines the
lepton mass in Eq.(39) and is required to be� O(10−2) if the Yukawa couplingsΓα

are to remain below 1. This means that the termsλeα , λe in Eq. (44) can beO(mµ) if
the relevant Yukawa couplings areO(1). They can therefore significantly affect thee–µ

sector and would lead to a large electron mass ande–µ mixing. This requires assumin
suppression in some of the Yukawa couplings. While different choices are possible, w
an example which is particularly interesting. This corresponds to choosingae � me; aα =
a′
α ≈ O(mτ ); λeτ ∼ λeµ ∼ O(me) andλe ∼ O(mµ). The λeα contribute to the electro

mass and the corresponding Yukawa couplingsβeα need to be suppressedβeα ∼ O( me

mµ
).

One gets correct pattern for the charged lepton masses and a contribution ofO( me

mτ
) to Ue3

from the charged lepton sector. The radiatively inducedUe3 can be larger than this as se
from Fig. 12.

The non-leading terms breakZ2 in the neutrino sector also and lead to a direct con
bution toUe3. This comes from the terms of the type

(η2
1, η̄

2
1)

M3
X

(D+Hu)
T D−Hu,

η̄2

M4
X

(
η2

1, η̄
2
1

)
(D−Hu)

T DeHu,

(45)
(η2

2, η̄
2
2)

3
(DeHu)

T DeHu.

MX
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These terms are typically suppressed byO(10−2) compared to the corresponding leadi
terms displayed in Eq.(40).

5. Conclusions

The neutrino mixing matrix contains two small parameters|Ue3| and cos2θ23 which
would influence the outcome of the future neutrino experiments. This paper was d
to study of these parameters within a specific theoretical framework. The vanish
|Ue3| was shown to follow from a class ofZ2 symmetries ofMνf . This symmetry can b
used to parameterize all models with zeroUe3. A specificZ2 in this class also leads to th
maximal atmospheric neutrino mixing angle. We showed that breaking of this can be
acterized by two dimensionless parametersε, ε′ and we studied their effects perturbative
and numerically.

It was found that the magnitudes of|Ue3| and|cos2θ23| are strongly dependent upon t
neutrino mass hierarchies and CP-violating phases. The|Ue3| gets strongly suppressed
case of the inverted or quasi-degenerate neutrino spectrum ifρ = σ while similar suppres
sion occurs in the case of normal hierarchy independent of this phase choice. The
ρ �= σ can lead to a larger values∼ 0.1 for |Ue3| which could be close to the experimen
value in some cases with inverted or quasi-degenerate spectrum. In contrast, the|cos2θ23|
could be large, near its present experimental limit in most cases studied. For the n
and inverted mass spectrum, the magnitude of cos2θ23 is similar to the magnitudes of th
perturbationsε, ε′ while it can get enhanced compared to them if the neutrino spectru
quasi-degenerate.

The phenomenological implications of the present scheme are distinct from v
other schemes discussed in the literature[8–11,18,21]. Ref. [21] considered various neu
trino mass textures which lead to zero solar scale,Ue3 = 0 and cos2θ23 = 0, and applied
random perturbations to them. In this approach, both|Ue3| and |cos2θ23| were found to
be similar in contrast to the present case which predicts|Ue3| � |cos2θ23|. The approach
of [21] predicts large|cos2θ23| of O(

√
∆sun/∆atm) for the normal neutrino mass hierarc

and smallO(∆sun/∆atm) in the other cases. This is quite different from our results as
in Table 1.

An alternative proposal is to make assumptions on the leptonic mixing matricesUν,l .
The cases considered correspond to a bi-maximal form forUν with a small corrections
from Ul [9] or its converse[10]. If Uν is bi-maximal andUl gives small corrections tha
one finds rather large|Ue3| near the present limit and moderate|cos2θ23|, e.g.,|cos2θ23| �
0.12 in the specific scheme considered in[11]. The converse case with the bi-maximalUl

andUν with a typical form of the CKM matrix is characterized by small|Ue3| ∼ 0.02 and
small |cos2θ23| � 0.08 [11].

One sees clear distinctions in the predictions of various models and it should be po
to rule out some of them once the challenging task of the experimental determina
|Ue3| and|cos2θ23| is accomplished.

Note. After this work was completed, we found a paper by Mohapatra with the sim

discussion based on theµ–τ interchange symmetry[36].
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