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Abstract It is known that a three Higgs doublet model
(3HDM) symmetric under an exact A4 symmetry is not
compatible with nonzero quark masses and/or non-block-
diagonal CKM matrix. We show that a 3HDM with softly
broken A4 terms in the scalar potential does allow for a fit
of quark mass matrices. Moreover, the result is consistent
with mh = 125 GeV and the h → WW, Z Z signal. We also
checked numerically that, for each point that passes all the
constraints, the minimum is a global minimum of the poten-
tial.

1 Introduction

The observation in 2012 of a scalar particle with 125 GeV by
the ATLAS and CMS collaborations [1,2] has incentivized
experimental searches for beyond the Standard Model (SM)
particles at the LHC. On par with these experimental endeav-
ors, theoretical efforts in the search for extra scalar particles
have been strengthened since this discovery. A promising
framework is found in N-Higgs doublet models (NHDM).

Such models have many free parameters, which are often
curtailed by imposing some discrete family symmetry. Here,
we focus on the implementation of A4 in a three Higgs dou-
blet model (3HDM). The A4 group is the group of even per-
mutations on 4 elements. It is the smallest discrete group
to contain a three-dimensional irreducible representation
(irrep), which is ideal for describing the three families of
quarks with a minimal number of independent Yukawa cou-
plings. Thus, NHDM supplemented by the A4 discrete sym-
metry has long been of interest in flavour physics research.
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A number of early articles include: [3], mainly devoted
to the leptonic sector and where the solution to the quark
sector is briefly mentioned to include a fourth Higgs dou-
blet and all quark fields in singlets (which is effectively the
same as the Standard Model quark sector); [4], where A4 is
broken by dimension four Yukawa couplings, which, upon
renormalization, will affect the scalar potential [5], which
requires three Higgs doublets in the down-type quark sector
and a further two in the up-type quark sector, consisting of
a 5HDM; and [6], which is devoted to the leptonic sector,
but has the interesting side query that it might be possible to
recover a realistic CKM matrix through soft-breaking of A4.

Quark mass matrices in the context of a 3HDM with
Higgs doublets in the triplet representation of A4 were stud-
ied in [7,8], with the vacuum expectation value (vev) struc-
ture (eiα, e−iα, r), where α and r are real constants. This
vacuum solution was also included in the original study of
the A4-3HDM vacua in Ref. [9]. Unfortunately, Degee et
al. [10] proved in 2013 that such a vacuum can never be
the global minimum of the A4 symmetric 3HDM. In this
beautiful paper, geometric techniques were used in order to
identify all possible global minima (thus, all possible viable
vacua) of the A4 symmetric 3HDM. Immediately thereafter,
those minima were used to show that all assignments of the
quark fields into irreps of A4, when combined with the pos-
sible vevs for the exact A4 potential, yield vanishing quark
masses and/or a CP conserving CKM matrix, both of which
are forbidden by experiment. This is in fact a consequence
of a much broader theorem, proved in [11,12]: given any
flavour symmetry group, one can obtain a physical CKM
mixing matrix and, simultaneously, non-degenerate and non-
zero quark masses only if the vevs of the Higgs fields break
completely the full flavour group. The idea is that a symme-
try will reduce the number of redundant Yukawa couplings
present in the SM, and it might even predict relations among
observables which turn out to be consistent with experiment.
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When studying in detail the extensions of A4 to the quark
sector found by Ref. [13], we noticed that, in some of them,
if it weren’t for the particular form of the vevs allowed by the
exact A4 3HDM potential, the Yukawa matrices could allow
for massive quarks, and for a realistic CKM matrix. Since
the A4 symmetric potential doesn’t allow for minima other
than those shown in [10], here we consider the case where
the A4 symmetry is softly broken by the addition of quadratic
terms to the potential. Such terms do not spoil the theory’s
renormalizability, but break the A4 symmetry.

Our article is organized as follows. We define the nota-
tion for the scalar potential in Sect. 2.1, discuss the Yukawa
Lagrangian and the form of the possible mass matrices in
Sect. 2.2, giving all the expressions needed for the fit in
Sect. 2.3. In Sect. 3 we present our fit to the quarks mass
matrices, while in Sect. 4 we discuss the viability of the vac-
uum found in the fit in terms of the scalar potential. Section 5
is devoted to the implementation of the theoretical constraints
to be imposed, and in Sect. 6 we briefly discuss the con-
straints coming from the LHC. The results and conclusions
are presented in Sects. 7 and 8, respectively. The Appendices
contain some additional expressions that are needed for the
fits.

2 Parameterization for the softly-broken A4 3HDM

2.1 Potential and candidates for local minimum

The softly-broken potential of the 3HDM with an A4 sym-
metry is given by

VH = V4, A4 + M2
i j

(
φ

†
i φ j

)
, (1)

where V4, A4 is the quartic potential for the A4 symmetric
three Higgs doublet model (3HDM), which is, in the notation
of [10],
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The matrix M2
i j is a general hermitian matrix, which can be

parameterized by

(M2
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where m2
i j are real parameters with the dimension of mass

squared.1

Additionally, in the notation of [14], the exact A4 potential
can be written as

VA4 = r1 + 2r4
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The relation between the two notations is

r1 = 1

3
(�0 + �3), r4 = 1

6
(2�0 − �3),

r7=1

4
(�1+�2),

Re(c3) = 1

4
(�1 − �2), Im(c3) = −1

4
�4. (5)

We consider that the scalar fields can take complex vac-
uum expectation values (vevs), to be determined later. Thus,
we write,

φi =
[

ϕ+
i

|vi |eiρi√
2

+ 1√
2

(xi + i xi+3)

]
. (6)

Because CP is spontaneously violated, the unrotated neu-
tral fields have no definite CP, and for convenience we label
them xi , i = 1, . . . , 6. We can also use the gauge freedom
to absorb one of the phases in the vevs, that we choose to be
ρ1. Therefore we have the vector of vevs defined as

�v = (|v1|, |v2|eiρ2 , |v3|eiρ3). (7)

This vev contributes with four free parameters to our model,
because one of the parameters is constrained by the mass of
the gauge bosons to match the observed SM values,

|v1|2 + |v2|2 + |v3|2 ≡ v2 � (246 GeV)2. (8)

1 In the quadratic terms, the combination

− M0√
3

(
φ

†
1φ1 + φ

†
2φ2 + φ

†
3φ3

)
is also invariant under A4. But, since we

are keeping all soft-breaking terms, we find the notation in (3) more
convenient.
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Table 1 Extensions of A4 to the Yukawa sector with non-vanishing determinant, and non-zero J for general, complex valued, vevs (v1, v2, v3). In
the table, Id stands for the matrix Md for case I and similarly for the other entries

Case Md Mu

I

⎛
⎝
aeiαv1 beiβv1 ceiγ v1

aeiαv2 ωbeiβv2 ω2ceiγ v2

aeiαv3 ω2beiβv3 ωceiγ v3

⎞
⎠

⎛
⎝
A → A′, A ∈ {a, b, c}
� → �′, � ∈ {α, β, γ }
vi → v∗

i , i ∈ {1, 2, 3}

⎞
⎠

II ITd ITu

III

⎛
⎝

0 (aeiα − beiβ)v3 (aeiα + beiβ)v2

(aeiα + beiβ)v3 0 (aeiα − beiβ)v1

(aeiα − beiβ)v2 (aeiα + beiβ)v1 0

⎞
⎠

⎛
⎝
A → A′, A ∈ {a, b}
� → �′, � ∈ {α, β}
vi → v∗

i , i ∈ {1, 2, 3}

⎞
⎠

IV Id IIIu

V IIId Iu

The vev can also be parameterized as

�v=v
(

cos(β1) cos(β2), cos(β2) sin(β1)e
ip2 , sin(β2)e

ip3
)

. (9)

Of the quantities arising out of the scalar potential, the vevs
are the only relevant to the quark mass matrices. This leads
many authors to just proclaim some vevs, without checking
whether they can indeed be the global minima of a realis-
tic Higgs potential. We will perform this crucial verification
below, in Sect. 4.

2.2 Yukawa Lagrangian

As in Refs. [7,13], we consider that the Higgs doublets are in
the 3 of A4 as well as the three left-handed SU (2) doublets
QLj of hypercharge 1/6. There are three right-handed SU (2)

singlets nR, j of hypercharge −1/3 and three right-handed
SU (2) singlets pR, j of hypercharge 2/3. Our assignments
for the singlets are as follows

nR1, pR1 → 1, nR2, pR2 → 1′, nR3, pR3 → 1′′ of A4.

(10)

Then, the A4 transformations on the fields are generated by
[7,13]

T :

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

φ1 → φ2 → φ3 → φ1,

QL1 → QL2 → QL3 → QL1,

nR1 → nR1, nR2 → ωnR2, nR3 → ω2nR3,

pR1 → nR1, pR2 → ωpR2, pR3 → ω2 pR3,

(11)

and

S :
{

φ1 → φ1, φ2 → −φ2, φ3 → −φ3,

QL1 → QL1, QL2 → −QL2, QL3 → −QL3.
(12)

One can easily verify that the scalar potential in Eq. (4) is
invariant under the previous transformations. Now we write
the A4 invariant Yukawa Lagrangian for quarks. We have

− LYukawa = √
2 â

(
QL1φ1 + QL2φ2 + QL3φ3

)
nR1

+ √
2 b̂

(
QL1φ1 + ω QL2φ2 + ω2 QL3φ3

)
nR2

+ √
2 ĉ

(
QL1φ1 + ω2 QL2φ2 + ω QL3φ3

)
nR3

+ √
2 â′ (QL1φ̃1 + QL2φ̃2 + QL3φ̃3

)
pR1

+ √
2 b̂′ (QL1φ̃1 + ω QL2φ̃2 + ω2 QL3φ̃3

)
pR2

+ √
2 ĉ′ (QL1φ̃1 + ω2 QL2φ̃2 + ω QL3φ̃3

)
pR3 + h.c.,

(13)

where, as usual,

φ̃ j ≡ i σ2φ
∗
j , (14)

and we define

â=aei α, b̂=bei β, ĉ=cei γ , â′=a′ei α′
, b̂′=b′ei β ′

,

ĉ′=c′ei γ ′
, (15)

where a, b, c, a′, b′, c′ are real and positive. This choice of
invariant Lagrangian corresponds to the case I identified in
Ref. [13] (see the next section).

2.3 Yukawa matrices, masses and CKM

We aim to fit six quark masses and four CKM matrix elements
to the currently accepted SM values for these observables.
Therefore, we’re interested in softly-broken A4 symmetric
models with up to ten parameters. Reference [13] has stud-
ied all of the possible extensions of A4 to the fermion sector.
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Using their results, we can check which of them can accom-
modate non-vanishing quark masses, CKM mixing angles
and CP violation by considering a general vev �v. We take the
Jarlskog invariant as a measure of CP violation [15]. Out of
all possibilities, we are left with five of them, which we list
in Table 1. There, A are real constants, � are constants in the
[0, 2π [ interval, ω = ei

2π
3 (ω3 = 1) and T is the transpose

of the matrix.
In the table above, we have used the convention where the
quarks’ mass terms are written as

− LYukawa ⊃ nLMdnR + pLMu pR + h.c., (16)

where h.c. stands for the hermitian conjugate.
In the Yukawa sector, there are ten observables, six masses,

three mixing angles and one Jarlskog invariant, therefore,
we would prefer to look for a case with ten parameters, or
less. All possible neutral vevs of the 3HDM are consistent
with the parameterization in Eq. (9), which consists of four
free parameters that we can fit; two angles, and two phases.
Looking at the cases in Table 1, we will see that it is possi-
ble to reduce the number of free parameters by performing
both basis transformations to right-handed quarks and global
U (1)Y rephasings, both of which have no effect on the phys-
ical predictions of the theory.

For case I, the down quark mass matrices read

Md =
⎛
⎝
aeiαv1 beiβv1 ceiγ v1

aeiαv2 ωbeiβv2 ω2ceiγ v2

aeiαv3 ω2beiβv3 ωceiγ v3

⎞
⎠ = DvWDaDα,

(17)

where (remember that the vi are complex)

Dv = diag(v1, v2, v3), Da = diag(a, b, c),

Dα = diag(eiα, eiβ, eiγ ), W =
⎛
⎝

1 1 1
1 ω ω2

1 ω2 ω

⎞
⎠ . (18)

We see that we can perform a unitary transformation to
the right-handed quarks that removes all three phases α, β,
γ . The same holds for Mu , by performing the substitution
A → A′, � → �′ and vi → v∗

i . We note that the case I
matrices were also used by Ref. [16] as the mass matrices for
the charged leptons.

In this work, we study this case, that corresponds to the
Lagrangian in Eq. (13). Then, given that DαD†

α = 1 and
DaD

†
a = Da2 = diag(a2, b2, c2), we find

Hd ≡ MdM
†
d = DvSd D

†
v,

Hu ≡ MuM
†
u = D†

v SuDv, (19)

where Sd = WDa2W † and a2 → a′2 for the up quark case.
This matrix can now be explicitly written out using appro-

priate parameters as

Sd =
⎛
⎝

�d Zdeiφd Zde−iφd

Zde−iφd �d Zdeiφd

Zdeiφd Zde−iφd �d

⎞
⎠ , (20)

where �d and Zd are real, and

�d ≡ a2 + b2 + c2,

Zd eiφd ≡ a2 + ω2b2 + ωc2, (21)

with corresponding primes for the up case. For complete-
ness, the specific forms for Hd and Hu found after using
the parameterizations in Eqs. (9) and (21) are written in
Appendix A. The eigenvalues of the matrices Hd and Hu will
be fitted for the (square of the) quark masses, (m2

d ,m
2
s ,m

2
b)

and (m2
u,m

2
c,m

2
t ), respectively.

We now turn to the Cabibbo–Kobayashi–Maskawa (CKM)
matrix. As found by Branco and Lavoura [17], the absolute
values of the CKM matrix can be obtained through calculat-
ing the traces of appropriate powers of the matrices Hu and
Hd . They observe that

Tr
(
Ha
u H

b
d

)
≡ Lab =

∑
k,i

Uki (D
a
u )kk(D

b
d)i i , (22)

where Uki = |Vki |2 and V is the CKM matrix. The CKM
matrix is unitary and therefore U only has four independent
entries. Consequently, in order to compute U , it is only nec-
essary to resort to

L11 = Uki (Du)kk(Dd)i i ,

L12 = Uki (Du)kk(D
2
d)i i ,

L21 = Uki (D
2
u)kk(Dd)i i ,

L22 = Uki (D
2
u)kk(D

2
d)i i . (23)

These equations are linear inUik and are, therefore, invertible
for this variable. Thus, by picking U11, U21, U13, and U23

(respectively, Uud , Ucd , Uub, and Ucb), we are able to obtain
a unique solution for the magnitudes of the CKM elements
as a function of Lab and the quark masses. Namely,

U11 =
(
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) (
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2
) a11

det
,
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(
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where
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(
md

2+ms
2
) (

mt
2+mu

2
)

−L12

(
mu

2+mt
2
)

−L21

(
md

2+ms
2
)

+L22

+m2
t m

2
u

(
m4

b − m2
b

(
m2

d + m2
s

)
− m2

dm
2
s

)

+m4
cm

2
dm

2
s − m2

cm
2
dm

2
s

(
m2

t + m2
u

)
, (28)

and

det =
(
mb

2 − md
2
) (

mc
2 − mu

2
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2
)

×
(
mu
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2
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2
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2
)
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In these equations, the Li j are obtained by evaluating the left
hand side of Eq. (22). Finally, we note that knowing these four
CKM magnitudes, we can determine the Jarlskog invariant
[15], up to its sign. Thus, given some phase convention, we
are also able to determine the phases of all CKM matrix
elements.

3 The fit to the quark mass matrices

3.1 Parameters and observables

We would like to fit 10 observables (6 quark masses and 4
CKM parameters) with the 10 free parameters that we have
in this model,

β1, β2, ρ2, ρ3, �d , �u, Zd , Zu, φd , φu . (30)

Notice that this is a huge improvement over the SM, where
there are 18 complex Yukawa parameters. Similarly, in
Ref. [4], there are 18 Yukawa couplings; in their notation
hu,d

1 , hu,d
2 , hu,d

3 , and those with h → h′ and h → h′′. These
reduce to 12 complex parameters, even after the approxima-

Table 2 Experimental values and fit results

Observable Experimental value Model prediction

mu [MeV] 2.16 ± 0.50 2.15

mc [MeV] 1270 ± 20 1271.6

mt [GeV] 172.69 ± 0.30 172.68

md [MeV] 4.67 ± 0.50 4.66

ms [MeV] 93.4 ± 8.6 92.08

mb [MeV] 4180 ± 30 4180.39

|V11| 0.97435 ± 0.00016 0.97434

|V21| 0.22486 ± 0.00067 0.22479

|V13| 0.00369 ± 0.00011 0.00369

|V23| 0.04182 ± 0.00085 0.04178

J (3.08 ± 0.15) × 10−5 3.09 × 10−5

tion in their equation (19). So, having only 10 real parameters
is already excellent.

Moreover, our 10 parameters are constrained. Although
we were not able to find an analytical relation which
expresses such a constraint, we can show numerically that it
does exist. We postpone this proof until the end of Sect. 3.3.
The upshot is that it was not guaranteed a priori that our 10
parameters would be able to fit the 10 observables. Turning
the argument around, the fact that the 10 experimental values
do allow for a good fit in the A4-3HDM can be viewed as a
success for the model.

3.2 The fitting procedure

We have implemented a χ2 analysis of the model, through
a minimization performed using the CERN Minuit library
[18]. The observables employed in this analysis, labeled by
i = 1, . . . , 11 are specified in Table 2, where Xi represents
the experimental mean value of the observable Xi and σi
is the experimental error, which, when both left and right
bounds are stated, is assumed to be the largest of the two.

The data on the quark masses as well as for the CKM
matrix elements and the Jarlskog invariant experimental val-
ues were obtained from [19]. As mentioned, |J | is fixed by
|V11|, |V21|, |V13|, and |V23|. However, using it in the fit
speeds the numerical convergence onto a good solution.

The χ2 function depends on the 10 parameters of our
model (31),

β1, β2, ρ2, ρ3, �d , �u, Zd , Zu, φd , φu (31)

and is written as

χ2(p) =
11∑
i=1

(
Pi (p) − Xi

σi

)2

, (32)

where Pi (p) is our model’s prediction for each of the 11
(10 + J ) observables. The fit is complicated by the fact that
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the masses (squared) are obtained from the eigenvalues of
Hd , Hu but the elements of the CKM also depend on the
masses, see Eq. (24). So, we start by calculating the eigen-
values of Hd and Hu , which depend only on the parameters
in Eq. (31). Then, we evaluate the Li j from the left hand side
of Eq. (22), and finally the CKM elements are obtained from
Eq. (24). In Appendix A we give the explicit expressions for
the matrices Hd and Hu .

3.3 Results of the fit

We have found an excellent fit of our model to the data,
given in the second column of Table 2. This fit results in
χ2 = 0.058, for the parameters

β1 = 1.4260868 radians,

β2 = 1.5424328 radians,

ρ2 = 4.2784971 radians,

ρ3 = 5.3682785 radians,

�d = 0.2889178 × 10−3,

�u = 0.4927455,

Zd = 0.1816577 × 10−3,

Zu = 0.4758317,

φd = −1.7324779 radians,

φu = 0.20644967 × 10−1 radians. (33)

This fit also leads to the data in the third column of Table 2,
as well as to the vevs

|vi | = (1.00604, 6.90357, 245.901) (GeV). (34)

We notice that the vevs obey v1 < v2 � v3. This hierarchy
of vevs is related to the hierarchy of the quark masses. This
was also obtained in Ref. [7], although their model is not
consistent, as their vev structure is not that of [10] for the
symmetric A4 potential they consider.

We can now perform a second (toy) fitting procedure,
which illustrates the fact that the ten parameters in our model
are constrained, as announced at the end of Sect. 3.1. In
this fit, we take all experimental values in Table 2, except
that we trade the correct experimental value of ms for ms =
(2 ± 0.02) GeV. Now, the fit is very poor, having χ2 = 600.
If these had been the correct experimental values for the 10
observables, then our model would not be able to fit them.
Conversely, the fact that such a fit is possible is a success for
the model.

4 Viability of the vacuum found in the fit

We start by defining the three doublets as in Eq. (6).
Next we define the physical eigenstates for the charged
Higgs as (G+, S+

2 , S2
3 )T , and for the neutral states we have

(G0, S0
2 , S0

3 , S0
4 , S0

5 , S0
6 )T , identifying the would-be Gold-

stone bosons G+ ≡ S+
1 and G0 ≡ S0

1 . With these con-
ventions, and following the definitions in [20], we define the
3 × 3 matrix Ũ by

ϕ+
i ≡

3∑
j=1

Ũi j S
+
j , (35)

and the 3 × 6 matrix Ṽ by

xi + i xi+3 =
6∑
j=1

Ṽi j S
0
j . (36)

These matrices2 are then related to the diagonalization matri-
ces of the charged and neutral scalars, to which we now turn.

4.1 The minimization of the potential

In our procedure we already know the values of the vevs. So,
we use the stationarity equations to solve for the soft param-
eters, and leave the quartic parameters of the potential �i as
free parameters. In this way we can solve for m2

11,m
2
22,m

2
33

as well as for Im(m2
12), Im(m2

13), leaving as free parame-
ters the �i and Re(m2

12), Re(m2
13), Re(m2

23), Im(m2
23). When

evaluating the scalar mass matrices (see below) the condi-
tions have to be applied to ensure that we are at the minimum.
For completeness we write these conditions in Appendix B.

4.2 The charged mass matrix

The charged mass matrix is obtained from the second deriva-
tives at the minimum,

M2
C = ∂2VH

∂ϕ+
i ∂ϕ−

j

∣∣∣∣∣
Min

. (37)

The matrixM2
C is an hermitian matrix, with real eigenvalues

and satisfying, with our usual conventions,

RchM2
C R

†
ch = diag(0,m2

S+
2
,m2

S+
3
) ≡ M2

Dch
, (38)

where Rch is an unitary matrix that satisfies,

S+
i =

3∑
j=1

(Rch)i j ϕ
+
j . (39)

2 From the point of view of a simultaneous fit of the Yukawa and scalar
sectors, it is a pity that these matrices Ṽ and Ũ have in the literature the
same notation as the CKM matrix V and Uki = |Vki |2.
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This can be seen from

Lmass = −ϕ−
i

(
M2

C

)
i j

ϕ+
j =−ϕ−

i

(
R†

chRchM2
C R

†
chRch

)
i j

ϕ+
j

= −ϕ−
i

(
R†

chM2
Dch

Rch

)
i j

ϕ+
j

= −S−
i

(
M2

Dch

)
i j
S+
j , (40)

where we have used Eq. (39).
We have checked both algebraically and numerically that

we have a zero eigenvalue corresponding to G+ and we
require that all other masses squared are positive, a condi-
tion for a local minimum.

4.3 The neutral mass matrix

Since in our case CP is not conserved, we denote the unrotated
neutral scalars by xi , i = 1, . . . , 6, as in Eq. (6). We therefore
obtain the neutral mass matrix as,

M2
N = ∂2VH

∂xi∂x j

∣∣∣∣
Min

. (41)

This is a symmetric real matrix diagonalized by an orthogonal
6 × 6 matrix,

RneuM2
N RT

neu = diag(0,m2
S0

2
,m2

S0
3
,m2

S0
4
,m2

S0
5
,m2

S0
6
)

≡ M2
Dneu

, (42)

with

S0
i =

6∑
j=1

(Rneu)i j x j . (43)

As for the case of the charged scalars, we have checked both
algebraically and numerically that we have a zero eigenvalue
corresponding to G0 and we require that all other masses
squared are positive, a condition for a local minimum.

5 Theoretical constraints

After having shown that a solution exists for the vevs and
parameters in the Yukawa sector that correctly fits the quarks
masses and the CKM entries, we have to show that this is
compatible with the scalar potential analysis. In particular we
have to show that the vevs correspond to a local minimum of
the potential and that both the theoretical constraints as well
as those coming from LHC are satisfied. In this section we
analyze the theoretical constraints.

5.1 Perturbative unitarity

This problem was already solved in [14], so we take the
potential in the form of Eq. (4). From Ref. [14] we have the

following expression for the eigenvalues λi
3

λ1 = 2 (2Re(c3) + r1) (44)

λ2 = 2
(√

3 |Im(c3)| − Re(c3) + r1

)
(45)

λ3 = 2
(
−√

3 |Im(c3)| − Re(c3) + r1

)
(46)

λ4 = 2(r4 + r7) (47)

λ5 = 2(r4 − r7) (48)

λ6 = 2(r1 + 2r7) (49)

λ7 = 2(r1 − r7) (50)

λ8 = 2(r4 + |c3|) (51)

λ9 = 2(r4 − |c3|) (52)

λ10 = 6r1 + 8r4 + 4r7 (53)

λ11 = 6r1 − 2(2r4 + r7) (54)

λ12 = 6|c3| + 2r4 + 4r7 (55)

λ13 = −6|c3| + 2r4 + 4r7. (56)

Perturbative unitarity is satisfied if

|λi | < 8π, ∀i. (57)

5.2 The BFB conditions

For the A4 symmetric potential, the conditions for bounded-
ness from below along the neutral directions (BFB-n) have
been conjectured in [21], and proved to hold in [22]. These
are

�0 + �3 ≥ 0, (58)

4

3
(�0 + �3) + 1

2
(�1 + �2) − �3

− 1

2

√
(�1 − �2)2 + �2

4 ≥ 0, (59)

�0 + 1

2
(�1 + �2) + 1

2
(�1 − �2) cos (2kπ/3)

+ 1

2
�4 sin (2kπ/3) ≥ 0 (k = 1, 2, 3). (60)

However, as shown in [21,23], a potential which is BFB-n
is not necessarily BFB along the charge breaking directions
(BFB-c). Necessary BFB-c conditions have yet to be found
for the A4 3HDM, but sufficient conditions have been pro-
posed in [24] following the technique developed in [25]. They
are,

Ad ≥ 0, Ao ≥ −Ad/2, (61)

3 We use λi instead of �i , in order to not confuse with the notation of
Eq. (2).
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where

Ad = a = 2

3
(�0 + �3),

Ao = b + min(0, c) − d

= 1

3
(2�0 − �3) + 1

2
(�1 + �2)

+ min(0,−1

2
(�1 + �2)) − 1

2

√
(�1 − �2)2 + �2

4.

(62)

It is important to remark that, since these are sufficient,
but not necessary, conditions, some good points in parameter
space may be excluded by this restriction.

5.3 The oblique parameters S, T,U

For this we use the notation and results from [20], which
require the matrices Ũ and Ṽ . Comparing Eq. (39) with the
definition in Eq. (35), we conclude that

Ũ = R†
ch, (63)

where the matrix Rch is obtained from the numerical diag-
onalization of Eq. (38). Similarly, comparing Eq. (43) with
the definition of Ṽ in Eq. (36), we get,

Ṽi j =
(
RT

neu

)
i j

+ i
(
RT

neu

)
i+3, j

. (64)

Having Ũ and Ṽ , we can construct the needed matrices

Im
(
Ṽ †Ṽ

)
, Ũ †Ũ , Ṽ †Ṽ and Ũ †Ṽ , and implement the proce-

dure of [20].

5.4 Global minimum

After finding a set of mi, j and �i which reproduce the vevs
in Eq. (34) necessary for a good fit of the quark mass matri-
ces, and after performing the previous theoretical checks on
the scalar potential, we must still ensure that our minimum is
indeed the global minimum. This step is almost never taken
in studies of quark mass matrices, since there are no exact
analytical formulae for it. Moreover, one must check that
there are no lower minima both along the neutral directions
and along the charge breaking directions. We follow the strat-
egy discussed in Ref. [24]. Take a specific set of m2

i j and �i .
Then we parameterize the scalar doublets as [23,24],

〈φ1〉 = √
r1

(
0
1

)
, 〈φ2〉 = √

r2

(
sin(α2)

cos(α2)eiβ2

)
,

〈φ3〉 = √
r3e

iγ
(

sin(α3)

cos(α3)eiβ3

)
, (65)

where we have already used the gauge freedom. Now we
let the vevs run free, for both charge conserving and charge
violating directions. We give one seed point and perform a

minimization of the potential using the CERN Minuit library
[18]. We obtain not only the value of the potential at the
minimum, but also the values of ri , α2, β2, α3, β3 and γ .
Then, we take one more (randomly generated) seed point
and repeat the minimization. Finally, we take the minimum
as the global one if it is found as the global minimum in each
of 200 searches with randomly generated seed points. We
have done this verification for every point that passed all the
constraints. In all cases, we found that the local minimum
was also a global minimum. In particular we always found
that

sin(α2) = sin(α3) = 0, (66)

showing that we do not have charged breaking directions4

and, comparing with Eq. (6), we verified numerically that,

|vi |√
2

= √
ri , ei ρ2 = cos(α2) e

i β2 ,

ei ρ3 = cos(α3) e
i (β3+γ ). (67)

6 Simple LHC constraints

Up to now we have implemented the theoretical constraints
on the model. The next step is to implement the LHC con-
straints. To do this completely one would have to implement
all the decays of the neutral and charged Higgs as well as
their branching ratios. One would also have to worry about
the electric dipole moments (EDM) and the flavour-changing
neutral couplings (FCNC), as the model does not have a struc-
ture of couplings of the Higgs to the fermions that automati-
cally ensures vanishing FCNC [26–28]. This lies beyond the
scope of the present work. Nonetheless, we can implement
easily the constraints that come from h → WW/Z Z in the κ

formalism, where the deviation from the coupling of the SM
Higgs boson to a pair of W ’s (or Z ’s) is measured by κV .

In our model,

κV = Rneu
21 v1 + Rneu

22 v2 cos(ρ2) + Rneu
23 v3 cos(ρ3)

+Rneu
25 v2 sin(ρ2) + Rneu

26 v3 sin(ρ3), (68)

where Rneu is matrix defined in Eq. (42). We take the exper-
imental constraint from ATLAS [29],

κW = 1.0206 +0.05172
−0.05087, κZ = 0.99 +0.06136

−0.05214. (69)

4 To cross check our numerical procedure we also considered points
that violated the BFB conditions. And, indeed for these points, our
algorithm showed that the potential was not BFB and could have charge
breaking directions as well.
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Fig. 1 Left panel: Relation
between mS0

3
and mS0

4
. Right

panel: Relation between mS0
3

and mH+
1

. Color conventions:
No cuts (red); with cuts (green)

Fig. 2 Left panel: Relation
between mS0

5
and mS0

6
. Right

panel: Relation between mS0
5

and mH+
2

. Color conventions:
No cuts (red); with cuts (green)

Fig. 3 Left panel: Relation
between mS0

3
and mS0

5
. Right

panel: Relation between mH+
1

and mH+
2

. Color conventions:
No cuts (red); with cuts (green)

7 Results

In this section we present the results of the analysis of the
scalar potential after imposing that we have a good solution
for the fit of the quarks masses and CKM entries, as explained
in Sect. 3.

7.1 Scanning strategy

We start by imposing the vevs obtained in the fit.

v1 = 1.00604 (GeV), v2 = 6.90357 ei 4.278497 (GeV),

v3 = 245.901 ei 5.368278 (GeV). (70)

Now we vary the free parameters of the potential in the fol-
lowing ranges,

log10 |�i | ∈ [−3, 1], log10 |Im(m2
23)| ∈ [−1, 7] GeV2,

log10 |Re(m2
i j )| ∈ [−1, 7] GeV2, (71)

where in the last equation we use

m2
i j ∈

{
m2

12,m
2
13,m

2
23

}
. (72)

We randomly scan as in Eq. (71), and then:

1. Apply the theoretical constraints that only depend on the
�i , that is BFB and perturbative unitarity.

2. Then obtain the eigenvalues for the charged and neutral
scalars. Verify that all the masses squared are positive,
and that we have a zero eigenvalue corresponding to the
Goldstone bosons, G0 and G+.

3. Verify the S, T and U oblique parameters.
4. Apply the LHC constraint on κV .
5. Check numerically that the vev is indeed a global mini-

mum.
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Fig. 4 Left panel: Relation
between κV and �1. Right
panel: Relation between κV and
�4. Color conventions: No cuts
(red), with theoretical cuts
(green), and after the κV
constraint (blue)

Fig. 5 Left panel: Relation
between �0 and �4. Right
panel: Relation between �0 and
�3 Color conventions: No cuts
(red), with theoretical cuts
(green), and after the κV
constraint (blue)

7.2 The scalar spectrum

We found that there is a strong correlation in the scalar
masses. If we denote the masses of the neutral scalars
by (mG0 = 0,mS0

2
,mS0

3
,mS0

4
,mS0

5
,mS0

6
), and (mG+ =

0,mH+
1

,mH+
2

) for the charged scalars, we find numerically
that

mS0
3

� mS0
4

� mH+
1

, mS0
5

� mS0
6

� mH+
2
. (73)

This is true even if we do not require mS0
2

= 125 GeV, and
specially true after implementing the constraints of perturba-
tive unitarity, BFB and STU. But, as we want to reproduce
the LHC results, we also required that [19]

mS0
2

= 125.25 ± 0.17 GeV. (74)

In the following figures we show the correlation among
the masses. Included in red are the points generated before
the theoretical cuts were applied, and in green the points
remaining after the constraints were implemented (Figs. 1,
2, 3).

7.3 The κV constraint

We can now implement the κV constraint on the model. In the
following figures, in red are points without cuts, in green with
cuts but no κV constraint, and finally in blue points remaining
after this constraint is applied. We took the ATLAS result of
Eq. (69) at 2σ . While the theoretical constraints cut around
88% of the points, the κV constraint only cuts 22% of the

remaining points. In Fig. 4 we show the relation between κV
and �1,4 for the three sets of points as discussed above.

In fact it is not obvious from Fig. 4 that the κV constraint
only cuts about 22% of the points that pass the other cuts.
This is because there is a very large number of points with
|κV | � 1, even without theoretical cuts, and this is even
more so after imposing the theoretical cuts. In this figure,
we have 200,000 points in the green region, but from these
156,516 are in the blue region. That is, after theoretical cuts,
78% of the points also satisfy the κV constraint. In Fig. 5 we
show the relation between �0 and �3,4 for the same sets of
points. We see that, while for (�0, �4) there is not much
difference before and after the κV constraint, the same is
not true for (�0, �3), where the constraints impose a linear
relation between those two parameters. We note that, while
�0 is always positive, �3 can be negative respecting the BFB
condition in Eq. (58), �0 +�3 ≥ 0, as it is clear in the right-
handed panel of Fig. 5. Before we end this section, let us
remark that we did not redraw the figures in Sect. 7.2 after
imposing the κV constraint, as the blue points would just
superimpose the green points, as we have checked.

8 Conclusions

It is known that the 3HDM symmetric under an exact A4 sym-
metry is not compatible with non-zero quark masses and/or
non-block-diagonal CKM matrix [13]. In this work, we stud-
ied a 3HDM with A4 softly broken. This allows us to evade
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the above result, by enlarging the structure of the possible
vacua.

We obtained an excellent fit of the quarks mass matrices,
including the CP-violating Jarlskog invariant. This leads to a
unique solution for the vevs. We showed that, with the solu-
tion for the vevs obtained from the fit, it is possible to have a
local minimum of the potential. We enforce this by imposing
that all squared masses are positive. As in our scheme the
scalar masses are not input parameters, we have to restrict
one of the neutral scalars to have the mass of the known Higgs
boson.

We have implemented the BFB, perturbative unitarity
and the oblique parameters S, T,U theoretical constraints.
From LHC, we have considered the observed Higgs mass
and the κV constraint.5 After imposing the other constraints,
we found that most of the points are close to the align-
ment required to respect the experimental κV constraint. We
have discovered a strong correlation among the masses of
the scalars, even before applying the theoretical constraints,
especially for moderate to large scalar masses.

One important point is that we have numerically checked
for all the points that pass our constraints, that for a given
set of parameters of the potential, our minimum is the true
global minimum.
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Appendix A: The matrices Hd and Hu

Hd(1, 1) = �dv
2 cos2(β1) cos2(β2) (75)

Hd(1, 2) = v2Zd cos(β1) cos2(β2) cos(ρ2 − φd) sin(β1)

− i v2Zd cos(β1) cos2(β2) sin(β1) sin(ρ2 − φd)

(76)

Hd(1, 3) = v2Zd cos(β1) cos(β2) cos(ρ3 + φd) sin(β2)

− i v2Zd cos(β1) cos(β2) sin(β2) sin(ρ3 + φd)

(77)

Hd(2, 1) = (Hd(1, 2))∗ (78)

Hd(2, 2) = �dv
2 cos2(β2) sin2(β1) (79)

Hd(2, 3)=v2Zd cos(β2) cos(ρ2−ρ3+φd) sin(β1) sin(β2)

+i v2Zd cos(β2) sin(β1) sin(β2) sin(ρ2−ρ3+φd)

(80)

Hd(3, 1) = (Hd(1, 3))∗ (81)

Hd(3, 2) = (Hd(2, 3))∗ (82)

Hd(3, 3) = �dv
2 sin2(β2) (83)

Hu(1, 1) = �uv
2 cos2(β1) cos2(β2) (84)

Hu(1, 2) = v2Zu cos(β1) cos2(β2) cos(ρ2 + φu) sin(β1)

+ i v2Zu cos(β1) cos2(β2) sin(β1) sin(ρ2 + φu)

(85)

Hu(1, 3) = v2Zu cos(β1) cos(β2) cos(−ρ3 + φu) sin(β2)

− i v2Zu cos(β1) cos(β2) sin(β2) sin(−ρ3 + φu)

(86)

Hu(2, 1) = (Hu(1, 2))∗ (87)

Hu(2, 2) = �uv
2 cos2(β2) sin2(β1) (88)

Hu(2, 3)=v2Zu cos(β2) cos(−ρ2+ρ3+φu) sin(β1) sin(β2)

+i v2Zu cos(β2) sin(β1) sin(β2)

× sin(−ρ2+ρ3+φu) (89)

Hu(3, 1) = (Hu(1, 3))∗ (90)

Hu(3, 2) = (Hu(2, 3))∗ (91)

Hu(3, 3) = �uv
2 sin2(β2). (92)

Appendix B: The minimization conditions

m2
11 = − sec(ρ2) sec(ρ3)

24v2
1

[
−12Im(m2

23)v2v3 sin(2(ρ2 − ρ3))

+ cos(ρ2 − ρ3)
(

4�0v
2
1v2

+6�1v
2
1v2

2 + 6�1v
2
1v2

3 + 3�1v
2
2v2

3 − 3�2v
2
2v2

3

+2�3v
2
1

(
2v2

1 − v2
2 − v2

3

))

+4�0v
2
1v2

2 cos(ρ2 + ρ3) + 4�0v
2
1v2

3 cos(ρ2 + ρ3)

+4�0v
4
1 cos(ρ2 + ρ3)
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+6�1v
2
1v2

2 cos(ρ2 + ρ3) + 6�1v
2
1v2

3 cos(ρ2 + ρ3)

−3�1v
2
2v2

3 cos(3(ρ2 − ρ3))

+3�2v
2
2v2

3 cos(3(ρ2 − ρ3)) − 2�3v
2
1v2

2 cos(ρ2 + ρ3)

−2�3v
2
1v2

3 cos(ρ2 + ρ3)

+4�3v
4
1 cos(ρ2 + ρ3) + 3�4v

2
1v2

2 sin(ρ2 − ρ3)

+3�4v
2
1v2

2 sin(ρ2 + ρ3)

+3�4v
2
1v2

3 sin(ρ2 − ρ3) − 3�4v
2
1v2

3 sin(ρ2 + ρ3)

−3�4v
2
2v2

3 sin(ρ2 − ρ3)

+3�4v
2
2v2

3 sin(3(ρ2 − ρ3)) − 12Re(m2
23)v2v3 cos(2(ρ2 − ρ3))

+24Re(m2
13)v1v3 cos(ρ2) + 24Re(m2

12)v1v2 cos(ρ3)

+12Re(m2
23)v2v3

]
(93)

m2
22 = − 1

12v2

[
3 sec(ρ2)

(
−4Im(m2

23)v3 sin(ρ3) + v2v
2
3(�1 − �2)

× cos(ρ2 − 2ρ3) − �4v2v
2
3 sin(ρ2 − 2ρ3)

+4Re(m2
23)v3 cos(ρ3) + 4Re(m2

12)v1

)
+ v2

(
4�0v

2

+6�1v
2
1 + 3�1v

2
3 + 3�2v

2
3

−2�3v
2
1 + 4�3v

2
2 − 2�3v

2
3 + 3�4v

2
1 tan(ρ2)

) ]
(94)

m2
33 = − 1

12v3

[
3 sec(ρ3)

(
4Im(m2

23)v2 sin(ρ2)

+v2
2v3(�1 − �2) cos(2ρ2 − ρ3) − �4v

2
2v3 sin(2ρ2 − ρ3)

+4Re(m2
23)v2 cos(ρ2) + 4Re(m2

13)v1

)

+ v3

(
4�0

(
v2

1 + v2
2 + v2

3

)
+ 6�1v

2
1 + 3�1v

2
2

+3�2v
2
2 − 2�3v

2
1 − 2�3v

2
2 + 4�3v

2
3 − 3�4v

2
1 tan(ρ3)

) ]

(95)

Im(m2
12) = 1

4v1

[
sec(ρ2)

(
4Im(m2

23)v3 cos(ρ2 − ρ3)

−�1v2v
2
3 sin(2(ρ2 − ρ3)) − �1v

2
1v2 sin(2ρ2)

+�2v2v
2
3 sin(2(ρ2 − ρ3)) + �2v

2
1v2 sin(2ρ2)

−�4v2v
2
3 cos(2(ρ2 − ρ3))

+�4v
2
1v2 cos(2ρ2) − 4Re(m2

23)v3 sin(ρ2 − ρ3)

−4Re(m2
12)v1 sin(ρ2)

) ]
(96)

Im(m2
13) = − 1

4v1

[
sec(ρ3)

(
4Im(m2

23)v2 cos(ρ2 − ρ3)

−�1v
2
2v3 sin(2(ρ2 − ρ3)) + �1v

2
1v3 sin(2ρ3)

+�2v
2
2v3 sin(2(ρ2 − ρ3)) − �2v

2
1v3 sin(2ρ3)

−�4v
2
2v3 cos(2(ρ2 − ρ3))

+�4v
2
1v3 cos(2ρ3) − 4Re(m2

23)v2 sin(ρ2 − ρ3)

+4Re(m2
13)v1 sin(ρ3)

) ]
. (97)
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