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We present the manual of FeynMaster 2.1, which contains significant improvements over the

previous version of the program. It can be downloaded in https://porthos.tecnico.ulisboa.

pt/FeynMaster/.

1 Introduction

FeynMaster [1] was introduced in 2019 as a multi-tasking software for particle physics studies. Combin-

ing FeynRules [2, 3], QGRAF [4] and FeynCalc [5–8], FeynMaster is able to perform the totality

of the following list of tasks:

a) generation and drawing of Feynman rules; b) generation and drawing of Feynman diagrams;

c) generation of amplitudes; d) loop calculations; e) algebraic calculations; f) renormalization.

It was presented not as competing with other existing software that perform some of the elements of

the above list (e.g., refs. [2–7, 9–22]), but rather as an alternative — with four main advantages. First,

FeynMaster has a hybrid character concerning automatization: not only does it automatically generate

the results, but it also allows the user to act upon them through Mathematica notebooks. Second, the

complete set of analytical expressions for the counterterms in the modified minimal subtraction (MS)

scheme can be automatically calculated. Third, FeynMaster includes a thorough interaction with

numerical calculations through Fortran, using LoopTools [13] in one-loop calculations. Finally, all the

printable outputs of FeynMaster — the complete set of Feynman rules (tree-level and counterterms),

the Feynman diagrams, as well as a list containing both the expressions and computed counterterms —

are automatically written in LATEX files.

The general usage of FeynMaster can be summarized in a few lines: after the user has defined the

relevant directories and the model, the FeynMaster run is controlled from a single file (Control.m).

Here, the sequence of processes to study can be chosen, as well as many different options. FeynMaster

is then ready to run. The run automatically generates and opens several PDF files — according to the

options chosen in Control.m — and creates the above-mentioned Mathematica notebooks.

The code has been successfully applied to different types of models [23–29]. FeynMaster 2.0 [30] was

released in 2021 with significant improvements over the previous version. Here, we present FeynMaster

2.1; this differs from the 2.0 version not only by several novel features (in particular, the possibility of
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including Lagrangians with up to 6-point interactions), but also by the fact that it is adapted to the most

updated versions of the relevant software.

This note is a complete and auto-sufficient manual of FeynMaster 2.1, and is organized as follows.

In section 2, we explain how to download and install FeynMaster, while in the following section we

describe the compatibility with other software. Section 4 is devoted to the creation of models, and section

5 to the detailed usage of FeynMaster. Then, in section 6, we give some examples. Finally, in section

7 we present a quick first usage of FeynMaster.

2 Installation

FeynMaster can be downloaded in:

https://porthos.tecnico.ulisboa.pt/FeynMaster/.

FeynRules, QGRAF and FeynCalc, essential to run FeynMaster, can be downloaded in https://

feynrules.irmp.ucl.ac.be/, http://cfif.ist.utl.pt/~paulo/qgraf.html and https://feyncalc.

github.io/, respectively. After downloading FeynMaster, the downloaded file should be extracted and

the resulting folder (named FeynMaster) can be placed in any directory of the user’s choice. Then, the

directories corresponding to FeynRules and QGRAF, as well as the one corresponding to the Feyn-

Master output (i.e., the directory where the outputs of FeynMaster shall be saved), should be defined.

This must be done by writing the appropriate paths after dirFR, dirQ and dirFMout, respectively, in the

beginning of the RUN-FeynMaster batch file lying inside the FeynMaster folder.1

To test FeynMaster, jump to section 7, where instructions for a quick first usage are given.

3 Software compatibility

The user of FeynMaster is supposed to be familiar with both FeynRules (in order to define new

models) and FeynCalc (in order to manipulate the final results). There is no need to know QGRAF,

since the non-trivial part of this program — the definition of the model — is automatically carried

through by FeynMaster. We verified that FeynMaster runs properly with the latest public versions

of FeynRules, QGRAF and FeynCalc — namely, versions 2.3.49, 4.0.5 and 10.1.0, respectively. It

is also compatible with older versions of QGRAF like version 3.6.6 and of FeynCalc, like 9.3.0. For

FeynRules to work with latest Mathematica 14, the following modification

MatrixSymbol → FRMatrixSymbol

has to be made in the following three files2

1These lines are commented in the batch file, and must continue to be so; besides, the beginning of these lines (with
dirFR, dirFR and dirFMout) should not be erased. By default, the folder with the models for FeynMaster is inside the
FeynMaster folder and is named Models; this can be changed by defining a variable dirFRmod in the beginning of RUN-

FeynMaster and setting a path for it. In a similar way, the folder with the models for QGRAF (that is, the folder that shall
contain the QGRAF models, which will be automatically generated by FeynMaster) is automatically generated and set
inside the QGRAF folder with the default name Models; as before, this can be changed by defining a variable dirQmod in
the beginning of RUN-FeynMaster and setting a path for it.

2This is necessary because the symbol MatrixSymbol is now defined in Mathematica 14. We thank Benjamin Fuks for
this temporary solution until a new version of FeynRules is available.
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• FeynRulesPackage.m

• Core/MassDiagonalization.m

• Interfaces/AspergeInterface.m

More instructions on how to download and install QGRAF can be found in https://porthos.tecnico.

ulisboa.pt/CTQFT/node9.html or in the manual that comes with the distribution http://cefema-gt.

tecnico.ulisboa.pt/~paulo/qgraf.html. Finally, when using Linux or Mac 3, the executable QGRAF

file should be named qgraf.

To run FeynMaster, it is also necessary to have Python, Mathematica and LATEX installed; links

to download are https://www.python.org/downloads/ http://www.wolfram.com/mathematica/ and

https://www.latex-project.org/get/, respectively. We tested FeynMaster using version 3.12 of

Python and version 14.0 of Mathematica with the above modifications in FeynRules.4 As for LATEX,

the user is required to update the package database; note also that, in the first run of FeynMaster,

some packages (like feynmp-auto and breqn) may require authorization to be installed. Finally, for the

numerical calculations, the needed files are written in the Fortran 77 format. A Fortran compiler is

needed, as well as an instalation of LoopTools. The programs were shown to work both with the

gfortran and ifort compilers and with LoopTools-2.14 and above.

4 Creating a new model

FeynMaster is a model dependent program: it cannot run without the specification of a model. As

already mentioned, one of the major simplifications of FeynMaster 2 lies in model building: while in

the previous version the specification of each model required two files, in FeynMaster 2 only one file

is required to fully define a model. This one file — which we now identify as the FeynMaster model

file — is essentially a regular model file for FeynRules; as such, it has the termination .fr.5 Its name

is identified in the following as the internal name of the model. This model file must be inside a folder

with the same name — that is, with the internal name of the model —, which in turn must be inside the

folder with the models for FeynMaster.

FeynMaster already comes with three models : QED, Scalar QED (SQED) and the Standard Model

(SM).6 These serve as prototypes, and we highly recommend them as guiding tools in the creation of a

new model. Since there are already models available, this section can be skipped in a first utilization of

FeynMaster.

We now describe in detail the creation of a FeynMaster model file. As we just mentioned, this file

is essentially a model for FeynRules. Yet, it is characterized by special features: while some of the

3We are no longer providing a version that runs on Windows. The users interested in this implementation should contact
us.

4FeynMaster will not run if a Python version prior to 3 is used, and it is only guaranteed to properly work if a version
of Mathematica not older than 10.3 is used.

5It is assumed here that the user is familiar with FeynRules and knows how to create a FeynRules model. If this is
not the case, we refer to the FeynRules website https://feynrules.irmp.ucl.ac.be/. Finally, it should be clear that the
FeynMaster model file can always be used as a FeynRules model file.

6The SM model file is written in an arbitrary Rξ gauge and with the η parameters of ref. [31], and it closely follows
ref. [32] for renormalization.
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definitions and attributes are common to FeynRules, some were specifically designed for FeynMaster,

as we now show.

Lagrangian

The FeynMaster model file must include the Lagrangian of the theory. The Lagrangian must be

separated in different parts — each of them corresponding to a different type of interaction — and each

of those parts should have a specific name: see Table 1.7 The Lagrangian parts involving fermions

Type of interactions FeynRules name
pure gauge LGauge

fermion-gauge LFermions

Yukawa LYukawa

scalar-scalar and gauge-scalar LHiggs

ghosts LGhost

gauge fixing LGF

Table 1: Name of the different Lagrangian parts according to the type of interaction.

(LFermions and LYukawa) can be written either in terms of Dirac fermions or Weyl fermions; in both

cases, the Feynman rules will be presented for Dirac fermions.

Parameters

Parameters are defined via the usual FeynRules variable M$Parameters. Different attributes can be

associated to a certain parameter; their order is irrelevant. As in FeynRules, the parameters are

by default real; otherwise, one must include the attribute ComplexParameter and set it to True (i.e.,

ComplexParameter -> True). The LATEX name of a parameter should be set with the attribute TeXName8

and written between double commas in LATEX style (ex: TeXName -> "\\lambda_2").9 Parameters can

have indices, which are defined as in FeynRules (ex: Indices -> {Index[Gen], Index[Gen]}).10 A

numerical value can be given to a parameter through the attribute NumValue (ex: NumValue -> 0.0047);

in the case of parameters with indices, the set of values should be written as a Mathematica list (ex:

for a parameter with dimensions 2 × 2, one can set NumValue -> {0.5, 1, 1.5, 2}, for the ma-

trix entries 11, 12, 21, 22, respectively).11 The renormalization rule for a parameter can be defined

through the attribute Renormalization, in such a way that the rule must be written inside braces (ex:

Renormalization -> {mf -> mf + dmf}).12 Finally, parameters corresponding to counterterms should

be flagged by setting the attribute Counterterm to True.13

Particle classes

7It is not mandatory to define all the 6 Lagrangian parts present in Table 1 (for example, if the model does not have
a ghost sector, there is no need to define LGhost); only, no other name besides the 6 ones specified in the right column of
Table 1 will be recognized by FeynMaster.

8Which does not exist in FeynRules and should not be confused with the FeynRules attribute TeX.
9The backslash should always be doubled in TeXName, as well as in TeXAntiName (see below).

10In this example, the range of Gen must be defined in the model; for example, IndexRange[Index[Gen]] = Range[3].
11The attribution of numerical values is useful only in case the user wants to exploit the numerical interface of Feyn-

Master — to be explained in section 5.4.2. The SM model file includes numerical values according to [33].
12It should be clear that it is not mandatory to define renormalization rules. That is, FeynMaster can be used even if

no renormalization is performed. Finally, note that, if a parameter is complex, the renormalization of its complex conjugate
is automatically considered.

13There can be counterterms for both parameters and fields; since counterterms themselves are parameters, they are
defined in the parameters sections M$Parameters.
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Particles are defined via the usual FeynRules variable M$ClassesDescription; again, the order of

attributes associated to a certain parameter is irrelevant. The ClassName cannot correspond to Feyn-

Master internal indices, such as J1, J2, J3, J4, p1, p2, q1, q2. The attribute SelfConjugate should

always be defined, either to True or to False. Unphysical particles (except Weyl fermions) should be

flagged with the attribute Unphysical set to True. Every propagating particle must have a mass as-

signment, either to a variable or to 0 (ex: Mass -> MH or Mass -> 0). Propagating particles should

also have a LATEX name (ex: TeXName -> "c_{W^-}"); when a particle is not its own complex conju-

gate, a LATEX name for the antiparticle should also be specified, through the attribute TeXAntiName

(ex: TeXAntiName -> "\\bar{c_{W^-}}"). The decay width can be defined through DecayWidth (ex:

DecayWidth -> DWZ).14 Weyl components must be specified for Dirac fermions whenever the latter are

composed of Weyl particles defined in the model (ex: WeylComponents -> {uqL,uqR}). Neutrinos should

be flagged with the attribute Neutrino as True.15 Finally, renormalization is defined in a way similar to

that of the parameters (ex: Renormalization -> {H -> H + 1/2 dZH H}).16

Extra (optional) information

Besides M$Parameters and M$ClassesDescription, FeynMaster allows extra optional quantities to

be defined. These are presented in Table 2 and for each one we present a brief description, the default

value and an example. A few of comments are in order.

Quantity Description Default value Example

M$ModelExtName model name to be printed in the
FeynMaster final documents

(internal name) "Standard Model"

M$FCeqs identities for FeynCalc (empty) {xiA->1}

M$FCsimp simplifications for FeynCalc (empty) {cw^2+sw^2->1}

M$PrMassFL when true, masses of propagators
are extracted from the Lagrangian

True False

M$GFreno when true, renormalization rules
are applied to the Gauge Fixing La-
grangian

False True

M$RestFile restrictions file for the FeynRules
model

(empty) "MyRest.rst"

RenoPreRep function to rewrite the Lagrangian
immediatly before renormalization

(empty) (cf. SM model file)

Table 2: Optional variables for the FeynMaster model file. See text for details.

First, M$FCeqs should be distinguished M$FCsimp: while both are defined in the FeynMaster model

14The decay width thus defined will show up in the denominator of the propagator of the particle at stake whenever such
propagator mediates the s-channel of a 2 → 2 scattering process. This will also automatically happen for the corresponding
Goldstone boson of the particle at stake (in the case it corresponds to a gauge boson) if, in the definition of the particle
corresponding to the Goldstone, the attribute Goldstone is associated to the gauge boson at stake (ex: Goldstone -> Z).

15This is relevant only for the definition of number of polarizations in decay or scattering processes. In particular, the
functions DecayWidth and DiffXS (cf. Table 8 below) use this information.

16In the case of gauge bosons, generic Lorentz indices should be included; ex: A[mu_] -> A[mu] + 1/2 dZ3 A[mu]. Renor-
malization of antiparticles is automatically included and needs not be specified by the user.
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file as lists of replacement rules, the former ends up being converted into a list of equalities for the

FeynCalc, whereas the latter is only used as a set of replacement rules. So, considering the examples

presented in Table 2, the FeynCalc notebook will have xiA defined as 1 (i.e., xiA:=1), while it will use

the rule cw^2+sw^2->1 to simplify the calculations (more details on section 5.4.2).

Second, if PrMassFL is set to True, the poles of the propagators are extracted from the Lagrangian —

i.e., they are defined as the bilinear terms of the field at stake in the Lagrangian — and the propagator

is written in the most general form. If PrMassFL is set to False, the poles will match the variable

corresponding to the mass of the propagator and the propagator will be written in the Feynman gauge.

While setting PrMassFL to True is certainly the most faithful way to describe the propagator, this option

may bring certain difficulties: on the one hand, it requires the definition of a Gauge Fixing term for gauge

boson propagators; on the other hand, the bilinear terms can be very complicated expressions.

Finally, RenoPreRep, if used, must be defined as a Mathematica function with a single argument. It

is applied to the Lagrangian immediatly before the renormalization process, thus allowing to rewrite it

(i.e., the Lagrangian) in a more convenient way. This may be useful to obtain simpler expressions for the

Feynman rules of the counterterms.

5 Usage

Once the initial specifications are concluded (i.e., once the directories and the model are defined), Feyn-

Master is ready to be used. In this section, we explain in detail how to use it. We start by showing how

to edit the file that controls the FeynMaster run. Then, after describing how to run FeynMaster,

we comment its outputs and explain how to use the notebooks we alluded to in the Introduction.

5.1 Control.m

As mentioned before, the FeynMaster run is uniquely controlled from the Control.m file (which lies

inside the FeynMaster folder). In this section, we explain the different components of this file.

Model selection

First, the model must be chosen; this is done by editing the name after the variable model in the beginning

of Control.m. This name must correspond to the internal name of the model (the same name given to

the FeynMaster model file).

Process specification

Then, the user should start by specifying the desired process (or processes).17 One process is specified

through the definition of the set of variables shown in Table 3.18 As before, for each variable, a brief

description, the default value and an example are presented. We now describe them in more detail.

17It is possible to define a sequence of processes — that is, a series of processes to be run in a single FeynMaster run.
To define a sequence of processes, the user must copy the lines of the first process, paste them after it, and edit them to
define the second process, and repeat the same procedure for more processes (an example of a sequence of processes will be
given in section 6.1).

18As in Table 2, all variables in Table 3 can be completely omitted from the Control.m file, in which case the default
values are applied.
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Variable Description Default value Example

inparticles incoming particles (empty) e,ebar

outparticles outgoing particles (empty) H,Z

loops number of loops 0 1

parsel intermediate particles (empty) {avoid,Z,1,3},{keep,e,1,1}

factor quantity to factor out 1 16 Pi^2/I

options options (empty) onepi

Table 3: Variables that specify one process. See text for details.

inparticles and outparticles, corresponding to the incoming and outgoing particles of the process,

should contain only particles defined in the FeynMaster model. Antiparticles are defined according to

the FeynRules convention (with the suffix bar). Different particles should be separated by commas.

Whenever both a particle and an antiparticle are considered, the particle should always be written first,

and the antiparticle after it. Tadpoles are obtained by selecting a single incoming particle and no outgoing

particles.

Concerning the loops variable, it should be clear that, whatever the number of loops, FeynMaster

will always correctly generate the amplitudes for every diagram involved, although it is only prepared to

properly draw and compute diagrams with number of loops inferior to 2. The one-loop calculations are

performed with the FeynMaster function OneLoopTID (cf. Table 8 below).

parsel allows the specification of intermediate particles contributing to the process.19 It applies not only

to particles in loops, but to all intermediate particles. The selections must be written between braces and

different selections should be separated by commas (see example in Table 3, where two specific selections

are given). Each specific selection contains four arguments: the first should either be avoid or keep, the

second should correspond to a particle of the model,20 and the last two should be non-negative integer

numbers such that the second is not smaller than the first. We illustrate how it works by considering the

example in Table 3: {avoid,Z,1,3} discards all the diagrams with number of Z propagators between

1 and 3, while {keep,e,1,1} keeps only diagrams with number of e propagators between 1 and 1 (i.e.,

exactly equal to 1).

factor is a number, written in Mathematica style that is to be factored out in the final calculations

(more details on section 5.4.2).

options allows all the QGRAF options, as well as a couple of specific option for FeynMaster—

ugauge, which performs the calculation in the unitary gauge, and noPVauto, which employs the option

PaVeAutoReduce -> False in TID.21 . In Table 4, besides these, we present some of theQGRAF options;

for each one, a brief description and the converse option are presented.

19It is similar to (and actually based on) the iprop option in QGRAF.
20Care should be taken not to select antiparticles, but only particles. This is because the propagator in FeynMaster is

defined through the particle, and not the antiparticle.
21 As shall be seen, loop integrals in FeynMaster are performed with the function OneLoopTID, which uses the FeynCalc

function TID. By default, OneLoopTID uses TID with the option PaVeAutoReduce -> True. This simplifies some special cases
of Passarino-Veltman functions. In some cases, however, it may be relevant to perform loop integrals in a more expanded
way, in which case the option PaVeAutoReduce -> False must be used by selecting the option noPVauto in Control.m.
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Option Description Converse option

ugauge unitary gauge (none)

noPVauto employs PaVeAutoReduce -> False in TID (none)

onepi 1-particle irreducible diagrams only⋆ onepr

onshell no self-energy insertions on the external lines⋆ offshell

nosigma no self-energy insertions (nowhere)⋆ sigma

nosnail no snails (i.e., tadpoles or a collapsed tadpoles)⋆ snail

notadpole no tadpole insertions, i.e. no 1-point insertions⋆ tadpole

simple at most one propagator connecting any two
different vertices, and no propagator starting
and ending at the same vertex⋆

notsimple

⋆ Taken from the QGRAF manual; please consult it for more information.

Table 4: Options for Control.m.

FeynMaster logical variables

Once the model and the process (or sequence of processes) are specified, the user must select the logical

value of the 9 variables present in the end of Control.m. As logical variables, they admit only the values

True (or, alternatively, T or t) and False (or, alternatively, F or f). We describe them in Table 5. Some

Variable Effect (when chosen as True)

FRinterLogic establish an interface with FeynRules

RenoLogic perform renormalization

Draw draw and print the Feynman diagrams

Comp compute the final expressions

FinLogic print the final result of each diagram

DivLogic print the UV divergent part of each diagram

SumLogic compute the sum of the expressions

MoCoLogic apply momentum conservation

LoSpinors include spinors

Table 5: Logical variables of Control.m. See text for details.

remarks are in order, concerning the effect of these variables when set to True.

FRinterLogic, by establishing an interface with FeynRules, performs several tasks. First, it runs

FeynRules (for the model selected in the initial variable model), prints the complete tree-level Feynman

rules of the model in a PDF file and opens this file.22 Second, it generates the QGRAF model file,

a crucial element in the generation of Feynman diagrams. Third, it generates the complete tree-level

22The results are automatically written; this is especially challenging when it comes to (automatically) breaking the lines
in a long equation. This challenge is in general surpassed with the LATEX breqn package, which FeynMaster employs.
However, breqn is not able to break a line whenever the point where the line is to be broken is surrounded by three or
more parentheses; in those cases, unfortunately, the lines in the FeynMaster PDF outputs simply go out of the screen.
For documentation on the breqn package, cf.https://www.ctan.org/pkg/breqn.
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Feynman rules in FeynCalc style, which will play a decisive role in all the calculations. Finally, it

generates a Mathematica notebook specifically designed to run FeynRules — hereafter dubbed the

FeynRules notebook. This notebook is useful in case the user wants to have control over the generation

of Feynman rules, and is the subject of section 5.4.1.

Note that, even if all logical variables are set to False, FeynMaster always performs some actions. First,

it generates a Mathematica notebook specifically designed to run FeynCalc — hereafter dubbed the

FeynCalc notebook. This notebook is very useful should the user want to have control over calculations,

and is the subject of section 5.4.2. Second, once there is a QGRAF model, FeynMaster always runs

QGRAF, which writes in a symbolic form the total diagrams that contribute to the process at stake —

the same process which was specified through the variables in Table 3. Finally, FeynMaster takes the

QGRAF output and writes the amplitude for each diagram in a file that the FeynCalc notebook shall

have access to.

RenoLogic concerns the renormalization of the model. If FRinterLogic is set to True, RenoLogic prints

the complete set of Feynman rules for the counterterms interactions in a PDF file and opens this file;

moreover, it stores those interactions in a file which the FeynCalc notebook shall have access to. A

second important feature of RenoLogic is described below, in the context of the Comp variable.

Draw takes the QGRAF output, draws the Feynman diagrams in a LATEXfile, prints them in a PDF file

and opens this file. This operation is achieved with the help of feynmf [34], a LATEXpackage to draw

Feynman diagrams. Since the diagrams are written in a LATEXfile, they can not only be edited by the

user, but also directly copied to the LATEXfile of the user’s paper.23

Comp computes the final expressions using FeynCalc and stores them in a file.24

FinLogic and DivLogic are nothing but options for Comp, so that their value is only relevant if Comp is

set to True. If at least one of them is set to True, a PDF file is generated and opened: when FinLogic

is selected, the file includes the (total) final analytical expression for each diagram; when DivLogic is

selected, it includes the analytical expression for the UV divergent part of each diagram.25

At this point, we should clarify the difference between UV divergences and infrared (IR) divergences. It

is well known that, while the former are in general present in loop integrals, the latter can only show up

when there is a massless particle running inside the loop (in which case the IR divergence comes from the

integration region near k2 = 0, with k the loop momentum). In the present version of FeynMaster,

we restrict the treatment of divergences to the UV ones. Indeed, we assume that the IR divergences

can be regulated by giving the massless particle a fake mass — which one shall eventually be able to

set to zero in physical processes, after considering real emission graphs. With that assumption, IR

divergences will never show up explicitly (only implicitly through the fake mass). In the following, unless

in potentially dubious statements, we will stop writing UV explicitly: it is assumed that, whenever we

mention divergences, we shall be referring to UV divergences.

23As already suggested, Draw is at present only guaranteed to properly draw the diagrams up to one-loop. Moreover,
diagrams with more than two particles in the initial or final states, as well as some reducible diagrams, are also not warranted.

24By ‘final expressions’ we mean the analytical expressions for the diagrams; these are written in terms of Passarino–
Veltman integrals in case the number of loops equals 1; more details on section 5.4.2. It is normal that the warning ‘front
end is not available’ shows up when Comp is set to True.

25The limitation we alluded to in note 22 applies here too.
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SumLogic is relevant both when Comp is True and when it is False. In the first case, it calculates the sum

of the analytical expressions (when the PDF file with the analytical expressions is generated, SumLogic

prints their sum).26 The situation where SumLogic is True and Comp is False shall be described in section

5.4.2.

We now explain the effect of RenoLogic when Comp is set to True. In case the user defined a single

process in Control.m, RenoLogic causes FeynMaster to look for counterterms that might absorb the

divergences of the process at stake, and to calculate those counterterms in MS.27 Such counterterms are

then stored in a file (CTfin.m, described below) and, should the PDF file with the analytical expressions

be generated, printed in such file. In case the user defined a sequence of processes, the subsequently

computed counterterms are added to CTfin.m; however, what is particularly special about the sequence

is that, for a certain process of the sequence, FeynMaster will compute the counterterms by making

use of the counterterms already computed in the previous processes.28 In the end of the run, CTfin.m

contains all the counterterms that were computed (in MS) to absorb the divergences of the processes

of the sequence. In this way, and by choosing an appropriate sequence of processes, it is possible to

automatically renormalize the whole model in MS with a single FeynMaster run.

As SumLogic described above, the last two logical variables of Table 5 — MoCoLogic and LoSpinors— are

relevant both when Comp is True and when it is False. LoSpinors — only relevant with external fermions

— is actually prior to any calculation, since it modifies the amplitudes themselves, including spinors in

them. When Comp is True, MoCoLogic is such that the calculations use momentum conservation. The

situation where MoCoLogic is True and Comp is False is also postponed to section 5.4.2.

Tips

When using FeynMaster, it can be convenient to have access to some tips in order to properly fill in

Control.m. Several such tips are available: in the command line, going to the directory corresponding

to the FeynMaster folder, one can run the RUN-FeynMaster batch file with an argument after it. If this

argument is simply help, then several instructions about the use of Control.m are printed in the command

line. If, instead, the argument corresponds to internal name of a FeynMaster model, all the particles of

the model are printed.29 If the argument is neither help nor the name of a FeynMaster model, all the

particles of the model currently selected in Control.m are printed.

5.2 Run

After editing the Control.m file, everything is set. To run FeynMaster, just run the RUN-FeynMaster

batch file inside the FeynMaster folder (with no arguments after it).30

26More specifically: if FinLogic is True, SumLogic includes in the PDF file the sum of the total final expressions; if
DivLogic is True, it includes the sum of the expressions for the divergent parts; if both are True, it includes both the sum
of the total expressions and the sum of the expressions for the divergent parts.

27That is, calculates them in such a way that the counterterms are precisely equal to the divergent part they absorb
(except for the ln(4π) and the Euler-Mascheroni constant γ, which are also absorbed in the MS scheme). By ‘calculating’
we mean here writing the analytical expression.

28This is, in fact, the major advantage of writing a series of processes in a single FeynMaster run (as opposed to one
process per run); indeed, this feature is not possible with one process per run, since FeynMaster rewrites CTfin.m for the
model at stake everytime Comp and RenoLogic are both set to True.

29Antiparticles are not shown, and are obtained simply by adding bar after the name of the corresponding particle.
30Care should be taken not to run FeynMaster when the relevant notebooks are open. More specifically, if FRinterLogic

is set to True, and if the FeynRules notebook created for the process at stake already exists, this notebook cannot be open
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5.3 Outputs

Depending on the logical value of the variables of Table 5, FeynMaster can have different outputs. We

now list the total set of outputs, assuming that all those variables are set to True.31 First, in the directory

where the FeynMaster model is, two files are generated: the FeynRules notebook (Notebook.nb)

and an auxiliary file for it (PreControl.m). Second, the QGRAF model with the internal name of the

model is created, and placed inside the folder with the models for QGRAF (cf. note 1); besides, a file

named last-output (with the last output from QGRAF) is created inside the directory corresponding to

QGRAF. Then, if it does not exist yet, a directory with the internal name of the model is created inside

the directory for the FeynMaster output. Inside it, and if they do not exist yet, three directories are

created, Counterterms, FeynmanRules and Processes, which we now describe.

Counterterms contains one folder, TeXs-drawing, and two files, CTini.m and CTfin.m. TeXs-drawing

is where the PDF file with the complete set of Feynman rules for the counterterms interactions is stored,

as well as the LATEX file that creates it. CTini.m is the file which the FeynCalc notebook has access

to and where the Feynman rules for the counterterms interactions are stored. CTfin.m, in turn, is the

aforementioned file containing the counterterms that were computed (in MS) to absorb the divergences

of the processes of the sequence at stake.

FeynmanRules, besides several auxiliary files to be used in the FeynCalc notebook, contains yet another

TeXs-drawing folder, where the PDF file with the complete set of Feynman rules for the tree-level

interactions is stored, as well as the LATEX file that creates it.

Processes contains a folder for each of the different processes studied. These folders are named with the

index (in the sequence of processes) corresponding to the process at stake, as well as with a string con-

taining the names of the incoming and the outgoing particles joined together. Inside each folder, there are

three other folders, Lists, TeXs-drawing and TeXs-expressions, as well as three files, Amplitudes.m,

Helper.m and the FeynCalc notebook, Notebook.nb. In order: Lists contains files where the ana-

lytical expressions for the process at staked are stored (more details below); TeXs-drawing contains the

PDF file with the printed Feynman diagrams, as well as the LATEXfile that creates it; TeXs-expressions

contains the PDF file with the printed expressions, as well as the LATEXfile that creates it; Amplitudes.m

contains the amplitudes for the diagrams (written in FeynCalc style); Helper.m is an auxiliary file for

the FeynCalc notebook.

Finally, recall that, in case there is already a QGRAF model, FeynMaster will run even if all variables of

Table 5 are set to False. This is relevant since it generates not only the QGRAF output (last-output),

but also the folder (or folders) for the specific process (or processes) selected, containing the files described

above.32

during the run; in the same way, if Comp is set to True, and if the FeynCalc notebook designed for the process at stake
already exists, such notebook cannot be open during the run.

31Actually, when Comp and RenoLogic are both True and there are external fermions, LoSpinors should be False. This is
irrelevant for what follows, since LoSpinors has no influence on the outputs as a whole.

32While the QGRAF output is not overwritten when QGRAF is run on its own, it is overwritten when QGRAF is run
inside FeynMaster.
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5.4 The notebooks

As previously mentioned, a major advantage of FeynMaster is its hybrid character concerning automa-

tization. Indeed, not only does it automatically generate the results, but it also allows the user to handle

them. This is realized due to the automatic creation of the FeynRules notebook and the FeynCalc

notebook. We now describe them in detail.

5.4.1 The FeynRules notebook

We mentioned in section 5.1 that, when FeynMaster is run with the logical variable FRinterLogic

set to True, the FeynRules notebook Notebook.nb is automatically created in the directory where the

FeynMaster model is. By running it, the user can access the vertices for the different Lagrangian parts,

according to Table 6.33 Besides the usual FeynRules instructions, two useful functions — GetCT and

Lagrangian part vertices
LGauge vertsGauge

LFermions vertsFermionsFlavor

LYukawa vertsYukawa

LHiggs vertsHiggs

LGhost vertsGhosts

Table 6: Names of the different vertices according to the Lagrangian part (compare with Table 1).

MyTeXForm — are available. GetCT is a function that, for a certain Lagrangian piece given as argument,

yields the Feynman rules for the respective counterterms.34 MyTeXForm is FeynMaster’s version of

Mathematica’s TeXForm; it is a function that uses Python (as well as inner FeynMaster information

concerning the LATEX form of the parameters of the model) to write expressions in a proper LATEX form.35

5.4.2 The FeynCalc notebook

Whenever FeynMaster is run, and independently of the logical values of the variables of Table 5,

the FeynCalc notebook is automatically created. This notebook, as already the FeynRules one just

described, is totally ready-to-use: the user does not have to define directories, nor import files, nor change

conventions. Just by running the notebook, there is immediate access to a whole set of results: not only

to some basic elements — such as the total Feynman rules for the model and amplitudes for the diagrams

—, but also to the totality of the results obtained should the Comp logical variable had been turned

on. This last feature is made possible in FeynMaster 2 due to the creation of lists with analytical

expressions. Indeed, when Comp is set to true, FeynMaster now stores the analytical expressions

inside the aforementioned folder Lists, in such a way that, after the run, the FeynCalc notebook has

immediate access to those expressions (more details below).

But this is just part of the flexibility involved in the FeynCalc notebook. In fact, since all the referred

results are written in a Mathematica notebook, the user has great control over them, as he or she can

33The run will generate several FeynMaster internal files, among which is built-model, the QGRAF model file.
34In order to clarify the particles involved in the Feynman rule at stake, each term includes a factor ηi for each particle i;

for example, a term in the output of GetCT including ηA^2 ηWP ηWPbar contributes to the Feynman rule for the counterterm
of A, A, WP, WPbar.

35MyTeXForm prints the LATEX form of the expression at stake not only on the screen, but also in an external file named
MyTeXForm-last-output.tex in the directory where the notebook lies.
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operate algebraically on them, or select part of them, or print them into files, etc. Moreover, since the

FeynCalc package is loaded, and since all the results are written in a FeynCalc-readable style, the

control at stake is even greater, for the user can apply all the useful tools of that package: operate on the

Dirac algebra, perform contractions, solve loop integrals, etc.36

We now present some useful features introduced by FeynMaster in the FeynCalc notebook. We

start with the variables related to the analytical expressions for the Feynman diagrams: see Table 7. We

Variable Meaning

amp list with all the amplitudes

ampi amplitude for diagram i

res list with all the final expressions

resi final expression for diagram i

resD list with all the expressions for the divergent parts

resDi expression for the divergent part of diagram i

restot sum of all the final expressions

resDtot sum of all the expressions for the divergent parts

Table 7: Useful variables concerning expressions for the diagrams. See text for details.

should clarify the meaning of final expression, corresponding to the res list: for a certain index j, resj

(or res[[j]]) takes the amplitude ampj, divides it by i, rewrites the loop integral in terms of Passarino–

Veltman integrals (in case it is a one-loop process), writes it in 4 dimensions — including possible finite

parts coming from this conversion37 — and factorizes the previously selected factor. Note that, due to

the division by i, the final expressions — that is, res — correspond to M, and not to iM. The divergent

parts are written in terms of the variable div, defined as:38

div =
1

2

(
2

ϵ
− γ + ln 4π

)
.

Let us now consider the details related to the Lists folder. When Comp is set to True, the lists res and

resD are calculated and stored in Lists in the files res.in and resD.in, respectively. If, in addition,

SumLogic is set to True, restot and resDtot are also calculated and stored in Lists in the files restot.in

and resDtot.in, respectively. The access of the FeynCalc notebook to these files depends on the

variable compNwrite, which is visibly defined in the middle of the notebook: when it is False, the

notebook will load the files stored in Lists (should they exist); when it is True, it will calculate them

anew. By default, compNwrite is False, which means that, after having been calculated with Comp, the

36In the following, we assume the user to be familiar with FeynCalc. For more informations, consult the FeynCalc
website: https://feyncalc.github.io/.

37As is well known, in the dimensional regularization scheme, the infinities are tamed by changing the dimensions of the
integrals from 4 to d, in such a way that the divergences are regulated by the parameter ϵ = 4 − d. When solving the
integrals in terms of Passarino–Veltman integrals, the result will in general depend explicitly on the dimension d, as well
as on the Passarino–Veltman integrals themselves — which usually diverge, with divergence proportional to 1/ϵ. But since
d = 4 − ϵ, there will in general be finite terms (order ϵ0) coming from the product between d and the divergent parts in
the Passarino–Veltman integrals. Hence, when converting the result back to 4 dimensions (since the final result is written
in 4 dimensions), one cannot forget to include such terms. Finally, recall that IR divergences will never show up explicitly
if the potentially IR divergent integrals are tamed by giving the massless particle a fake mass.

38In the PDF file with the printed expressions, we change the name div to ωϵ.

13

https://feyncalc.github.io/


analytical expressions are by default immediatly accessible to the FeynCalc notebook.

Next, we consider useful functions to manipulate the results: see Table 8. We now explain some of them

Function Action

ChangeTo4 change to 4 dimensions

DecayWidth calculate the decay width⋆

DiffXS calculate the differential cross section†

GetDirac yield the Dirac structures as a list

GetDiv get the divergent part of an expression

GetFinite get the finite part of an expression in dimensional regularization‡

FacToDecay rewrite expressions (with form factors) for decays⋆⋄

FCtoFT convert expressions to Fortran

MyTeXForm write expressions in a proper LATEX form

MyPaVeReduce apply FeynCalc’s PaVeReduce and convert to 4 dimensions

OneLoopTID solve one-loop integrals with FeynCalc TID decomposition method#

RepDirac replace the Dirac structures with elements ME[j]

TakeReal applies the operator Re to the Passarino-Veltman functions

TrG5 calculate the trace for expressions with γ5
⋆ Only applicable to processes with 1 incoming and 2 or 3 outgoing particles.
† Only applicable to processes with 2 incoming and 2 or 3 outgoing particles.
‡ Cf. note 37.
⋄ Not yet available for three external gauge bosons.
# Note the arguments: OneLoopTID(k,amp), with k the loop momentum and amp the amplitude. Cf.

also note 21.

Table 8: Useful functions. See text for details.

in more detail (note that a description of a certain function Func shows up in the notebook by writing

?Func).

The functions DecayWidth and DiffXS have now been extended up to three outgoing particles. For the

case of two body decays, the result is written solely in terms of masses; for DiffXS with two outgoing par-

ticles, the result is written also in terms of the center of momentum energy S, as well of the scattering angle

Theta. For the case of three outgoing particles the result is written in terms of the invariant scalar prod-

ucts, p0p0,p0q1,p0q2,p0q3,q1q2,q1q3,q2q3 for the decay and p1p2,p1q1,p1q2,p1q3,p2q1,p2q2,p2q3,

q1q2,q1q3,q2q3 for the differential cross section. The argument of these functions must be a list. For

the two-bodies decays, the list is either the amplitude, expr={res1}, or a list with two elements, (e.g.,

DecayWidth[{E0, E1}]). In the first case, the result is proportional to |res1|ˆ2, while in the second case

the result is proportional to 2 Re [E0 E∗
1 ]. For the case of three outgoing particles, the argument of either

function must be a list of all diagrams contributing to the process. By using the function FCtoFT on the

result, all necessary Fortran files will be written in a subdirectory called newfiles, where the relevant

integrations can be made.39

39Both DecayWidth and DiffXS use the FeynCalc function ComplexConjugate to perform the complex conjugate of
expressions. This function assumes by default that all parameters are real; therefore, if there are complex parameters in
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GetDirac and RepDirac are useful functions to handle expressions with external fermions. The former

yields a list containing the different Dirac structures of the expression given as argument; the latter

replaces the Dirac structures of the expression given as argument with non-matricial elements ME[j] —

that is, the first Dirac structure is replaced by ME[1], the second by ME[2], and so on —, thus simplying

the manipulation of the expression. RepDirac admits a second (optional) argument, consisting of a list

of Dirac structures (ex: {GA[p1],GS[q1]}); this can be relevant to establish a correspondance between

ME[j] elements and Dirac structures. Indeed, such correspondance can obey one of two rules: either

only one argument is given to RepDirac, in which case the ME[j] elements follow the order of the Dirac

structures yielded by GetDirac, or a list of Dirac structures is given as a second argument of RepDirac,

in which case the ME[j] elements follow the order of that list.

GetDiv yields the UV divergent part of an expression; care should be taken if IR divergences are not

regulated via a fake mass, for in that case, although they can show up as poles of the Passarino–Veltman

functions, they will not be detected by GetDiv. Moreover, GetDiv only yields the UV divergent part

of the Passarino–Veltman functions [35, 36] that FeynCalc and FeynMaster can handle — namely,

integrals whose power of the loop momenta in the numerator is at most 3 (except for the D functions,

where we extended FeynCalc up to the fourth power of the loop momenta).

FacToDecay simplifies expressions to render the calculation of the decay width easier. It yields a two-

element list: the first element is the expression given as argument, but rewritten in terms of form factors;

the second is a list of replacements, associating to each form factor the corresponding analytical expression

(written using the kinematics of the process).40

FCtoFT is the function that allows the numerical interface of FeynMaster; when applied to an expression

exp, it generates a directory named newfiles, inside which there are at least five files: MainFT.F, Myexp.F,

MyVariables.h, MyParameters.h and Makefile-template.41 The first one, MainFT.F, is the beginning

of a main Fortran program, which must be completed according to the user’s will. MainFT.F calls the

function Myexp, which is the Fortran version of the expression FCtoFT was applied to, and which is

written in the file Myexp.F.42 In turn, MyVariables.h and MyParameters.h respectively contain the

variables and the numerical values associated to the different parameters in the FeynMaster model

file. Finally, Makefile-template consists of a skeleton of a makefile.43 In the case of cross sections, the

integration routine IntGauss.f is also generated and called in MainFT.F, which in this case is completed

with a concrete example.44

the expression which DecayWidth or DiffXS are to be applied to, those complex parameters should be inserted in a list
(say, complexlist), and one should write SetOptions[ComplexConjugate, Conjugate -> complexlist] before applying
DecayWidth or DiffXS.

40The form factors are by default defined as complex parameters in the options of the FeynCalc function ComplexCon-

jugate. This is relevant to calculate the DecayWidth (recall note 39).
41Here, and in what follows, exp (as in Myexp.F) corresponds to the name of the expression.
42According to the size of the expression at stake, and in order to render the compilation faster, one or several files

named MyAux_exp_i.F (with i corresponding to the index of the file) may be generated; these files are consistently and
automatically called by Myexp.F.

43Whenever MyAux_exp_i.F files are generated (see note 42), Makefile-template automatically includes those files, so
that the compilation becomes easier.

44 By default, the Passarino-Veltman functions will be converted as complex; this can be modified by defining a new
variable in the FeynCalc notebook retil, and define it as True (i.e. retil=True). FCtoFT admits a second (optional)
argument, as we now explain. Suppose that exp is a complicated expression, but such that it can be written in a simple
way using three form factors, F1, F2 and F3; that is, exp = f(F1,F2,F3), where f is a simple function, while F1, F2 and
F3 correspond to complicated expressions. In cases like this, it is convenient to write FCtoFT with two arguments: the first
one is the expression exp, but written in terms of auxiliary variables F1aux, F2aux and F3aux instead of the complicated
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MyTeXForm is the same function as the one described in section 5.4.1.

MyPaVeReduce is FeynMaster’s version of FeynCalc’s PaVeReduce; it applies PaVeReduce and writes

the result in 4 dimensions — again, not without including possible finite parts coming from this conversion.

Finally, we consider TrG5. Since FeynMaster is prepared to compute divergent integrals — and, more

specifically, to compute them via dimensional regularization —, it defines Dirac and Lorentz structures

(like gµν or γµ) in dimension d, not in dimension 4. However, the definition of γ5 in dimension d is not

trivial, as chiral fermions are a property of four dimensions. In fact, the treatment of γ5 in dimensional

regularization is still an open problem (see e.g. refs. [37–43]). By default, FeynMaster assumes the

so-called naive dimensional regularization scheme [41], which takes the relation {γ5, γµ} = 0 to be valid

in dimension d. This naive approach is applied both when the loop diagram has external fermions,

and when it has only inner fermions (forming a closed loop). In the second case, in order to calculate

the corresponding trace, FeynMaster uses TrG5. This function starts by separating the expression it

applies to in two terms: one with γ5, another without γ5. It then computes the trace of the former in 4

dimensions, while keeping the dimension of the latter in its default value d.45

Having clarified the functions in Table 8, we must consider a new table, Table 9, which contains some

useful variables concerning renormalization. Two notes should be added. First, in the CTprocess variable,

process corresponds to the names of the incoming and the outgoing particles joined together (for example,

Function Meaning

CTprocess expression containing the total counterterm for the process at stake

PreResReno sum of the total divergent part and CTprocess

CTfinlist list with all the counterterms computed so far in MS

ResReno the same as PreResReno, but using counterterms previously stored in
CTfinlist

PosResReno the same as ResReno, but using also the counterterms calculated for the
process at stake

Table 9: Useful variables concerning renormalization. See text for details.

in the SM, for the process h → Zγ, CTprocess is CTHZA). Second, PosResReno should always be zero, since

in the MS scheme the divergents parts are exactly absorbed by the counterterms.

Some final comments on the FeynCalc notebook. First, the indices of the particles are described in Ta-

ble 10, and momentum conservation can be applied through the replacement rule MomCons.46 Second, the

Helper.m file contains, among other definitions, both the factor (in case it was defined in Control.m)

as well as the FeynCalc identities (in case they were defined as M$FCeqs in the FeynMaster model).

Third, even if Comp is set to False in Control.m, setting SumLogic and MoCoLogic to True has conse-

expressions F1, F2 and F3 (that is, exp = f(F1aux,F2aux,F3aux)); the second argument is a list of the replacements between
the auxiliary variables and their corresponding form factor (in this example, {F1aux -> F1, F2aux -> F2, F3aux -> F3}).

45It is a matter of course that the calculation of the term with γ5 in dimension 4 can only be an issue when the integral
multiplying it is divergent. This is simply because one does not need to regularize an integral that is not divergent. In
particular, there is no need to use dimensional regularization for a finite integral, so that all the calculations can be made
in dimension 4. Note also that FeynCalc already includes different schemes to handle γ5, and is expected to improve the
treatment of γ5 in dimensional regularization in future versions.

46Whenever there is one incoming particle and two outgoing particles, MomCons replaces p1 by the remaining momenta;
in all the other cases, MomCons replaces q1 by the remaining momenta.
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order in
Control.m

QGRAF
index

Lorentz
index in
FeynCalc

Lorentz
index in
LATEX

Color
index in
LATEX

Momentum
index in
FeynCalc

Momentum
index in
LATEX

Incoming
particles

1

2

-1

-3

-J1

-J3

µ

ρ

a

c

p1

p2

p1

p2

Outgoing
particles

1

2

-2

-4

-J2

-J4

ν

σ

b

d

q1

q2

q1

q2

Table 10: Particle indices for the FeynCalc notebook.

quences for the FeynCalc notebook: when the notebook is run with compNwrite set to True, the total

expressions will be calculated and momentum conservation will be applied, respectively. Finally, the re-

placement rule FCsimp contains the simplifications for FeynCalc (in case they were defined as M$FCsimp

in the FeynMaster model) and is applied in the calculation of res, resD, restot and resDtot.

6 Examples

6.1 Creation and complete automatic renormalization of a toy model

Here we exemplify how to create a model, on the one hand, and how to completely renormalize it, on the

other. The model will be very simple: QED with an extra fermion. We first show how to create such a

toy model.

Probably the simplest way to create any model whatsoever is to copy and modify an already existing

model. Given the similarity between our toy model and QED, we go to the directory with models for

FeynMaster and duplicate the directory QED, after which we name the duplicate QED2. We get inside

QED2 and change the name of the model file from QED.fr to QED2.fr. We then open QED2.fr and edit

the model in three steps: first, we modify the parameter list to:

(***** Parameter list *****)

M$Parameters = {

m1 == {TeXName -> "m_1", Renormalization -> {m1 -> m1 + dm1}},

m2 == {TeXName -> "m_2", Renormalization -> {m2 -> m2 + dm2}},

ee == {TeXName -> "e", Renormalization -> {ee -> ee + de ee}},

xiA == {TeXName -> "\\xi_A"},

de == {Counterterm -> True, TeXName -> "\\delta e"},

dZ3 == {Counterterm -> True, TeXName -> "\\delta Z_3"},

dZ1L == {Counterterm -> True, TeXName -> "\\delta Z_1^L"},

dZ1R == {Counterterm -> True, TeXName -> "\\delta Z_1^R"},

dZ2L == {Counterterm -> True, TeXName -> "\\delta Z_2^L"},

dZ2R == {Counterterm -> True, TeXName -> "\\delta Z_2^R"},

dm1 == {Counterterm -> True, TeXName -> "\\delta m_1"},

dm2 == {Counterterm -> True, TeXName -> "\\delta m_2"}};
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Then, in the particle classes list, we slightly modify what we had, and we add a second fermion:47

(***** Particle classes list *****)

M$ClassesDescription = {

W[1] == {

ClassName -> psi1L,

SelfConjugate -> False,

QuantumNumbers -> {Q-> Q},

Renormalization -> {psi1L -> psi1L + 1/2 dZ1L psi1L},

Chirality -> Left},

W[2] == {

ClassName -> chi1R,

SelfConjugate -> False,

QuantumNumbers -> {Q-> Q},

Renormalization -> {chi1R -> chi1R + 1/2 dZ1R chi1R},

Chirality -> Right},

W[3] == {

ClassName -> psi2L,

SelfConjugate -> False,

QuantumNumbers -> {Q-> Q},

Renormalization -> {psi2L -> psi2L + 1/2 dZ2L psi2L},

Chirality -> Left},

W[4] == {

ClassName -> chi2R,

SelfConjugate -> False,

QuantumNumbers -> {Q-> Q},

Renormalization -> {chi2R -> chi2R + 1/2 dZ2R chi2R},

Chirality -> Right},

F[1] == {

ClassName -> f1,

TeXName -> "f_1",

TeXAntiName -> "\\bar{f_1}",

SelfConjugate -> False,

QuantumNumbers -> {Q-> Q},

Mass -> m1,

WeylComponents -> {psi1L, chi1R}},

F[2] == {

ClassName -> f2,

TeXName -> "f_2",

TeXAntiName -> "\\bar{f_2}",

47The fermions are defined both in terms of Weyl spinors (the W variables) and Dirac spinors (the F variables). It is
certainly true that, in models with no parity violation (like the present one), there is no need to define the fermions in terms
of Weyl spinors. Nevertheless, we consider them for illustrative purposes.
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SelfConjugate -> False,

QuantumNumbers -> {Q-> Q},

Mass -> m2,

WeylComponents -> {psi2L, chi2R}},

V[1] == {

ClassName -> A,

TeXName -> "\\gamma",

Renormalization -> {A[mu_] -> A[mu] + 1/2 dZ3 A[mu]},

Mass -> 0,

SelfConjugate -> True}};

We modify the Lagrangian to include a second fermion:

LGauge := -1/4 FS[A, \[Mu], \[Nu]] FS[A, \[Mu], \[Nu]]

LFermions := I psi1Lbar.sibar[mu].del[psi1L, mu] + I chi1Rbar.si[mu].del[chi1R, mu] \

- m1 (psi1Lbar.chi1R + chi1Rbar.psi1L) \

+ ee psi1Lbar.sibar[mu].psi1L A[mu] + ee chi1Rbar.si[mu].chi1R A[mu] \

+ I psi2Lbar.sibar[mu].del[psi2L, mu] + I chi2Rbar.si[mu].del[chi2R, mu] \

- m2 (psi2Lbar.chi2R + chi2Rbar.psi2L) \

+ ee psi2Lbar.sibar[mu].psi2L A[mu] + ee chi2Rbar.si[mu].chi2R A[mu]

LGF := -1/2/xiA del[A[mu], mu] del[A[nu], nu]

This completes the model. Now, we want to proceed to its complete automatic renormalization — that

is, to the determination of the analytical expressions for the complete set of counterterms (in the MS

scheme). To do so, we open Control.m; we start by setting model: QED2. Then, we must choose a

sequence of processes such that all the counterterms are computed. To do so, note that the total set of

counterterms is:

δZ3, δZL
1 , δZ

R
1 , δm1, δZL

2 , δZ
R
2 , δm2, δe. (1)

However, from the renormalization of QED, we know that the first one, δZ3, can be determined by the

vacuum polarization of the photon; the following three, δZL
1 , δZ

R
1 , δm1, can be determined by the self-

energy of f1; by the same token, δZL
2 , δZ

R
2 , δm2 can be determined by the self-energy of f2; finally, δe

can be determined by one of the vertices (either f1f̄1γ or f2f̄2γ) at 1 loop. Therefore, we write:

inparticles: A

outparticles: A

loops: 1

inparticles: f1

outparticles: f1

loops: 1

options: onepi

inparticles: f2

outparticles: f2
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loops: 1

options: onepi

inparticles: A

outparticles: f1,f1bar

loops: 1

options: onepi

Finally, concerning the logical variables of Control.m, we set them all to True, except LoSpinors, which

we set to False. This being done, everything is set. We then go to the FeynMaster folder and run batch

the file RUN-FeynMaster. In total, 10 PDF files are automatically and subsequentially generated and

opened: one for the tree-level Feynman rules, another one for the counterterms Feynman rules, and two

files per process — one with the Feynman diagrams, another with the respective expressions. In the last

file for the expressions, we read “This completes the renormalization of the model”, and the list of the full

set of counterterms is presented.

6.2 h → γγ in the Standard Model

In this example, we use the h → γγ in the SM as an illustration of several features of FeynMaster. We

use the SM model file that comes with FeynMaster. As for Control.m, we set it as:48

model: SM

inparticles: H

outparticles: A,A

loops: 1

FRinterLogic: T

RenoLogic: T

Draw: T

Comp: F

FinLogic: F

DivLogic: F

SumLogic: T

MoCoLogic: F

LoSpinors: F

We then run the batch file RUN-FeynMaster. In total, 3 PDF files will automatically be generated and

opened: one for the tree-level Feynman rules, another one for the counterterms Feynman rules and a

third one for the Feynman diagrams. We go to the directory SM/Processes/1-HAA (meanwhile generated

inside the directory for the FeynMaster output) and open the FeynCalc notebook Notebook.nb. We

48 We are setting FRinterLogic to True, which only needs to be done in case it was not yet done before. Actually,
generating all Feynman rules for both the tree-level interactions and the counterterms in the SM may take around 5
minutes. Therefore, if we have already performed that operation, we can save time by setting FRinterLogic and RenoLogic

to False.
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then run the Notebook.nb, after which we are ready to test some relevant features.

6.2.1 Notebook access to Feynman rules

First, we want to gain some intuition on how the notebook has access to the SM Feynman rules and to

the amplitudes of the h → γγ decay. We write

In[14]:= amp1

which should yield the expression:

(2)
2 e3 mW g−J2−J4

sw (k21 −mW
2) ((p1 − k1)2 −mW

2)
− 2D e3 mW g−J2−J4

sw (k21 −mW
2) ((p1 − k1)2 −mW

2)
.

This is the amplitude for the first Feynman diagram, where D represents the dimension. Now, where

does the notebook get this information from? To answer the question, we open Amplitudes.m inside

1-HAA. If we check the first line, we realize that amp1 is essentially a product of Feynman rules such

as propWP[...] and vrtxAAWPWPbar[...].49 These rules are defined in the auxiliary files inside the

directory SM/FeynmanRules (inside the directory for the FeynMaster output). Although they have

been automatically generated, they can always be edited for particular purposes.

6.2.2 Finiteness and gauge invariance

Next, we use some of the features described in section 5.4.2 to test two important properties of h → γγ:

finiteness and gauge invariance. We start with the former; by writing

In[15]:= resD

we obtain the list with all the expressions for the divergents parts. It is a non-trivial list: although some

of its elements are zero, most of them are not. However, when we sum the whole list, we find:

In[16]:= resDtot

Out[16]= 0

so that the process as a whole is finite, as expected for this decay mode.

Let us now check gauge invariance. First of all, note that the total amplitude M for h → γγ can be

written as

M = ϵν1ϵ
σ
2 Mνσ, (3)

where we are just factoring out the polarization vectors ϵν1 and ϵσ2 of the two photons. Then, it is easy to

show that gauge invariance forces Mνσ to have the form

Mνσ = (gνσq1.q2 − qσ1 q
ν
2 )F, (4)

where q1 and q2 are the 4-momenta of the two photons, and F is a scalar function of the momenta and the

masses. In other words, it is a consequence of gauge invariance that, in the total process, the coefficient

of gνσq1.q2 must be exactly opposite to that of qσ1 q
ν
2 . To test this, we define some replacement rules:

(* momentum conservation in scalar products and four-vectors *)

In[17]:= dist = {SP[p1, x_] -> SP[q1, x] + SP[q2, x], FV[p1, x_] -> FV[q1, x] + FV[q2, x]};

49Amplitudes 13 to 22 have an extra factor 3, which corresponds to the color number. This factor is automatically added
by FeynMaster for diagrams with closed loops of quarks.
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(* external particles on-shell *)

In[18]:= onshell = {SP[q1, q1] -> 0, SP[q2, q2] -> 0, SP[p1, p1] -> mH^2};

(* kinematics *)

In[19:= kin = {SP[q1, q2] -> MH^2/2, SP[p1, q1] -> MH^2/2, SP[p1, q2] -> MH^2/2};

(* transversality of the external photons polarizations *)

In[20]:= transv = {FV[q1, -J2] -> 0, FV[q2, -J4] -> 0};

which we use to define a new res list:

In[21]:= resnew = (res /. dist /. onshell /. kin /. transv) // Simplify;

Finally, we write the coefficients of gνσq1.q2 and qσ1 q
ν
2 as

In[22]:= resnewT = (Coefficient[resnew, MT[-J2, -J4]] // MyPaVeReduce)

/(MH^2/2) // Simplify // FCE;

In[23]:= resnewL = (Coefficient[resnew, FV[q1, -J4]*FV[q2,-J2]] // MyPaVeReduce)

// Simplify // FCE;

respectively, to conclude that

In[24]:= Total[resnewT] + Total[resnewL] // Simplify

Out[24]:= 0

in accordance with gauge invariance. For what follows, it is convenient to save the expressions for the

total transverse and longitudinal part. We write

In[25]:= FT = Total[resnewT] // Simplify;

In[26]:= FL = Total[resnewL] // Simplify;

6.2.3 MyTeXForm

We now illustrate how to use MyTeXForm inside the FeynCalc notebook. Suppose we want to write the

sum of final results for the diagrams with quartic vertices (diagrams 1 to 6) in a LATEX document. We

define the variable toprint1 as

In[27]:= toprint1 = Sum[res[[i]], {i, 1, 6}] // Simplify

after which we write

In[28]:= toprint1 // MyTeXForm

If we now copy the outcome as plain text and paste it in a LATEX document like the present one, we get:

(5)−
(
e3

((
m2

h + 6m2
W

)
B0

(
p21,m

2
W ,m2

W

)
+m2

W

(
−4 +B0

(
q21 ,m

2
W ,m2

W

)
+B0

(
q22 ,m

2
W ,m2

W

)))
gνσ

)
/
(
16mW π2 sw

)
Note that we did not need to break the line manually in the LATEX equation. This is because we are

using the breqn package, which automatically breaks lines in equations.50

50For documentation, cf. https://www.ctan.org/pkg/breqn . Recall that the line breaking does not work when the point
where the line is to be broken is involved in three or more parentheses.
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6.2.4 Fortran interface

We mentioned in the Introduction that FeynMaster includes a numerical interface with Fortran. We

now show how it works in the context of h → γγ. Suppose we want to plot the decay width as a function

of the Higgs mass; we could start by computing the total h → γγ decay width:

In[27]:= X0 = restot // DecayWidth

However, although this works, it takes a long time and produces large expressions. It is simpler to exploit

the generic form of eq. 4 and use a form factor; that is,

In[27]:= X0 = FTaux (MT[-J2, -J4] MH^2/2 - FV[q1, -J4] FV[q2, -J2]) // DecayWidth

where FTaux is an auxiliary variable that, in the end, must be replaced by the absolute value of the total

transverse part FT, defined above. Then, we write

In[28]:= (X0 /. FTaux -> Abs[FT] // Simplify) // FCtoFT

where we performed the referred replacement.51 As explained in section 5.4.2, the command FCtoFT

generates five files: MainFT.F, Myexp.F, MyVariables.h, MyParameters.h and Makefile-template. We

open MainFT.F and, immediately after the comments Write now the rest of the program, we write52

xMH=38d0

do i=1,162

xMH=xMH+1d0

write(50,98)xMH,Myexp(..., xMH, ...)

enddo

where 50 and 98 represent the output file and the impression format, respectively. We are varying the

Higgs mass from 38 GeV to 200 GeV in steps of 1 GeV. The result is presented in Fig. 1.
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Figure 1: Width of the process h → γγ as a function of the Higgs boson mass.

51Alternatively, following the instructions in note 44, we could also have written FCtoFT[X0, {FTaux -> Abs[FT]}].
52The parameters loaded from the file MyParameter.h cannot be changed inside the Fortran program (MainFT.F). Hence,

since we define the parameter MH as the Higgs boson mass, we name xMH the variable we are using to make the plot; in doing
so, we must be careful to replace MH for xMH in the arguments of Myexp inside the loop.
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6.2.5 Edition of Feynman diagrams

Finally, we briefly explain how to edit the Feynman diagrams. Recall that they were written in a LATEX

file inside SM/1-HAA/TeXs-drawing folder. We open the file diagrams.tex and consider the first diagram;

the original code produces the original diagram:

(...)

\fmflabel{$\gamma$}{...}

\fmflabel{$\gamma$}{...}

\fmf{dashes,tension=3}{...}

\fmf{photon,tension=3}{...}

\fmf{photon,tension=3}{...}

\fmf{photon,label=$W^{+}$,right=1}{...}

\fmf{phantom_arrow,tension=0,right=1}{...}

\fmf{photon,label=$W^{+}$,right=1}{...}

\fmf{phantom_arrow,tension=0,right=1}{...}

(...)

W+

W+

h

γ

γ

However, we can modify the code in order to change the aspect of the diagram. In particular, we can

change the labels, the tensions and the curvatures.53 For example:

(...)

\fmflabel{$\gamma_1$}{...}

\fmflabel{$\gamma_2$}{...}

\fmf{dashes,tension=1}{...}

\fmf{photon,tension=3}{...}

\fmf{photon,tension=3}{...}

\fmf{photon,label=$W^{-}$,right=1}{...}

\fmf{phantom_arrow,tension=0,right=1}{...}

\fmf{photon,label=$W^{-}$,right=1}{...}

\fmf{phantom_arrow,tension=0,right=1}{...}

(...)

W+

W+

h

γ1

γ2

6.3 QED Ward identity

In the previous example, we showed how to use FeynMaster to manipulate the results of a single

process. Here, we illustrate how it can also be used to combine information of several processes. For that

purpose, we consider a simple task: prove the QED Ward identity.

It is easy to show that the Ward identity at one-loop order in QED can be written as:

pν1 Γν(p1, p2, p3) = e

(
Σ(p2)− Σ(p3)

)
, (6)

53The tensions represent the strength of the lines: the larger the tension, the tighter the line will be. The default tension
is 1. The curvature is represented by the variable right. Note that tensions, labels and curvatures are just a few examples
of variables that can be changed to generate a different diagram. For more informations, please consult the feynmf manual.
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where

Γν(p1, p2, p3) =
p1

p3

p2

, Σ(pi) =
pi pi

, (7)

and where the momenta p1 and p3 are incoming, while p2 is outgoing. In order to prove eq. 6 with

FeynMaster, we need to consider the two processes depicted in eq. 7: the QED vertex and the fermion

self-energy. Hence, we open and edit Control.m according to:

model: QED

inparticles: A

outparticles: f,fbar

loops: 1

options: onepi

inparticles: f

outparticles: f

loops: 1

options: onepi

FRinterLogic: T

RenoLogic: F

Draw: F

Comp: T

FinLogic: F

DivLogic: F

SumLogic: T

MoCoLogic: F

LoSpinors: F

We then run FeynMaster. After this, we go to the directory QED/Processes/1-Affbar (meanwhile

generated inside the directory for the FeynMaster output), we copy the notebook lying there to a

different directory and we rename it Notebook-Global.nb. This is going to be the notebook where we

shall combine the information of both processes. We open it, and delete most of the lines there: in a first

phase, we only want to load the general files. So it must look like this:

In[1]:= << FeynCalc‘

In[2]:= dirNuc = "(...)";

In[3]:= dirFey = "(...)";

In[4]:= dirCT = "(...)";

In[5]:= Get["Feynman-Rules-Main.m", Path -> {dirFey}]
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In[6]:= Get["FunctionsFM.m", Path -> {dirNuc}]

In[7]:= compNwrite = False;

Now, we want to load the first process. To do so, we write:

In[8]:= dirHome = "(...)";

In[9]:= SetDirectory[dirHome];

In[10]:= << Helper.m;

In[11]:= Get["Definitions.m", Path -> {dirNuc}];

In[12]:= Get["Finals.m", Path -> {dirNuc}];

where dirHome should be set to the directory corresponding to 1-Affbar. Next, we define new variables:

X0 as Γ of eq. 6, with the above-mentioned momentum definitions, and X1 as the whole left-hand side of

eq. 6.

In[13]:= X0 = res[[1]] /. {p1 -> p2 - p3, q1 -> p2, q2 -> -p3};

In[14]:= X1 = Contract[X0 FV[p2 - p3, -J1]];

We now load the second process:

In[15]:= dirHome = "(...)";

In[16]:= SetDirectory[dirHome];

In[17]:= << Helper.m ;

In[18]:= Get["Definitions.m", Path -> {dirNuc}];

In[19]:= Get["Finals.m", Path -> {dirNuc}];

where dirHome should now be set to the directory corresponding to 2-ff. From this, and recalling that

the default momentum of a self-energy is p1 (cf. Table 10), we can obtain the right-hand side of eq. 6 by

writing:

In[20]:= Y0a = res[[1]] /. p1 -> p2;

In[21]:= Y0b = res[[1]] /. p1 -> p3;

In[22]:= Y1 = (e (Y0a - Y0b) // DiracSimplify) // Simplify;

Finally, we prove the Ward identity by showing that both sides of eq. 6 are equal:

In[23]:= WI = (Y1 - X1) // Simplify;

In[24]:= CheckWI = MyPaVeReduce[WI] // Calc

which yields 0, thus completing the proof.

7 Quick first usage

For a quick first usage of FeynMaster, the user should follow this sequence of steps:

1) Make sure you have installed Python, Mathematica and LATEX , on the one hand, and FeynRules,

QGRAF and FeynCalc, on the other;

2) Download FeynMaster in https://porthos.tecnico.ulisboa.pt/FeynMaster/;

3) Extract the downloaded file and place the resulting folder in a directory at will;

4) Edit the file RUN-FeynMaster as explained in section 2;

26

https://porthos.tecnico.ulisboa.pt/FeynMaster/


5) Run RUN-FeynMaster.

This should generate and open 4 PDF files relative to QED: the Feynman rules for the tree-level in-

teractions, the Feynman rules for the counterterms interactions, the Feynman diagram for the one-loop

vacuum polarization, and a document containing not only the expressions for the vacuum polarization,

but also the expression for the associated counterterm in MS.
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