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There has been great interest in a model with three-Higgs-doublets in which fermions with a particular
charge couple to a single and distinct Higgs field. We study the phenomenological differences between the
two common incarnations of this so-called type-Z three-Higgs-doublet model (3HDM). We point out that
the differences between the two models arise from the scalar potential only. Thus we focus on observables
that involve the scalar self-couplings. We find it difficult to uncover features that can uniquely set apart the
Z3 variant of the model. However, by studying the dependence of the trilinear Higgs couplings on the
nonstandard masses, we have been able to isolate some of the exclusive indicators for the Z2 × Z2 version
of the type-Z 3HDM. This highlights the importance of precision measurements of the trilinear Higgs
couplings.
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I. INTRODUCTION

The Standard Model (SM) of particle physics has been
immensely successful in describing the electroweak inter-
action with great precision. However, issues like neutrino
mass and dark matter serve as major motivators to look
for physics beyond the SM (BSM). Very often, such
BSM theories extend the minimal scalar sector of the
SM, which consists of only one Higgs doublet. Therefore,
quite naturally, scalar extensions of the SM are routinely
investigated in the literature. Among these, multi-Higgs-
doublet models might be the most ubiquitous, primarily
because such extensions preserve the tree-level value of the
electroweak ρ-parameter. The simplest extension in this
category is the two-Higgs-doublet model which has been
studied extensively [1]. Of late, there has been a rise in
interest in the study of three-Higgs-doublet models
(3HDMs) [2–4] where, as the name suggests, the scalar
sector contains three Higgs doublets.
In the studies of multi-Higgs-doublet models it is very

often assumed that fermions of a particular charge couple to

a single scalar doublet. This will make fermion mass
matrices proportional to the corresponding Yukawa matri-
ces and diagonalization of the mass matrices will auto-
matically ensure the simultaneous diagonalization of the
Yukawa matrices as well. As a result the model will be free
from scalar-mediated flavor changing neutral couplings
(FCNCs) at the tree level. In Ref. [5] it was explicitly
demonstrated that tree-level FCNCs are absent if and only
if there is a basis for the Higgs doublets in which all the
fermions of a given electric charge couple to only one
Higgs doublet. Such an aspect of the model is quite
desirable in view of the flavor data [6]. These types of
constructions are usually referred to as models with natural
flavor conservation (NFC) [7] in the literature, of which
there are five independent possibilities.
Following the terminologies of Ref. [8], one can enter-

tain four types of flavor-universal NFC models, namely
type-I, type-II, type-X, and type-Y, within the 2HDM
framework. All these Yukawa structures have been con-
cisely summarized in Table I. Beyond these four options,
there is one more interesting possibility where a particular
scalar doublet is reserved exclusively for each type of
massive fermion. This implies that the up-type quarks, the
down-type quarks, and the charged leptons couple to
separate scalar doublets. Evidently, such an arrangement
of Yukawa couplings is impossible within a 2HDM
framework and one needs at least three scalar doublets
to accommodate it. In this paper, we will refer to this
possibility as the “type-Z Yukawa” and subsequently, the
3HDMs that feature a type-Z Yukawa structure will be
collectively called “type-Z 3HDMs”. These type-Z 3HDMs
have gained a lot of attention in the recent past. Theoretical
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constraints from unitarity and boundedness from below
(BFB) have been studied in Refs. [9–11], the alignment
limit is analyzed in Refs. [12,13], the custodial limit has
been studied in Ref. [14], and quite recently, the phenom-
enological analysis involving the flavor and Higgs data
have been performed in Refs. [15,16]. Other related studies
appear in [17–20].
There are usually two different ways in which a type-Z

Yukawa structure is realized. The first method employs
a Z3 symmetry [12] whereas the second option uses a
Z2 × Z2 symmetry [18].1 Our objective in this paper will
be to point out observable features which can distinguish
between the two avatars of type-Z 3HDMs. Since the
Yukawa sector in both versions of type-Z 3HDM is
identical, we will turn our attention to the scalar potential
with the hope that some distinguishing aspects can be
uncovered. As we will see, only some of the quartic terms
in the scalar potential mark the difference between the
two variants of type-Z 3HDM. We will therefore focus on
the theoretical constraints from unitarity and BFB which
concern the quartic parameters of the scalar potential. We
hope that these constraints, in particular, will impact the
parameter space in the scalar sector differently for the two
type-Z models. As a result, we expect to encounter some
practical distinguishing features of these two models.
To increase the efficiency of our numerical analysis, we

will perform the parameter scans in the neighborhood of the
so called “maximally symmetric” limit of 3HDMs [21]. In
this limit, the quartic part of the scalar potential obeys a
Spð6Þ symmetry which is the largest symmetry group that
can be incorporated within a 3HDM framework. The
upshot is that many of the phenomenological constraints
are easily satisfied in this limit. The scalar potential of
the maximally symmetric 3HDM automatically leads to the
“alignment limit” thereby taking care of the constraints
arising from the Higgs signal strengths. Moreover, since the
custodial symmetry is also inherent in the maximally

symmetric 3HDM potential, no additional restrictions will
arise from the electroweak T parameter. Finally, the
nonstandard scalar masses, in this limit, become discon-
nected from the electroweak vacuum expectation value
(VEV) and depend only on the soft-breaking parameters.
This makes it very easy to decouple the nonstandard scalars
from physics at the electroweak scale.
Our article will be organized as follows. In Sec. II wewill

outline the two different options for obtaining a type-Z
Yukawa structure along with the corresponding implica-
tions for the scalar potential. In Sec. III we list the different
constraints (both theoretical and phenomenological) faced
by the scalar sectors of the 3HDMs under consideration. In
Sec. IV we spell out the details of our numerical analysis
and highlight the important outcomes. We summarize our
findings and draw our conclusions in Sec. V.

II. THE MODEL

We have already presented the notion of NFC in the
introduction. There are a few different ways of obtaining
NFC in a 3HDM framework, which have been listed in a
concise manner in Table I where ϕ1, ϕ2, and ϕ3 represent
the three Higgs doublets that constitute the scalar sector of
our model. Among these, we are particularly interested in
the possibility of type-Z Yukawa structure which requires
a 3HDM scalar sector at the very least. There are two
different ways to ensure a type-Z Yukawa structure. The
first option is to employ a Z3 symmetry as follows:

ϕ1 → e2πi=3ϕ1; ϕ2 → e4πi=3ϕ2; lR → e4πi=3lR;

dR → e2πi=3dR; ð1aÞ

and the second option will be to use a Z2 × Z0
2 symmetry in

the following manner:

Z2∶ ϕ1 → −ϕ1; lR → −lR; ð1bÞ

Z0
2∶ ϕ2 → −ϕ2; dR → −dR: ð1cÞ

In the equations above the down-type quark and charged-
lepton right-handed fields are denoted as dR and lR,
respectively. In both the cases ϕ3 does not transform under
the discrete symmetries. Since both the symmetries in
Eq. (1) entail the same type-Z Yukawa couplings, we must
turn our attention to the scalar sector phenomenologies
for possible distinguishable features. The symmetries in
Eq. (1) would obviously have their repercussions on the
3HDM scalar potential. To this end we note that the scalar
potentials in both these cases consist of a common part as
follows:

VC ¼ V2 þ V4C; where; ð2aÞ

TABLE I. Distinct possibilities for NFC in a 3HDM frame-
work. The first four types can also be obtained within 2HDMs but
the type-Z requires at least a 3HDM. In our convention, the scalar
doublet coupling to the up-type quarks is always labeled as ϕ3.

Fermion type Type-I Type-II Type-X Type-Y Type-Z

Up quarks (u) ϕ3 ϕ3 ϕ3 ϕ3 ϕ3

Down quarks (d) ϕ3 ϕ2 ϕ3 ϕ2 ϕ2

Charged leptons (l) ϕ3 ϕ2 ϕ2 ϕ3 ϕ1

1For a type-Z Yukawa structure these two symmetries might
not constitute an exhaustive list. However, extended symmetries
such as Uð1Þ × Z2 will lead to type-Z models whose parameters
will be a subset of our Z2 × Z2 case. Therefore, our current
analysis should automatically encompass such possibilities as
limiting cases of the Z2 × Z2 scenario.
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V2 ¼ m2
11ϕ

†
1ϕ1 þm2

22ϕ
†
2ϕ2 þm2

33ϕ
†
3ϕ3

− ½m2
12ðϕ†

1ϕ2Þ þm2
13ðϕ†

1ϕ3Þ þm2
23ðϕ†

2ϕ3Þ þ H:c:�;
ð2bÞ

V4C ¼ λ1ðϕ†
1ϕ1Þ2 þ λ2ðϕ†

2ϕ2Þ2 þ λ3ðϕ†
3ϕ3Þ2

þ λ4ðϕ†
1ϕ1Þðϕ†

2ϕ2Þ þ λ5ðϕ†
1ϕ1Þðϕ†

3ϕ3Þ
þ λ6ðϕ†

2ϕ2Þðϕ†
3ϕ3Þ þ λ7ðϕ†

1ϕ2Þðϕ†
2ϕ1Þ

þ λ8ðϕ†
1ϕ3Þðϕ†

3ϕ1Þ þ λ9ðϕ†
2ϕ3Þðϕ†

3ϕ2Þ: ð2cÞ

Note that in the expression for V2, we have allowed terms
that softly break the symmetries defined in Eq. (1). These
will be important if we wish to access arbitrarily heavy
nonstandard scalars (decoupled from physics at the electro-
weak scale) without spoiling perturbative unitarity [22–24].
The differences between the symmetries in Eqs. (1a)
and (1b) are captured by the following quartic terms in
the scalar potential:

VZ3 ¼ VC þ ½λ10ðϕ†
1ϕ2Þðϕ†

1ϕ3Þ þ λ11ðϕ†
1ϕ2Þðϕ†

3ϕ2Þ
þ λ12ðϕ†

1ϕ3Þðϕ†
2ϕ3Þ þ H:c:�; ð3aÞ

VZ2 ¼ VC þ ½λ010ðϕ†
1ϕ2Þ2 þ λ011ðϕ†

1ϕ3Þ2
þ λ012ðϕ†

2ϕ3Þ2 þ H:c:�: ð3bÞ

We, therefore, hope to find distinguishing aspects of
these models by tracking the effects of these additional
terms.
In order to do this, it is important to conveniently

parametrize our models in terms of the physical masses
and mixings. We will closely follow the notations and
conventions of some earlier works [14,16]. However, for
the sake of completeness, we will give a brief summary
of the important expressions which will be crucial for our
numerical analysis later. To begin with, let us write the kth
scalar doublet, after spontaneous symmetry breaking, as
follows:

ϕk ¼
1ffiffiffi
2

p
� ffiffiffi

2
p

wþ
k

vk þ hk þ izk

�
; ð4Þ

where vk is the VEV of ϕk, assumed to be real. The three
VEVs, v1, v2 and v3 are conveniently parametrized as

v1 ¼ v cos β1 cos β2; v2 ¼ v sin β1 cos β2;

v3 ¼ v sin β2; ð5Þ

where v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v21 þ v22 þ v23

p
is the total electroweak (EW)

VEV. The component fields in Eq. (4) will mix together and
will give rise to two pairs of charged scalars (H�

1;2), two
physical pseudoscalars (A1;2) and three CP-even neutral

scalars (h;H1;2).
2 For the charged and pseudoscalar sectors,

the physical scalars can be obtained via the following 3 × 3
rotations,
0
B@

ω�

H�
1

H�
2

1
CA ¼ Oγ2Oβ

0
B@

w�
1

w�
2

w�
3

1
CA;

0
B@

ζ

A1

A2

1
CA ¼ Oγ1Oβ

0
B@

z1
z2
z3

1
CA;

ð6Þ
where, the rotation matrices are given by

Oγ1 ¼

0
B@

1 0 0

0 cos γ1 − sin γ1
0 sin γ1 cos γ1

1
CA;

Oγ2 ¼

0
B@

1 0 0

0 cos γ2 − sin γ2
0 sin γ2 cos γ2

1
CA; ð7Þ

and

Oβ ¼

0
B@

cos β2 cos β1 cos β2 sin β1 sin β2
− sin β1 cos β1 0

− cos β1 sin β2 − sin β1 sin β2 cos β2

1
CA: ð8Þ

In Eq. (6), ω� and ζ stand for the charged and the neutral
Goldstone fields respectively. For the CP-even sector, we
can obtain the physical scalars as follows:

0
B@

h

H1

H2

1
CA ¼ Oα

0
B@

h1
h2
h3

1
CA ð9Þ

where

Oα ¼ R3 ·R2 ·R1; ð10aÞ
with

R1 ¼

0
B@

cos α1 sin α1 0

− sin α1 cos α1 0

0 0 1

1
CA;

R2 ¼

0
B@

cos α2 0 sin α2
0 1 0

− sin α2 0 cos α2

1
CA;

R3 ¼

0
B@

1 0 0

0 cos α3 sin α3
0 − sin α3 cos α3

1
CA: ð10bÞ

2We are implicitly assuming CP conservation in the scalar
sector so that such a classification of the physical scalar spectrum
is possible.
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Of course, these physical masses and mixings cannot
be completely arbitrary as they will have to negotiate a
combination of theoretical and phenomenological con-
straints which will be described in the next section.

III. CONSTRAINTS

In this section we study the constraints that must be
applied to the model parameters in order to ensure
theoretical and phenomenological consistency. On the
phenomenological side, we first need to guarantee the
presence of a SM-like Higgs which will be identified with
the scalar boson discovered at the LHC. This can be easily
accommodated by staying close to the alignment limit [12]
in 3HDM, defined by the condition

α1 ¼ β1; α2 ¼ β2: ð11Þ

In this limit, the lightest CP-even scalar, h, will possess the
exact SM-like couplings at the tree-level and constraints
from the Higgs signal strengths will be trivially satisfied.
However, we will more interested in the extent of deviation
from the exact alignment limit allowed from the current
measurements of the Higgs signal strengths [25]. We then
define the Higgs signal strength as follows:

μfi ¼
�
σ3HDMi ðpp → hÞ
σSMi ðpp → hÞ

��
BR3HDMðh → fÞ
BRSMðh → fÞ

�
; ð12Þ

where the subscript “i” denotes the production mode and
the superscript “f” denotes the decay channel of the SM-
like Higgs scalar. Starting from the collision of two protons,
the relevant production mechanisms include gluon fusion
(ggF), vector boson fusion (VBF), associated production
with a vector boson (VH, V ¼ W or Z), and associated
production with a pair of top quarks (ttH). The SM cross
section for the gluon fusion process is calculated using
HIGLU [26], and for the other production mechanisms we
use the prescription of Ref. [27].
Next we need to satisfy the constraints arising from

the electroweak S, T, and U parameters. We will use the
analytic expressions derived in Ref. [28] and compare them
with the corresponding fit values given in Ref. [29]. It
might be worth pointing out that, similar to the 2HDM case,
one can easily leap over the T-parameter constraints by
requiring [14]

mC1 ¼ mA1; mC2 ¼ mA2; γ1 ¼ γ2: ð13Þ

We also take into consideration the bounds coming from
flavor data. In the type-Z 3HDM there are no FCNCs at the
tree-level. Therefore, the only new physics contribution
at one-loop order to observables such as b → sγ and the
neutral meson mass differences will come from the

charged-scalar Yukawa couplings. It was found in Ref. [15]
that the constraints coming from the meson mass
differences tend to exclude very low values of tan β1;2.
Therefore, we only consider

tan β1;2 > 0.3; ð14Þ

to safeguard ourselves from the constraints coming from
the neutral meson mass differences. To deal with the
constraints stemming from b → sγ, we follow the pro-
cedure described in Refs. [16,30,31] and impose the
following restriction

2.87 × 10−4 < BRðB → XsγÞ < 3.77 × 10−4; ð15Þ

which represents the 3σ experimental limit. The impact of
the b → sγ constraint alone has been already reported in
Refs. [15,16]. The bounds on the charged Higgs masses
crucially depend on the mixing angle γ2 and one of the
charged scalars can be allowed to be very light for
appropriate choice of γ2. However, for mC1 ¼ mC2 the
bound is found to be mC1 ¼ mC2 ≳ 600 GeV for a type-Z
Yukawa structure.
Additionally, we also take into account the bounds from

the direct searches for the heavy nonstandard scalars. For
this purpose, we use HiggsBounds-5.9.1 following
Ref. [32] where a list of all the relevant experimental
searches can be found. It should be noted that we have
allowed for decays with off shell scalar bosons, using the
method explained in Ref. [33].
For the theoretical constraints, we first ensure the

perturbativity of the Yukawa couplings. For the type-Z
Yukawa structure, the top, bottom, and tau Yukawa
couplings are given by

yt ¼
ffiffiffi
2

p
mt

v sin β2
; yb ¼

ffiffiffi
2

p
mb

v sin β1 cos β2
;

yτ ¼
ffiffiffi
2

p
mτ

v cos β1 cos β2
; ð16Þ

which follow from our convention that ϕ3, ϕ2, and ϕ1

couple to up-type quarks, down-type quarks, and charged
leptons respectively. To maintain the perturbativity of
Yukawa couplings, we impose jytj; jybj; jyτj <

ffiffiffiffiffiffi
4π

p
.

Throughout our paper, we have used values of tan β1;2
which are consistent with this perturbative region.
However, we are mainly interested in the effects of the

theoretical constraints from perturbative unitarity and BFB
conditions. These constraints directly affect the scalar
potential and therefore can potentially have different
implications for the Z3 and Z2 × Z2 incarnations of the
type-Z 3HDM. For the unitarity constraints, we use the
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algorithm presented in Refs. [9,34]. For the BFB con-
straints we use only the sufficient conditions of Ref. [16]
for the Z3 model and the sufficient conditions of Ref. [10]
for the Z2 × Z2 model.

IV. ANALYSIS AND RESULTS

In both versions of the type-Z 3HDM the scalar potential
of Eq. (2) contains a total of 18 parameters3 (6 bilinear
parameters and 12 quartic parameters). For our numerical
analysis, we will trade these 18 parameters in favor of an
equivalent but more convenient set of parameters which
have a more direct connection to the physical reality.
As a first step, we use the minimization conditions to
replace three quadratic parameters, m2

11, m
2
22, and m2

33, by
the three VEVs, v1, v2, and v3 which, in turn, are further
exchanged with v, tan β1, and tan β2. The 12 quartic
parameters are purposefully interchanged with the seven
physical masses (two charged scalar masses labeled as
mC1 and mC2, two pseudoscalar masses labeled as mA1
and mA2, and three CP-even scalar masses labeled as
mh, mH1 and mH2) and five mixing angles appearing in
Eqs. (7) and (10).
For each of the symmetry constrained 3HDM, we

built a dedicated code, which is an extension of our
previous codes [16,30,35]. We take v ¼ 246 GeV and
mh ¼ 125 GeV as experimental inputs. The remaining
parameters will be randomly scanned within the following
ranges:4

α1; α2; α3; γ1; γ2 ∈
�
−
π

2
;
π

2

�
;

tan β1; tan β2 ∈ ½0.3; 10�; ð17aÞ

mH1; mH2 ∈ ½125; 1000� GeV; ð17bÞ

mA1; mA2; mC1; mC2 ∈ ½100; 1000� GeV; ð17cÞ

m2
12; m

2
13; m

2
23 ∈ ½−107; 107� GeV2: ð17dÞ

The lower limits chosen for the nonstandard masses satisfy
the constraints listed in Ref. [36] and the lower limit on
tan β1;2 enables us to easily evade the constraints from the
meson mass differences.
When studying 3HDM, it was noted [12,15,16] that in

order to be able to generate good points in an easy way one
should not be far away from alignment, defined as the
situation where the lightest Higgs scalar has the SM

couplings. It was shown in Ref. [12] that this corresponds
to the case when

α1 ¼ β1; α2 ¼ β2; ð18Þ

with the remaining parameters allowed to be free, although
subject to the constraints below. It turns out that for
Z3 3HDM [16], this constraint alone is not enough to
generate a sufficiently large set of good points starting
from a completely unconstrained scan as in Eq. (17d).
In Ref. [15] it was noted that all the theoretical and
experimental constraints on the scalar sector can be
easily negotiated in the “maximally symmetric limit” of
3HDM [21]. As pointed out in Ref. [15] one can easily
migrate to the maximally symmetric limit by imposing the
following relations among the physical parameters:

γ1 ¼ γ2 ¼ −α3; mH1 ¼ mA1 ¼ mC1;

mH2 ¼ mA2 ¼ mC2: ð19Þ

Additionally, the maximally symmetric limit also
requires the soft breaking parameters to be related as
follows:

m2
12 ¼ c2β1cγ2sβ2sγ2ðm2

C1 −m2
C2Þ þ cβ1sβ1 ½s2β2ðc2γ2m2

C2

þm2
C1s

2
γ2Þ − c2γ2m

2
C1 −m2

C2s
2
γ2 �

þ cγ2s
2
β1
sβ2sγ2ðm2

C2 −m2
C1Þ; ð20aÞ

m2
13 ¼ −cβ2 ½cβ1sβ2ðc2γ2m2

C2 þm2
C1s

2
γ2Þ

− cγ2sβ1sγ2ðm2
C1 −m2

C2Þ�; ð20bÞ

m2
23 ¼ −cβ2 ½cβ1cγ2sγ2ðm2

C1 −m2
C2Þ

þ sβ1sβ2ðc2γ2m2
C2 þm2

C1s
2
γ2Þ�; ð20cÞ

where sx and cx are shorthands for sin x and cos x
respectively. Therefore, we can make our numerical study
very efficient by strategically scanning in the “neighbor-
hood” of Eqs. (19) and (20).
In a previous phenomenological study of the Z3 version

of the type-Z 3HDM [16] we found that one can deviate
from the exact relations of Eqs. (18), (19), and (20) by a
given percentage (10%, 20%, 50%) thereby enhancing the
possibility of new BSM signals, while at the same time
being able to generate adequate number of data points. To
exemplify, we can ensure to be within x% of the alignment
condition of Eq. (18) by choosing to scan within the
following range:

α1
β1

;
α2
β2

∈ ½1−x%;1þx%�: ð21Þ3We are assuming all the parameters to be real.
4More details about (17d) are given after Eq. (23) below.
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Extending this prescription we can simultaneously incorporate Eqs. (18) and (19) by scanning within the following range:5

α1
β1

;
α2
β2

;
γ2
γ1

;
−α3
γ1

;
mA1

mH1

;
mC1

mH1

;
mA2

mH2

;
mC2

mH2

∈ ½0.8; 1.2�: ðAl-20%Þ ð22Þ

The set of points obtained after scanning over the above range will be labeled as “Al-20%” in the subsequent text and plots.
In a similar manner we generate another data set labeled as “Al-10%” which are relatively closer to the conditions of
Eqs. (18) and (19) by scanning over the following range:

α1
β1

;
α2
β2

;
γ2
γ1

;
−α3
γ1

;
mA1

mH1

;
mC1

mH1

;
mA2

mH2

;
mC2

mH2

∈ ½0.9; 1.1�: ðAl-10%Þ ð23Þ

In this context it should be noted that the soft-breaking
parameters, whenever they are free, are scanned in a very
similar manner in the vicinity of Eq. (20).
To explicitly demonstrate the efficiency of our scanning

method, we display in Table II how restrictive the indi-
vidual constraints of Sec. III can be. In these tables, N
represents the number of initial input points and Y stands
for the number of output points that can successfully pass
through a given constraint labeled appropriately. Thus,
p ¼ Y=N gives an estimate for the probability of success-
fully negotiating a particular constraint. The quantity δp
represents the typical uncertainty associated with the
estimate of p and is calculated using the formula for the
propagation of errors. From Table II it should be evident
that the BFB constraints have a very low acceptance ratio
for the input points. We should point out that our choice of
scanning around Eqs. (18) and (19) does definitely increase
the number of output points that pass through all the
constraints. This is detailed in the Appendix, where we
show equivalent numbers for a run generating points within
50% of the alignment limit.
Now that our scan strategy has been laid out clearly, we

can proceed to describe the results from our numerical
studies. We will do this in two stages. At first we will
demonstrate the results from the general scans and point out
features that may distinguish between the two variants of
type-Z 3HDMs. In the second part we will presume that
some nonstandard scalars have been discovered and there-
fore we will work with some illustrative benchmark points
in the hope of making the distinction between the two
models more pronounced.
We have to always keep in mind that the difference

between the two versions of type-Z 3HDM is marked by
the scalar potential. Therefore, we focus on the measure-
ments that involve the scalar self-couplings. Quite natu-
rally, our first choice will be to study μγγ and μZγ (Higgs
signal strengths in the two photon and Z-photon channels,
respectively) which pick up extra contributions from
charged scalar loops that depend on couplings of the form

hHþ
i H

−
i (i ¼ 1, 2). However, as we have displayed in

Fig. 1, the points that pass through all the constraints span
very similar regions in the μγγ vs μZγ plane for both versions
of type-Z 3HDM. Thus no significant distinction between
the two models can be made from μγγ and μZγ .
Next we turn our attention to the trilinear Higgs self-

coupling of the following form:

Lhhh ¼ ghhhh3: ð24Þ

In the SM we have gSMhhh ¼ −m2
h=ð2vÞ. Thus we define the

following coupling modifier

κh ¼
ghhh
gSMhhh

ð25Þ

which is already being measured experimentally and some
preliminary values have been reported in Refs. [37,38]. We
have checked that for both the type-Z models, κh ¼ 1 in the
alignment limit defined by Eq. (18), as expected. Therefore
we have to hope that the LHC Higgs data will eventually
settle for some nonstandard values away from exact

TABLE II. Impact of individual constraints for the two type-Z
models while the scanning is done following Eq. (23).

Z2 × Z2 (AL-10%)

Check N Y 100*p 100*δp

STU 500,000 407,162 81.432 0.172
BFB 5,000,000 380,066 7.601 0.013
Unitarity 500,000 26,386 5.277 0.033
b → sγ 50,000 22,198 44.396 0.358
μ’s 50,000 4,168 8.336 0.282

Z3 (AL-10%)

Check N Y 100*p 100*δp

STU 500,000 407,176 81.435 0.172
BFB 5,000,000 42,703 0.854 0.004
Unitarity 500,000 18,424 3.685 0.027
b → sγ 50,000 21,810 43.62 0.354
μ’s 50,000 4,141 8.282 0.271

5The alignment limit ðAl-x%Þ was referred to in [16] as
ðAl-2-x%Þ.
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alignment so that some distinguishing features can be
found. To this end we recall that the quartic parameters
of Eq. (3) mark the essential difference between the two
models. It should also be noted that in the limit

λð0Þ10; λ
ð0Þ
11; λ

ð0Þ
12 ¼ 0, the quartic part of the potential possesses

a Uð1Þ ×Uð1Þ symmetry (independent from the Uð1ÞY
hypercharge symmetry). Consequently, λð0Þ10, λ

ð0Þ
11 and λ

ð0Þ
12 are

the only quartic parameters that get involved in the
expressions of the pseudoscalar masses, mA1 and mA2.
Keeping these in mind we exhibit in Fig. 2 the scatter plot
of the points that pass through all the constraints in the κh vs

λð0Þ10; λ
ð0Þ
11; λ

ð0Þ
12 plane. There we observe that values of κh in the

ballpark 0.8 or lower will definitely favor the Z2 × Z2

scenario over the Z3 version of type-Z 3HDM. To give
these results a better physical context, in Fig. 3, we plot the
same points in the κh vs pseudoscalar mass planes. This
figure clearly indicates that unlike the Z3 model, the Z2 ×
Z2 model can still allow κh values as low as 0.7. In passing,
we also note that values of κh around 1.1 or higher will
disfavor both versions of type-Z 3HDMs.

FIG. 1. Output points that pass all the constraints are plotted in
μγγ vs μZγ plane for the gluon fusion production channel. The
scanning is done assuming the Al-10% condition of Eq. (23). The
red and the green points correspond to the Z3 and Z2 × Z2

models, respectively.

FIG. 2. Points that pass through all the constraints are plotted in the κh vs λð0Þ10 ; λ
ð0Þ
11 ; λ

ð0Þ
12 plane. The scanning is done assuming the

Al-10% condition of Eq. (23). The red and the green points correspond to the Z3 and Z2 × Z2 models respectively.

FIG. 3. Points that pass through all the constraints are plotted in the κh vsmA1; mA2 plane. The scanning is done assuming the Al-10%
condition of Eq. (23). The red and the green points correspond to the Z3 and Z2 × Z2 models, respectively.
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In a final and more optimistic effort, we presume that
some nonstandard scalars have already been observed and
we try to ascertain whether, in view of the set of non-
standard parameters, one of the type-Z 3HDMs can be
preferred over the other. Our benchmark values for the
nonstandard masses appear in Table III. The remaining
parameters are scanned following Eq. (22). For these
benchmark values we have plotted all the points that pass
through the constraints in the sinðα1 − β1Þ vs sinðα2 − β2Þ
plane. The results have been displayed in Fig. 4 where we
have also color coded the value of κh for each point. There
we can see that the points span a relatively larger region for
the Z2 × Z2 model. Therefore, if both sinðα1 − β1Þ and
sinðα2 − β2Þ are measured to be close to 0.1 along with κh
to be around 0.7, then it would definitely point towards the
Z2 × Z2 model. Thus, again, we have found that although
we can find corners in the parameter space that can isolate
the Z2 × Z2 model, it seems to be very difficult to point
out exclusive features characterizing the Z3 version of the
type-Z 3HDM.

V. SUMMARY

To summarize, we have studied the two common
incarnations of type-Z 3HDMs. One of them employs a
Z2 × Z2 symmetry while the other relies on a Z3 symmetry.
We point out that the difference between these two models
is captured by certain quartic terms in the scalar potential
appearing in Eq. (3). Then we proceed to uncover the
effects of these quartic terms in creating distinctions
between the two type-Z models.
In doing so we have performed exhaustive scans over the

set of free parameters in these models. Wherever possible,

we have conveniently traded the Lagrangian parameters in
favor of the physical masses and mixings. Even then, when
all the relevant theoretical and experimental constraints are
imposed, a completely random scan generates very few
output points that successfully negotiate all the constraints.
Therefore, we adopt a more strategic scanning procedure
which involve generating random points around a premedi-
tated proximity of the “maximally symmetric limit” defined
by Eq. (19). In this way we have successfully generated
sufficient number of points to populate our plots.
For the plots, we were mainly interested in observables

that involve the Higgs self-couplings. We have found that
although μγγ and μZγ are not the best discriminators, the
trilinear Higgs self-coupling modifier ðκhÞ has the potential
to distinguish between the two models. We concluded that
relatively lower values of κh will favor the Z2 × Z2 version
of type-Z 3HDM. We also emphasized that some non-
standard physics need to be discovered in the LHC Higgs
data for us to be able to discriminate between the two type-
Z 3HDMs. Our study underscores the importance of the
ongoing effort to measure the trilinear Higgs self-coupling
with increased precision.
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APPENDIX: IMPACT OF A WIDER SEARCH

In order to assess the need for a search of points close to
the alignment limit of Eqs. (18) and (19), we redo Table II,
now with the looser bounds

α1
β1

;
α2
β2

;
γ2
γ1

;
−α3
γ1

;
mA1

mH1

;
mC1

mH1

;
mA2

mH2

;
mC2

mH2

∈ ½0.5; 1.5�: ðAl-50%Þ ðA1Þ

Comparing Table II with Table IV, we notice that, away from alignment, the unitarity and μ constraints cut most of the
allowed parameter space.

TABLE III. Benchmark values for the nonstandard masses
(in GeV) used in Fig. 4.

mH1 mH2 mA1 mA2 mC1 mC2

Benchmark 1 365 450 340 470 335 465
Benchmark 2 530 645 515 610 540 610
Benchmark 3 641 775 615 745 645 770
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FIG. 4. Plot in the sin ðα1 − β1Þ vs sin ðα1 − β1Þ plane for the benchmark values (labeled appropriately) of Table III. The color bar
associated with each plot marks the gradient of values taken by κh. The plots in the left panel correspond to the Z2 × Z2 model whereas
the plots in the right panel correspond to the Z3 model. Clearly, the distinguishability between the two models depends on the benchmark
point (mass region) chosen.
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