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Abstract. We derive the width of the Higgs boson into vector bosons. General formulas are derived both
for the on–shell decay H → V V as well for the off–shell decays, H → V ∗V and H → V ∗V ∗, where
V = γ, W ±, Z0. For the off-shell decays the width of the decaying vector boson is properly included. The
formulas are valid both for the Standard Model as well as for arbitrary extensions. As an example we study
in detail the gauge-invariant effective Lagrangian models where we can have sizable enhancements over the
Standard Model that could be observed at LEP.

1 Introduction

In recent years it has been established [1] with great pre-
cision (in some cases better than 0.1%) that the interac-
tions of the gauge bosons with the fermions are described
by the Standard Model (SM) [2]. However other sectors of
the SM have been tested to a much lesser degree. In fact
only now we are beginning to probe the self–interactions
of the gauge bosons through their pair production at the
Tevatron [3] and LEP [4] and the Higgs sector, responsible
for the symmetry breaking has not yet been tested.

A more complicated symmetry breaking sector can in-
troduce modifications in the couplings of the Higgs boson
with the vector bosons. It is therefore important to have
expressions for the decay widths of the Higgs boson into
vector bosons that are valid for an arbitrary extension of
the SM. For the region of the Higgs boson mass relevant
for searches at LEP II and LHC it is necessary that the
vector bosons in the decays can be off–shell.

In this paper we derive the complete set of formulas
for the decay widths of the Higgs boson in vector bosons.
The formulas are valid both for the Standard Model (SM)
and for any arbitrary extension. For the case of the decay
into the W± and Z0 the formulas are also valid for off–
shell decays. This is important for Higgs boson masses
close to the threshold of the production of one or two real
vector bosons. Many of these results have appeared before
in the literature [5–10], sometimes for particular cases, but
we think that it will be very useful for the Higgs boson
search at LEP and at LHC to have the general results in
a consistent notation.

The paper is organized as follows. In Sect. 2 the decays
H → V V where V = W±, Z0 are calculated. The decays
H → γγ and H → γZ0, that in the SM proceed at one–
loop level, are reviewed in Sects. 3 and 4, respectively.
In Sect. 5 the off-shell 3–point functions Z∗ → Hγ and
γ∗ → Hγ are given in a consistent notation both for the

SM as well as for any of its extensions. In Sect. 6 we give an
example of physics Beyond de Standard Model (BSM) and
in Sect. 7 a brief discussion of our results and a comparison
with previous ones is presented.

2 The decays H → V V

2.1 The HV V couplings

We consider the most general couplings of the Higgs H
with the W± and Z0. These are

H

Vµ

Vν

P

k1

k2

i gMV

(
gµν + TV

µν

)
(1)

where V = W, Z and TW
µν and TZ

µν are the extra con-
tributions from new physics Beyond the Standard Model
(BSM). In general they will depend on the momenta P ,
k1 and k2, but as we will see, we will not need their exact
expressions to get the final formulas.

2.2 The on–shell decay H → V V

We now consider the on–shell decay H → V V . To be
precise we derive the expression for H → W+W− and
then present a final result valid also for H → Z0Z0. We
consider the kinematics given in Fig. 1.
The differential width is given by [11]

dΓ =
1

32π2

∑
pol

|M|2 |k1|
M2

H

dΩk1 (2)
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where

M = i gMW εµ(k1)εν(k2)
(
gµν + TW

µν

)
(3)

We get therefore

∑
pol

|M|2 = (gMW )2
(
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kµ
1 kα

1
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W

)(
−gνβ +

kν
2kβ

2

M2
W

)
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) (
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)
=

[
2 +
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2
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1
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2 kβ

2
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α
1 kβ

2

M4
W
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αβ

+TW
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1

M2
W
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2

M2
W

TανTW
αβ

+
kµ
1 kν

2

M2
W

TW
µν

kα
1 kβ

2

M2
W

TW
αβ

]
(4)

Now, using

k1 · k2 =
1
2
(M2

H − 2M2
W )

=
1
2

√
M4

Hλ(M2
W , M2

W ;M2
H) + 4M4

W (5)

where

λ(x, y; z) =
(
1 − x

z
− y

z

)2
− 4

xy

z2 (6)

and defining

X(p1, p2, MH , TV ) ≡ 4
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H
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(7)

we can write∑
pol

|M|2 = (gMW )2
M4

H

4M4
W

× [λ(M2
W , M2

W ;M2
H)

+12
M4

W

M4
H

+ X(k1, k2, MH , TW )
]

(8)

It is easy to see that the 4–momenta k1 and k2 will only
appear in the square bracket of (8) as the scalar products
like k1 · k2, P · k1 and P · k2. These can all be written
in terms of the masses and therefore there is no angular
dependence in dΓ . Noticing also that

|k1| =
1
2
MH

√
λ(M2

W , M2
W ;M2

H) (9)

we can finally write

Γ =
g2M3

H

64πM2
W

√
λ(M2

W , M2
W ;M2

H) × [λ(M2
W , M2

W ;M2
H)

+
M4

W

M4
H

+X(k1, k2, MH , TW )
]

(10)

which can be written in terms of GF as

Γ =
GF M3

H

8π
√

2

√
λ(M2

W , M2
W ;M2

H) × [λ(M2
W , M2

W ;M2
H)

+12
M4

W

M4
H

+X(k1, k2, MH , TW )
]

(11)

Now for the decay H → Z0Z0 everything is similar except
that we have to divide by a factor of 2 because we have two
identical particles in the final state. Introducing δV = 2(1)
for V = W (Z), respectively, we can write both decays in
a single formula

Γ = δV
GF M3

H

16π
√

2

√
λ(M2

V , M2
V ;M2

H) × [λ(M2
V , M2

V ;M2
H)

+12
M4

V

M4
H

+X(k1, k2, MH , TV )
]

(12)

where λ and X are given in (6) and (7). The SM part
of (12) agrees with (5) of [10] and it is also in agreement
with [9]. The term proportional to X represents the extra
contributions from physics beyond the SM and is in agree-
ment with the results of [8] as we will explain in Sect. 6.

2.3 The off–shell decay H → V V ∗

We now consider the off–shell decay H → V V ∗. To be
precise we derive the expression for H → W+W−∗ →
W+fif ′

i and then present a final result valid for all cases.
We consider the kinematics given in Fig. 2, where (fi, f ′

i)
represents one of the decay channels of the W−, for in-
stance, (e−, νe). Using the conventions of [11], we can
write the differential width as

dΓ =
(2π)4

2MH

∑
pol

|M|2dΦ3 (13)
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where dΦ3 is the phase space for 3 particles that we write
as [11]

dΦ3(P ; k, q1, q2) = dΦ2(P ; k, ∆i)dΦ2(∆i; q1, q2)
×(2π)3d∆2

i (14)

with
∆i = q1 + q2;∆2

i = (q1 + q2)2 (15)

But the 2–body phase space in the rest frame of the de-
caying W can be written as

dΦ2(∆i; q1, q2) = (2π)−6 |q∗
1|

4
√

∆2
i

dΩ∗
1 =

(2π)−6

8
dΩ∗

1 (16)

where the last equality holds for massless decaying prod-
ucts of the W that we will assume and Ω∗

1 is the solid
angle of the particle with momentum q1 in the rest frame
of the decaying W . Also the 2–body phase space of the
decaying H can be written as

dΦ2(P ; k, ∆i) =
(2π)−6

8

√
λ(M2

W , ∆2
i ;M

2
H) dΩk (17)

Putting everything together we get

dΓ =
(2π)−5

128MH

√
λ(M2

W , ∆2
i ;M

2
H)
∑
pol

|M|2 dΩk d∆2
i dΩ∗

1

(18)
Neglecting the fermion masses the matrix element M is

M = (gMW )εα(k)
(
gµα + TW

µα

)
× 1

D(∆2
i )

g

2
√

2
u(q1)γµ (1 − γ5) v(q2) (19)

where
D(∆2

i ) = ∆2
i − M2

W + iMW ΓW (20)

We obtain for the matrix element squared

∑
pol

|M|2 = (gMW )2
1

|D(∆2
i )|2

(
−gαβ +

kαkβ

M2
W

)

× (gµα + TW
µα

) (
gνβ + TW

νβ

)
×g2

8
Tr
[
q/1γ

µ(1 − γ5)q/2γ
ν(1 − γ5)

]

= (gMW )2
1

|D(∆2
i )|2

(
−gαβ +

kαkβ

M2
W

)
× (gµα + TW

µα

) (
gνβ + TW

νβ

)
×48πΓi

MW

[
qµ
1 qν

2 + qµ
2 qν

1 − gµνq1 · q2

]
(21)

where Γi = g2/(48π) MW is the decay width W → fif ′
i.

Looking at (18) and (21) we realize that the only depen-
dence on the solid angle Ω∗

1 is inside the square bracket
in (21). Then the integrals we have to evaluate are of the
form

Iαβ =
∫

dΩ∗
1qα

1 qβ
2 (22)

These can be easily done if we realize that in the rest frame
of the decaying W the only 4–vector available is ∆i. We
should have then

Iαβ = A∆α
i ∆β

i + B∆2
i g

αβ (23)

Multiplying the last equation respectively with gαβ and
with ∆iα∆iβ and noticing that ∆i · q1 = ∆i · q2 = 1/2∆2

i
we get a system of equations for A and B


A + 4B = 2π

A + B = π
(24)

which gives A = 2π/3 and B = π/3. We get then∫
dΩ∗

1qα
1 qβ

2 =
π

3

(
2∆α

i ∆β
i + ∆2

i g
αβ
)

(25)

and∫
dΩ∗

1 [qµ
1 qν

2 + qµ
2 qν

1 − gµνq1 · q2] =
4π

3
(
∆µ

i ∆ν
i − ∆2

i g
µν
)

(26)
Doing the integration in Ω∗

i we get∫
dΩ∗

1

∑
pol

|M|2 = (gMW )2
1

|D(∆2
i )|2

(
−gαβ +

kαkβ

M2
W

)

× (
gµα + TW
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) (
gνβ + TW
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)
×48πΓi

MW

4π

3
(
∆µ

i ∆ν
i − ∆2

i g
µν
)

(27)

If we compare (8) with (27) we can write this last equation
in the form

∫
dΩ∗

1

∑
pol

|M|2 = (gMW )2
1

|D(∆2
i )|2

M4
H

4M2
W

48πΓi

MW

4π

3

×
[
λ(M2

W , ∆2
i ;M

2
H) + 12

M2
W ∆2

i

M4
H

+X(k, ∆i, MH , TW )
]

(28)

We get therefore



634 J.C. Romão, S. Andringa: Vector boson decays of the Higgs boson

dΓ

d∆2
i dΩk

=
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√
λ(M2

W , ∆2
i ;M

2
H) (gMW )2

× 1
|D(∆2

i )|2
M4

H

4M2
W

48πΓi
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4π

3
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λ(M2

W , ∆2
i ;M

2
H)

+12
M2

W ∆2
i

M4
H

+ X(k, ∆i, MH , TW )
]

(29)

Next we realize that in (29) there is no dependence on
the solid angle of the real W . We can therefore trivially
perform that integration. We get

dΓ

d∆2
i

=
(2π)−5

128MH
(4π)

√
λ(M2

W , ∆2
i ;M

2
H) (gMW )2

× 1
|D(∆2

i )|2
M4

H

4M2
W
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3
[
λ(M2

W , ∆2
i ;M

2
H)

+ 12
M2

W ∆2
i

M4
H

+ X(k, ∆i, MH , TW )
]

(30)

and finally we get for the width

Γ =
GF M3

H

8π
√

2

√
λ(M2

W , ∆2
i ;M

2
H)

1
π

∫
d∆2

i

ΓiMW

|D(∆2
i )|2

×
[
λ(M2

W , ∆2
i ;M

2
H) + 12

M2
W ∆2

i

M4
H

+X(k, ∆i, MH , TW )
]

(31)

or

Γ =
1
π

∫
d∆2

i

ΓiMW

|D(∆2
i )|2

ΓW
0 (k, ∆i, MH) (32)

where

ΓW
0 (k, ∆i, MH) =

GF M3
H

8π
√

2

√
λ(M2

W , ∆2
i ;M

2
H)

×
[
λ(M2

W , ∆2
i ;M

2
H) + 12

M2
W ∆2

i

M4
H

+ X(k, ∆i, MH , TW )
]

(33)

If we sum over all the final states of the W we can sub-
stitute Γi with ΓW . (32) is in agreement with [9] and
it is also in agreement with (6) of [5] in the zero width
limit. Similar considerations apply to the case of the de-
cay H → Z0 + fif i. We can summarize the final result in
the formula,

Γ =
1
π

∫
d∆2

i

ΓV MV

|D(∆2
i )|2

ΓV
0 (k, ∆i, MH) (34)

where

ΓV
0 (k, ∆i, MH) = δV

GF M3
H

16π
√

2

√
λ(M2

V , ∆2
i ;M

2
H)

×
[
λ(M2

V , ∆2
i ;M

2
H) + 12

M2
V ∆2

i

M4
H

+ X(k, ∆i, MH , TV )
]

(35)

δV was defined before, X is given in (7) and k2 = M2
V .

H
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Fig. 3.

2.4 The off–shell decay H → V ∗V ∗

We now consider the off–shell decay H → V ∗V ∗. To be
precise we derive the expression for H → W+∗W−∗ →
(fif ′

i) + (fjf ′
j) and then present a final result valid for

all cases. We consider the kinematics given in Fig. 3, where
(fi, f ′

i) represents one of the decay channels of the W−

and (fj , f ′
j) represents one of the decay channels of the

W+. After we have done the case H → V V ∗ it is very
easy to do this case.
The expression for the width is [11],

dΓ =
(2π)4

2MH

∑
pol

|M|2dΦ4 (36)

where dΦ4 is the phase space for 4 particles that we write
as [11]

dΦ4(P ; k, q1, q2) = dΦ2(P ;∆i, ∆j)dΦ2(∆i; qi1, qi2)(2π)3

×d∆2
i dΦ2(∆j ; qj1, qj2)(2π)3d∆2

j (37)

with

∆i = qi1 + qi2 ; ∆2
i = (qi1 + qi2)2

∆j = qj1 + qj2 ; ∆2
j = (qj1 + qj2)2 (38)

But the 2–body phase spaces can be written as

dΦ2(∆i; qi1, qi2) =
(2π)−6

8
dΩ∗

i1

dΦ2(∆j ; qj1, qj2) =
(2π)−6

8
dΩ∗

j1

dΦ2(P ;∆i, ∆j) =
(2π)−6

8

√
λ(∆2

i , ∆
2
j ;M

2
H) dΩ∆i(39)

where, as before, we consider that the decays products of
the W± are massless. Putting everything together we have

dΓ =
(2π)−8

210MH

√
λ(∆2

i , ∆
2
j ;M

2
H)

×
∑
pol

|M|2d∆2
i d∆2

j dΩ∆i
dΩ∗

i1dΩ∗
j1 (40)
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Fig. 4. Comparison of the off–shell and on–shell formulas for
H → W+W −. The dashed line corresponds to the on–shell
formula (12), the dotted line to the case that only one W is
off-shell (31), and the solid line corresponds to the case where
both W’s are off–shell (43). For comparison is also shown (6)
of [5]

The matrix element is

M = (gMW )
1

D(∆2
i )

1
D(∆2

j )
g

2
√

2
u(qi1)γµ(1 − γ5)v(qi2)

× g

2
√

2
u(qj1)γµ(1 − γ5)v(qj2) (41)

and the same procedure that we used for the H → V V ∗
case gives∫

dΩ∗
1i dΩ∗

1j

∑
pol

|M|2 = (gMW )2
1

|D(∆2
i )|2

1
|D(∆2

j )|2

×M4
H

4
(48π)2ΓiΓj

M2
W

(
4π

3

)2

×
[
λ(∆2

i , ∆
2
j ;M

2
H) + 12

∆2
i ∆

2
j

M4
H

+ X(∆i, ∆j , MH , TW )
]

(42)

and after doing the dΩ∆i integration we obtain

Γ =
GF M3

H

8π
√

2

√
λ(∆2

i , ∆
2
j ;M

2
H)

1
π

∫
d∆2

i

ΓiMW

|D(∆2
i )|2

1
π

×
∫

d∆2
j

ΓjMW

|D(∆2
j )|2

[
λ(∆2

i , ∆
2
j ;M

2
H) + 12

∆2
i ∆

2
i

M4
H

+ X(∆i, ∆j , MH , TW )
]

(43)

Summing over all final states we get

Γ =
1
π

∫
d∆2

i

ΓV MV

|D(∆2
i )|2

1
π

×
∫

d∆2
j

ΓV MV

|D(∆2
j )|2

ΓV
0 (∆i, ∆j , MH) (44)

where1

ΓV
0 (∆i, ∆j , MH) = δV

GF M3
H

16π
√

2

√
λ(∆2

i , ∆
2
j ;M

2
H)

×
[
λ(∆2

i , ∆
2
j ;M

2
H) + 12

∆2
i ∆

2
j

M4
H

+ X(∆i, ∆j , MH , TV )
]

(46)

This result is in agreement with [10], except for the
value of δZ . One should mention that formulas for off–
shell decays of the type of (34) and (44) for other decays
are known in the literature [16].

2.5 A comparison of the various formulas

Perhaps it is useful to indicate the domain of validity of
the various formulas for the widths. This will depend on
the value of the Higgs boson mass. In Fig. 4 we plot the
various formulas for the case of H → W+W−.

From this figure it is clear that the proper way to cal-
culate the width below the two W ’s threshold is to use
(43) with the two W ’s off–shell. The two integrations in
(43) automatically take care of the fact that either one of
the W ’s can be close to be on–shell. In (6) of [5] this is
done by adding the two possibilities, but as the width is
neglected the formula is only good below the threshold.

1 One might worry about the factor δV . For the W+∗W −∗

final case there is no problem because the final states of the
W+∗ are different from the final states of the W −∗. Therefore

∑
Final States

Γ
[
H → (W+∗ → i+) + (W −∗ → i−)

]

∝
∑
i+

∑
i−

Γ (W+∗ → i+)Γ (W −∗ → i−)

=
∑
i+

Γ (W+∗ → i+)
∑
i−

Γ (W −∗ → i−) = ΓW ΓW (45)

and δW = 2 because of the constants we factored out. For the
H → (Z∗ → i) + (Z∗ → j) case one should be more careful. If
i 6= j than we should divide by 2 otherwise we would be double
counting in the product (Γ1 +Γ2 + · · ·)(Γ1 +Γ2 + · · ·). For i = j
there is no double counting in the above product, but now we
have two pairs of identical particles in the final state but we
also have 2 diagrams. Then we should square the sum of the
amplitudes and divide by 4. In general this would not give a
factor of 1/2 because of the interference term. However the
interference will be negligible because the momenta squared in
the denominators cannot be equal to MZ in all 4 lines (of the
product of the 2 diagrams) at the same time. Therefore if we
neglect the interference we should divide also by 2 in this case.
Therefore δZ = 1
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3 The decay H → γZ

Due to the electromagnetic gauge invariance, the most
general expression for the coupling HγZ for the case of
on–shell γ and Z is,

H
P

k

q
Zν

Aµ

−i
e2g

16π2MW
(gµνk · q − kνqµ)

×A(q2 = M2
Z , MH)

(47)

Fig. 5.

where A(q2, MH) is a dimensionless form factor that de-
pends only in the mass of the H and on the square of the
momentum of the Z (if the Z is on–shell then q2 = M2

Z).
In the SM the lowest contribution to A is at the 1–loop
level. If we are considering physics Beyond the Standard
Model (BSM) then we should have

A = ASM + ABSM (48)

where the SM contribution is given [6,12–14] by

ASM = AW + AF (49)

with2

AW = −4 cot θW

[
(3 − tan θ2

W ) J1(q2, M2
H , M2

W )

+
(

−5 + tan2
W θW − 1

2
M2

H

M2
W

(1 − tan θ2
W )
)

× J2(q2, M2
H , M2

W )
]

(50)

and

AF = −
∑

f

4gf
V Qf

sin θW cos θW

×
[

− J1(q2, M2
H , M2

f ) + 4J2(q2, M2
H , M2

f )
]
(51)

where Qf is the charge, in units of |e|, of the fermion f

in the loop, and gf
V = 1/2T f

3 − Qf sin2 θW . The explicit
form of the functions J1 and J2 in the ’t Hooft-Feynman
gauge can be found in Appendix B. In the following we
will use this general coupling to evaluate both the on–shell
and the off–shell decays of the Higgs boson. The case of
the off–shell decays needs some further discussion. In fact
it was shown in [12] that the off–shell 3–point function
H → γZ∗ is not gauge invariant. This means that there
are contributions that are not of the form of (47). However
it has also been shown in [12] that close to the pole of the

2 Our convention here for the coupling, (47) is as in [6].
It differs from our previous convention, [13], by a factor of
−1/ sin θW . Our conventions are explained in Appendix A

vector boson propagator the contribution, in the ’t Hooft–
Feynman gauge, of the box diagrams (needed to make the
whole process gauge invariant) was only of the order of
≤ 1% of the gauge invariant part in (47). Although we
have not done here the full calculation, we are making the
assumption that close to the Z resonance (which gives
the dominant contribution to H → γZ∗ → γff) the same
result applies. We also do not think that a full calculation
is here necessary because the SM contribution from H →
γZ to the total Higgs boson width is very small as it will
be shown in Sect. 6.

3.1 The on–shell decay H → γZ

The differential width is, like before (see (2))

dΓ =
1

32π2

∑
pol

|M|2 |k|
M2

H

dΩk (52)

where

M = εµ(k)εν(q)
e2g

16π2MW
(gµν k · q − kνqµ) A(q2, MH)

(53)
We get therefore

∑
pol

|M|2 =
(

e2g

16π2MW

)2

2(k · q)2 |A|2 (54)

Now using

|k| =
k · q

MH
=

1
2

MH

√
λ(M2

Z , 0;M2
H) (55)

where

λ(M2
Z , 0;M2

H) =
(

1 − M2
Z

M2
H

)2

(56)

we get finally

Γ =
GF M3

H

4π
√

2
α2

16π2 λ(M2
Z , 0;M2

H)3/2 |A|2 (57)

This result is in agreement for the SM with [6,12] but
it differs by a factor of two from [8] that claims to have
the same definition of A as we and [6] do.

3.2 The off–shell decay H → γZ∗

We consider for definiteness the decay H → γfif i. Ac-
cording to the discussion above we use the off–shell cou-
pling given by (47) which is a good approximation for
q2 close to M2

Z , which is the dominant contribution to
H → γfif i. This is represented in Fig. 6.
The differential width can be written as in (18)

dΓ =
(2π)−5

128MH

√
λ(0, ∆2;M2

H)
∑
pol

|M|2 dΩk d∆2dΩ∗
1

(58)



J.C. Romão, S. Andringa: Vector boson decays of the Higgs boson 637

H
P

k

∆ q1

q2

fi

fi’
__

Aµ

Z

Fig. 6.

where the matrix element M is (we again neglect the
fermion masses)

M = εµ(k)
e2g

16π2MW
(gµν k · ∆ − kν∆µ) A(∆2, MH)

1
D(∆2)

g

cos θW
u(q1)γν(gf

V − gf
Aγ5)v(q2) (59)

and
∆ = q1 + q2 (60)

Our conventions for the couplings of the Z to the fermion
f are given in Appendix A. The sum over polarizations
and spins of the matrix element squared gives now

∑
pol

|M|2 =
(

e2g

16π2MW )

)2 1
|D(∆2)|2

( g

cos θ

)2
8|A|2

×
(
gf

V
2 + gf

A
2
)[

k · ∆ k · q1 ∆ · q2

+ k · ∆ k · q2 ∆ · q1 − k · q1 k · q2 ∆ · ∆](61)

Using now (25) to perform the integration over the solid
angle in the center of mass frame of the decaying Z we get

∫
dΩ∗

1

∑
pol

|M|2 =
(

e2g

16π2MW

)2 1
|D(∆2)|2

( g

cos θ

)2
|A|2

×
(
gf

V
2 + gf

A
2
) 32π

3
(k · ∆)2 ∆2 (62)

We can now perform the integration over the solid angle
of the photon and obtain

dΓ

d∆2 =
1

32π2MH
λ(∆2, 0;M2

H)3/2 M3
H(

eg2

16π2MW

)2
Γi

MZ
∆2 1

|D(∆2)|2 (63)

where we have used the expression for the partial width
Γi of Z → fif i

Γi =
1

12π

(
g

cos θW

)2 (
gf

V
2 + gf

A
2
)

(64)

Summing over all the final states we obtain finally

Γ =
1
π

∫
d∆2 ΓZ

MZ

∆2

|D(∆2)|2 Γ γZ(MH , ∆2) (65)

where

Γ γZ(MH , ∆2) =
GF M3

H

4π
√

2
α2

16π2

λ(∆2, 0;M2
H)3/2 |A(∆2, M2

H)|2 (66)

is the decay into an off-shell Z and gives back (57) when
∆2 = M2

Z .

4 The decay H → γγ

For completeness we also give the general formula for this
decay. Due to the electromagnetic gauge invariance the
most general expression for the coupling3 Hγγ is

H
P

k

q

Aµ

Aν

i
e2g

16π2MW
(gµν k · q − kνqµ)

×I(q2 = 0, MH)
(67)

Fig. 7.

where, as before,

I = ISM + IBSM (68)

The Standard Model contribution is given by [8,6,12]

ISM = IW + IF (69)

where

IW = −4

[
− 4J1(q2, M2

H , M2
W )

+
(

6 +
M2

H

M2
W

)
J2(q2, M2

H , M2
W )
]

(70)

and

IF =
∑

f

4Q2
f

[
− J1(q2, M2

H , M2
f ) + 4J2(q2, M2

H , M2
f )
]

.

(71)
Using the above coupling and comparing with the case
H → γZ, (52), (53) e (54), it is straightforward to obtain

Γ (H → γγ) =
α3M3

H

256π2 sin2 θW M2
W

|I|2 (72)

in agreement with [6,8,14].

3 For on–shell photons
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5 The 3–point functions Z∗ → Hγ and
γ∗ → Hγ

For some applications it is also important to know the re-
lated off–shell 3-point functions Z∗ → Hγ and γ∗ → Hγ.
For completeness we collect them here. We should how-
ever warn the reader that we only include here the gauge
invariant part of the one loop diagrams contributing to
those functions and therefore the limit of applicability of
the expressions below is restricted to the case where that
is the dominant contribution. In the other cases more dia-
grams have to be considered to render the physical ampli-
tudes gauge invariant. General expressions for the off–shell
3–point functions can be found in [12,14].

5.1 The Z∗ → Hγ 3–point function

We use the results of [12,13]. The amplitude can be writ-
ten as4

iM = i εν
Z(q) εµ

A(k)
(

e2g

16π2MW

)
(gµν k · q − kνqµ) A(q2, MH) (73)

where
A = ASM + ABSM (74)

The standard model dimensionless amplitude ASM is given
by (49). The sign difference between (49) and (73) is due
to the fact that in the first one q is an outgoing momentum
and in the last one is incoming.

5.2 The γ∗ → Hγ 3–point function

Again using [12] we have

iM = −i εν
A(q) εµ

A(k)
(

e2g

16π2MW

)
(gµν k · q − kνqµ) I(q2, MH) (75)

where
I = ISM + IBSM (76)

The standard model dimensionless amplitude ISM is given
by (69).

5.3 An effective Lagrangian for the SM couplings

We can write an effective Lagrangian that reproduces the
couplings given in (47), (67), (73), (75). This is specially
useful if we want to add new physics, in addition to the
SM, as we will show in the next section. We get

Leff = −1
4

AµνAµνH ISM +
1
2

AµνZµνH ASM (77)

4 Notice that our conventions here differ by a factor
−1/ sin θW with respect to [13]

where we have defined

Aµν = ∂µAν − ∂νAµ ; Zµν = ∂µZν − ∂νZµ (78)

and

ISM =
e2g

16π2MW
ISM (q2, MH)

ASM =
e2g

16π2MW
ASM (q2, MH) (79)

The effective Lagrangian, (77), is valid for the case of one
on–shell photons and Z0’s. ASM and ISM are given in (49)
and (69).

6 An example of extension of the SM

A possible enhancement of the production and decay rates
of the Higgs boson can be originated by an anomalous cou-
plings of the Higgs boson to the vector bosons. These inter-
actions can be described in terms of an effective dimension-
six term in the interaction Lagrangian density

Leff =
7∑

i=1

fi

Λ2 Oi (80)

where the Oi are the operators which represent the anoma-
lous couplings, Λ is the typical energy scale of the inter-
action and fi are the constants which define the strength
of each term [7,8].

The anomalous couplings Hγγ, HZZ, HZγ and HWW
follow from the effective Lagrangian (80) and can be writ-
ten in the unitary gauge [7,8] as,

LHV V
eff = g

mW

Λ2

[
−s2(fBB + fWW − fBW )

2
HAµνAµν

+
2m2

W

g2

fφ,1

c2 HZµZµ +
c2fW + s2fB

2c2 ZµνZµ(∂νH)

− s4fBB + c4fWW + s2c2fBW

2c2 HZµνZµν

+
s(fW − fB)

2c
AµνZµ(∂νH)

+
s(2s2fBB − 2c2fWW + (c2 − s2)fBW )

2c
HAµνZµν

+
fW

2
(W+

µνW−µ + W−
µνW+µ)(∂νH)

− fWW HW+
µνW−µν

]
(81)

where Xµν = ∂µXν −∂νXµ with X = A, Z, W , and s(c) =
sin θW (cos θW ), respectively.

Both fφ,1 and fBW are already severely constrained
by precise measurements at low energy experiments, once
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they contribute to the Z0 mass and to the B − W 3 mix-
ing, respectively. In what follows these parameters will be
assumed to be zero. Under this assumption, both HWW
and HZZ have the same tensorial structure. With the con-
vention H(pH) → V µ(p1) + V ν(p2) for the momenta, we
have:

Tµν
V ≡ −AV

[
pν
1pµ

H − (p1.pH)gνµ + pν
Hpµ

2 − (p2.pH)gνµ
]

+BV

[
pν
1pµ

2 − (p1.p2)gνµ
]

(82)

(V = Z, W), where :

AW ≡ −1
2

fW

Λ2

BW ≡ −2
fWW

Λ2

AZ ≡ −1
2
(
fB

Λ2 sin2 θW +
fW

Λ2 cos2 θW )

BZ ≡ −2(
fBB

Λ2 sin4 θW +
fWW

Λ2 cos4 θW ) (83)

The value of XV (p1, p2, MH , TV ) as defined in (7) is,
thus, given by:

XV = 4
{

AV

[
4
p2
1p

2
2

M2
H

− p1.p2

M4
H

((p2
1 − p2

2)
2 − (p2

1 + p2
2)M

2
H)
]

+ BV

[
−6

(p1.p2)p2
1p

2
2

M4
H

]

+ A2
V

[
p2
1p

2
2 +

(p2
1 + p2

2)(4p2
1p

2
2 − (M2

H − (p2
1 + p2

2))
2)

4M2
H

+
(M4

H − (p2
1 − p2

2)
2)

4M4
H

× (4p2
1p

2
2 + M2

H(p2
1 + p2

2) − (p2
1 + p2

2)
2)
]

+ AV BV

[
−2

p2
1p

2
2(M

2
H − (p2

1 + p2
2))

M2
H

+
p2
1p

2
2((p

2
1 − p2

2)
2 − M2

H(p2
1 + p2

2))
M4

H

]

+ B2
V

[
p2
1p

2
2

2M4
H

((M2
H − (p2

1 + p2
2))

2 + 2p2
1p

2
2)
]}

(84)

This expression can then be used in (12), (31) and (44) to
evaluate the decay widths. We have verified that if we use
(84) with the definitions of (83) into (12) for the decay
into two real vector bosons we recover the results of [8].
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However our expressions extend those results for the off-
shell case.

The decays H→γZ and H→ γγ appear at tree-level,
the corresponding form factors, (47) and (67), are:

ABSM ≡ 2πM2
W tan θW

α

[
fW

Λ2 − fB

Λ2

+4
(

fBB

Λ2 sin θ2
W − fWW

Λ2 cos θ2
W

)]
(85)

IBSM ≡ 8πM2
W sin θ2

W

α

(
fBB

Λ2 +
fWW

Λ2

)
(86)

With these variables it is possible to compute the various
Higgs decay widths, including the interference of the new
terms with the Standard Model, and allowing for decays
to virtual gauge bosons.

In this model the Branching Ratios to γγ and γZ in-
crease and these decays may become dominant for some
region of parameters. For H→WW and H→ZZ the new
contributions may interfere constructively or destructively
with the Standard Model terms. In Fig. (8) the width and
branching ratios of the Higgs as a function of its mass
are displayed for the Standard Model and with the new
contributions where all the non-zero fi are assumed equal
and fi/Λ2 = 100 TeV−2.

The variation of the total width and branching ratios
with f/Λ2 is shown in Fig. 9, for a Higgs boson mass of
150 GeV. In Fig. (10) all fi except the ones contributing
directly to the H decay to γγ are set to 0. The variation
with fBB/Λ2 and fWW /Λ2 is displayed for two different
masses: 85 GeV and 150 GeV.

7 Discussion

In this paper we derive the complete set of formulas for
the decay widths of the Higgs boson in vector bosons. The
formulas are valid both for the Standard Model (SM) and
for any arbitrary extension. For the case of the decay into
the W± and Z0 the formulas are also valid for off–shell
decays. This is important for Higgs boson masses close to
the threshold of the production of one or two real vector
bosons. As many of these results have appeared before 5

in the literature [5–10,14], sometimes for particular cases,
we will now comment on the comparison of our results
with those.

For the on–shell decay H → V V our final expression
(12), is in agreement with [9,10]. Our final expression,
(34), for the off-shell decay H → V V ∗ also agrees with [9,
10]. We are also in agreement with (6) of [5] in the zero
width limit. For the off–shell decay H → V ∗V ∗ our result,
(44), is in agreement with [10] except for the factor δZ . For
the on–shell decay H → γγ we are in agreement with [6,
8,14], while for the on–shell decay H → γZ we agree with
[6,14] but have a factor of two difference with respect to
[8]. The formulas for the off-shell decay H → γZ∗ are in
agreement with [12,13].

As our main contribution is to extend the formulas
for an arbitrary extension of the SM, including off-shell
decays we studied, as an example, the case of the gauge–
invariant effective Lagrangian models of [7,8]. Our expres-
sions reproduce the results of [8] for the on–shell decays
and extend them for the region of the Higgs boson mass

5 After the completion of this work we became aware of a
related work [19] for the Standard Model. There the vector
bosons are also considered to be off-shell and the results are
in agreement with ours for the particular case of the Standard
Model
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close to the two W ’s threshold where the off–shell decays
have to be considered. This region is important for the
studies done at the Tevatron and at LEPII where these
models have been considered [17,18].

Acknowledgements. This work was supported in part by the
TMR network grant ERBFMRXCT-960090 of the European
Union.

Appendix A
Standard Model Feynman rules

Because of the interference terms between the Standard
Model (SM) and possible extensions, it is important that
we state our conventions for the SM. We follow the con-
ventions of [6]. These differ in some signs from the con-
ventions used in [12,13]. For the convenience of the reader
we collect the most important Feynman rules here.

H

Wµ
+

Wν
−

i gMW gµν

(87)

H

Zµ

Zν

i gMZ gµν

H

f

f

−i
g mf

2MW

(88)

H

f

f

−i e Qfγµ

f

f

Zµ
−i

g

cos θW
γµ
(
gf

V − gf
Aγ5

)
(89)

Wµ
+

Wν
−

Vρ

p1

p2

p3

i gV

[
gµν(p2 − p3)ρ

+gνρ(p3 − p1)µ + gρµ(p1 − p2)ν ]
(90)

for V = A, Z with gA = e, gZ = g cos θW and

gf
V =

1
2

T f
3 − Qf sin2 θW ; gf

A =
1
2

T f
3 (91)

where Qf is the charge of fermion f in units of |e|.

Appendix B
The J1 and J2 functions

The explicit expressions for the functions J1 and J2 intro-
duced in Sect. 3, are [12,13]

J1(q2, M2
H , M2

X) = −M2
W C0(q2, 0, M2

H , M2
X , M2

X , M2
X)

J2(q2, M2
H , M2

X) =
1
2

M2
X

q2 − M2
H

[
1 + 2M2

X

×C0(q2, 0, M2
H , M2

X , M2
X , M2

X)

+
q2

q2 − M2
H

(
B0(q2, M2

X , M2
X)

− B0(M2
H , M2

X , M2
X)
)]

(92)

where B0 and C0 are the Passarino-Veltman functions[15]
and MX is the mass of the particle in the loop. These func-
tions were calculated in [12,13] in the ’t Hooft-Feynman
gauge. They are are related to the functions I1 and I2 of
[6] by the following relations

J1(q2, M2
H , M2

X) = I2(τX , λX)

J2(q2, M2
H , M2

X) =
1
4

I1(τX , λX) (93)

with

τX =
4M2

X

M2
H

; λX =
4M2

X

q2 (94)

With these relations it is easy to verify that (49) is in
agreement with (2.22) of [6]. To verify the equivalence of
(69) with (2.16) and (2.17) of [6] for the on–shell decay
H → γγ one has to note that

J1(0, M2
H , MX) = I2(τX ,∞) =

τX

2
f(τX)

J2(0, M2
H , MX) =

1
4

I1(τX ,∞)
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= −τX

8
+

τ2
X

8
f(τX) (95)

where f(τ) is defined in (2.19) of [6]. Then we get for the
W contribution

IW = −4
[−4J1(0, M2

H , M2
W )

+
(

6 +
M2

H

M2
W

)
J2(0, M2

H , M2
W )
]

= 16 J1(0, M2
H , M2

W ) −
(

24 +
16
τW

)
J2(0, M2

H , M2
W )

= 2 + 3τW + 3τW (2 − τW ) f(τW ) (96)

and for a fermion of charge Qf

IF = 4Q2
f

[
− J1(0, M2

H , M2
W ) + 4J2(0, M2

H , M2
W )

]

= Q2
f

[−2 τff(τf ) − 2 τf + 2τ2
f f(τf )

]
= Q2

f

[
−2 τf

(
1 + (1 − τf ) f(τf )

)]
(97)

in agreement with (2.17) of [6].
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Éboli, M.C. Gonzalez–Garcia, S.M. Lietti, S.F. Novaes,
hep-ph/9802408

18. DELPHI Collaboration, submitted to the High Energy
Physics Conference, Vancouver 1998

19. B.A. Kniehl, Phys. Lett. B 244, 537 (1990)


