
J
H
E
P
0
8
(
2
0
2
2
)
2
7
3

Published for SISSA by Springer

Received: May 16, 2022
Revised: July 25, 2022

Accepted: August 1, 2022
Published: August 26, 2022

Unitarity bounds for all symmetry-constrained 3HDMs

Miguel P. Bento, Jorge C. Romão and João P. Silva
CFTP, Departamento de Física, Instituto Superior Técnico, Universidade de Lisboa,
Avenida Rovisco Pais 1, 1049 Lisboa, Portugal
E-mail: miguel.pedra.bento@tecnico.ulisboa.pt,
jorge.romao@tecnico.ulisboa.pt, jpsilva@cftp.ist.utl.pt

Abstract: Models with three Higgs doublets (3HDM) are the source of much recent activ-
ity, for they are key components of many solutions to the problems of the Standard Model;
from extra sources of CP violation to Dark Matter candidates. We compute explicitly
the theoretical bounds for all symmetry-constrained 3HDM arising from the perturbative
unitarity of two-to-two scattering amplitudes. In addition, we propose a method based on
principal minors that foregoes diagonalization and which is preferable in all models (not
only 3HDM) dealing with large scattering matrices.

Keywords: Discrete Symmetries, Multi-Higgs Models

ArXiv ePrint: 2204.13130

Open Access, c© The Authors.
Article funded by SCOAP3. https://doi.org/10.1007/JHEP08(2022)273

mailto:miguel.pedra.bento@tecnico.ulisboa.pt
mailto:jorge.romao@tecnico.ulisboa.pt
mailto:jpsilva@cftp.ist.utl.pt
https://arxiv.org/abs/2204.13130
https://doi.org/10.1007/JHEP08(2022)273


J
H
E
P
0
8
(
2
0
2
2
)
2
7
3

Contents

1 Introduction 1

2 Symmetry-constrained 3HDMs 3

3 Optimized unitarity bounds 4
3.1 Unitarity bounds without diagonalization 4
3.2 Necessary conditions for unitarity in a NHDM 5
3.3 An improved procedure 6

4 Conditions for larger matrices 7
4.1 The Z2 × Z2 symmetry 7
4.2 The S3 symmetry 8

5 Unitarity bounds for all symmetry-constrained 3HDM 9
5.1 The Z(CP)

2 symmetry 10
5.2 The Z2 symmetry 10
5.3 The Z2 × Z(CP)

2 symmetry 12
5.4 The Z4 symmetry 14
5.5 The Z3 symmetry 16
5.6 The Z3 o Z(CP)

2 symmetry 18
5.7 The U(1)2 symmetry 20
5.8 The U(1)1 symmetry 22
5.9 The U(1)× Z2 symmetry 24
5.10 The Z2 × Z2 symmetry 26
5.11 The Z2 × Z2 × Z(CP)

2 symmetry 28
5.12 The U(1)×U(1) symmetry 30
5.13 The U(2) symmetry 32
5.14 The O(2) symmetry 33
5.15 The D4 symmetry 35
5.16 The S3 symmetry 37
5.17 The S3 × Z(CP)

2 symmetry 39
5.18 The CP4 symmetry 40
5.19 The SU(3) symmetry 42
5.20 The A4 symmetry 44
5.21 The S4 symmetry 46
5.22 The SO(3) symmetry 47
5.23 The ∆(54) symmetry 49
5.24 The ∆(54) o Z(CP)

2 symmetry 50
5.25 The Σ(36) symmetry 52

6 Conclusions 54

– i –



J
H
E
P
0
8
(
2
0
2
2
)
2
7
3

A Notations of the 3HDM 56
A.1 As in Ferreira and Silva 56
A.2 As in Varzielas and Ivanov 56

B Proof that M0
2 = M++

2 56

C A generalized algorithm for block diagonalization 57

D Relating basis 58
D.1 A4 from Z3 59
D.2 S4 from S3 60
D.3 D4 from Z2 × Z2 60
D.4 S3 from Z2 61
D.5 Σ(36) from Z4 62

1 Introduction

The discovery at LHC [1, 2] of a scalar particle with 125GeV has inaugurated the era of
experimental exploration of the spontaneous symmetry breaking (SSB) mechanism. Ques-
tions which are being addressed include the following. Is there only one scalar particle?
Since there are multiple fermion families, perhaps there are also more scalar families, nat-
urally urging one to study N Higgs doublet models (NHDM) — for reviews see, for exam-
ple, [3–5]. Such models, besides more scalars, usually involve also couplings of the 125GeV
scalar to gauge bosons and to fermions at odds with the Standard Model (SM). How close
are the measured couplings from those SM values? Can NHDM fix problems currently
unsolved by the SM? Indeed, new sources of CP violation in the scalar sector can explain
the observed baryon asymmetry in the universe, which cannot be accommodated in the
SM. Moreover, many NHDM can accommodate one (or more) dark matter particles.

NHDM usually involve a very large parameter space. It is customary to reduce the
number of parameters through the use of symmetries acting on the space of scalar fields.
This is done for several reasons. First, such symmetries reduce the number of independent
parameters, making it easier to explore the range of possibilities in a given model. Second,
when extended to the fermion sector, NHDM usually have flavour changing neutral scalar
interactions, which are severely constrained by experiments in flavour physics. Some family
symmetries set these flavour changing neutral scalar coupling to zero in a natural way.
The most well known case is the preclusion of such couplings via a Z2 symmetry in the
2HDM [6, 7]. Finally, when both the Lagrangian and the vacuum respect a given symmetry,
the particle spectrum has the same symmetry; by setting all SM particles in a sector with no
“charge” under the discrete symmetry, a neutral lightest particle in a sector “charged” under
the discrete symmetry is a candidate for dark matter. The classification of all symmetry-
constrained 2HDM can be found in [8] and for the 3HDM in [9–12]. This is summarized
in section 2. The full classification has not yet been achieved for NHDM with N ≥ 4.
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The large parameter space of NHDM is further reduced by constraints of a theoretical
nature, including conditions for bounded from below potential [13–17], for the chosen
vacuum to constitute indeed the absolute minimum of the theory [14, 17, 18], and for
the scattering matrices to exhibit perturbative unitarity. These constrains are required
in order for the theory and any phenomenology consequences derived therefrom to be
consistent with both unitarity and perturbativity. This article is dedicated to the study of
perturbative unitarity for all symmetry-constrained 3HDM. In section 5, we write explicitly
all scattering sub-matrices, except for the Z(CP)

2 symmetric 3HDM, which involves a 9× 9
scattering matrix. We also present, in section 3, several techniques which are applicable
to matrices of arbitrary dimension, involving the study of principal minors, and which
enable faster numerical studies, when compared with the numerical determination of the
eigenvalues. The important results of section 3, are illustrated in section 4 with applications
based on some of the matrices obtained in section 5. In conjunction, we cover all symmetry-
constrained 3HDM.

Perturbative unitarity has been thoroughly studied in the context of the Standard
Model in a method championed by Lee, Quigg and Thacker [19, 20]. In the 2HDM, it
was computed for a model with Z2 symmetry [21, 22] and, later, for the general case [23,
24]. In the 3HDM, it has been studied with an S3 o Z(CP)

2 symmetry [25], CP4 and Z3
symmetries [26] and in the case of Z2 × Z2 × Z(CP)

2 [27]. In the former and latter cases,
the authors started from a Higgs family and then imposed that all complex coefficients are
real, effectively enlarging the symmetry group.

Concentrating on special cases, refs. [21, 27] explored the use of both the electric charge
and the Abelian charges of the discrete symmetries to classify the scattering matrices. Here,
we use both the hypercharge Y and electric charge Q, following [26]. We combine this
with a simple algorithm to block diagonalize the matrices with permutations, presented
in appendix C. With this algorithm, we automatically separate the Abelian charges of
the global symmetries that are imposed. Thus, we often obtain the minimal form for
the scattering matrices, for every possible symmetry. We show in appendix B that some
scattering matrices always coincide, thus simplifying the analysis.

We include the simplest explicit formulae for any particular symmetry-constrained
3HDM, despite the fact that some models can be obtained as limits of models with a
smaller symmetry. We do this for three reasons. First, the reader can simply concentrate
on the particular model of interest and its notation, without having to set, sometimes error-
prone limits (see reason three). Second, higher symmetries usually turn a large matrix into
its smaller blocks, where exact formulae for the eigenvalues then become possible. Third,
consider a subgroup G′ of a larger symmetry G. It is often the case that the potential
invariant under G′ is simpler to see (or more commonly studied in the literature) in a basis
where the extension to G becomes quite complicated. Said otherwise, the natural basis to
study the G-invariant potential and the natural basis to study the G′-invariant potential
are often at odds with each other. This problem is discussed in detail in appendix D.

Throughout the paper, we will use the notation of [28], which denotes the real (com-
plex) coefficients by ri (ci). We summarize the notations in appendix A, by stating some
common alternatives.
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Figure 1. Tree of finite realizable groups of Higgs-family transformations in 3HDM.

2 Symmetry-constrained 3HDMs

The scalar potential of the most general 3HDM is given by

VH = µij(Φ†iΦj) + zij,kl(Φ†iΦj)(Φ†kΦl) = −LHiggs , (2.1)

with i, j, k, l running from 1 to 3. Before using the freedom to perform unitary transfor-
mations in the space of scalar fields, one has the following independent parameters [28] in
the potential (2.1): µij has 3 real and 3 complex (6 magnitudes and 3 phases); zij,kl has
9 real and 18 complex (27 magnitudes and 18 phases). The first counting is trivial, since
µij is a 3× 3 Hermitian matrix, while that for zij,kl is easily seen from the parametrization
in (A.1). Thus, the most general 3HDM has 12 real and 21 complex (33 magnitudes and
21 phases) parameters. However, one can choose a different parametrization for the scalar
fields, using a 3× 3 unitary transformation, which keeps the kinetic terms invariant. Such
a transformation can be used to take out 3 magnitudes and 5 phases from the parameters
of VH (one further overall phase in the unitary transformation has no impact on VH). This
leaves 30 independent magnitudes and 16 independent phases in VH .

In the 3HDM, many symmetries may be imposed on the potential as to prevent flavour
changing neutral currents (FCNC), model dark matter or impose CP properties in the
theory.

The study of symmetries in the 3HDM has been thoroughly performed in [9–12]. In
figure 1, we illustrate the map of realizable discrete Higgs-family symmetries obtained
in [9].1 By “realizable” symmetry we mean a symmetry which, when imposed on the
potential, does not yield a potential with a larger symmetry. To be specific, consider the
2HDM. Imposing Z3 on the 2HDM scalar potential, it becomes immediately invariant
under the full Peccei-Quinn U(1) symmetry. Thus, there is no realizable Z3 2HDM. In
contrast, imposing Z3 on the 3HDM scalar potential does not lead to a potential invariant
under a larger symmetry. Thus, there exists a realizable Z3 3HDM. The full list of realizable

1We note that throughout this paper we distinguish the semidirect and direct products by commutativity
of the involved symmetries. Thus, AoB and A×B are the same if the generators of A and B commute.
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Discrete symmetries in the 3HDM

Unitary Z2,Z3,Z2 × Z2,Z4, S3, D4, A4, S4,∆(54),Σ(36)

Anti-unitary (GCP) Z(CP)
2 ,Z2 × Z(CP)

2 ,Z2 × Z2 × Z(CP)
2 , CP4,Z3 o Z(CP)

2 ,

S3 × Z(CP)
2 ,∆(54) o Z(CP)

2

Table 1. Full list of discrete symmetries in the 3HDM, where Z(CP)
2 stands for the usual CP.

Continuous symmetries in the 3HDM

Abelian U(1)1,U(1)2,U(1)2 × Z2,U(1)×U(1)

Non-abelian U(2),O(2), SU(3), SO(3)

Table 2. List of continuous symmetries in the 3HDM.

discrete symmetries in the 3HDM was composed in [9] which we summarize in table 1. In
table 2 we summarize the continuous groups in the 3HDM.

3 Optimized unitarity bounds

In this section we will provide for both necessary conditions for unitarity in any theory and
a procedure that greatly improves the usual method.

In the literature, the standard route for unitarity bounds (and the one we will pursue
later, in section 5) is to build the scattering matrices and diagonalize them. Then, one
proceeds to impose a bound on the eigenvalues such that for a scattering matrix A, its
eigenvalues λi are bounded by |λi| < 8π. This method was spearheaded in [19, 20].

3.1 Unitarity bounds without diagonalization

As stated before, the standard method relies heavily on diagonalization, which (barring an
explicit formula, impossible for matrices larger than 4×4) has to be performed numerically
for each point in the parameter space of the model. But, this is not the most efficient
method. In this section we propose an approach which is based on lemma 10.4.1 of [29]. If
A is an Hermitian matrix with eigenvalues λi, then A+ cI has eigenvalues λi+ c. Then, we
can use this simple statement and Sylvester’s criterion involving principal minors to state
the following remark.2

Remark. Let A be an n× n Hermitian matrix and λi its eigenvalues. Then the following
statements are equivalent:

1. The eigenvalues are bounded as |λi| < c;

2Principal minors have also been used by [16] in the different context of searching for bounded from
below conditions in scalar potentials.
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2. The determinants of all the upper left k-by-k submatrices of A + cI and cI − A are
positive;

3. The leading principal minors Dk(A+ cI) and Dk(cI −A) are positive.

Thus, if A is a scattering matrix with bounds on its eigenvalues |λi| < 8π, then

Dk(A+ 8πI) > 0 and Dk(8πI −A) > 0 , (3.1)

such that

Dk(A+ 8πI) =

∣∣∣∣∣∣∣∣
A11 + 8π · · · A1k

... . . . ...
Ak1 · · · Akk + 8π

∣∣∣∣∣∣∣∣ . (3.2)

In particular, D1(A+ 8πI) = A11 + 8π and Dn(A+ 8πI) = det(A+ 8πI).
Although not needed, one may also add further conditions. Specifically, if the leading

principal minors Dk(A+ cI) and Dk(cI −A) are positive, then all of its principal minors,
not just the leading ones, are positive. A direct consequence of this assertion is that |λi| < c

also implies the following remark:

Remark. Let A be an n× n Hermitian matrix and λi its eigenvalues. Then if the eigen-
values are bounded as |λi| < c, it is a necessary condition that

|Aii| < c , i = 1, 2, · · · , n . (3.3)

This has already been pointed out, through a different argument, in [23], where uni-
tarity bounds for larger matrices were being considered.

3.2 Necessary conditions for unitarity in a NHDM

When dealing with some NHDM model with many parameters, some general bounds may
be extracted by looking at scattering matrices and using the conditions of eq. (3.3). In a
general NHDM, we have that3

|λii,ii| <
4π
3 ,

|λii,jj | < 4π ,
|λii,jj + 2λij,ji| < 4π . (3.4)

In particular, for any 3HDM we have the necessary (but not sufficient) unitarity constraints

|r1|, |r2|, |r3| <
4π
3 ,

|r4|, |r5|, |r6| < 4π ,
|r4 + 2r7|, |r5 + 2r8|, |r6 + 2r9| < 4π , (3.5)

confirming the particular result of eq. (3.4) of [30], obtained for the case of the Z2×Z2×Z(CP )
2 .

3We note the important fact that in some cases perturbative unitarity bounds supersede the usual
perturbativity bound |λ| < 4π, as evidenced by |λii,ii| < 4π

3 .
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3.3 An improved procedure

Although it may not seem at first hand an improvement to the standard method, the
technique with the leading principal minors yields five main advantages:

• Determinants are polynomial in nature and therefore more numerically stable, as root
problems may occur in diagonalizations;

• Both determinants and diagonalization are tipically O(n3), although the former is
much faster;

• The use of eq. (3.3) enables a timely choice of the random matrices. We only consider
random matrices which check |Aii| < c;

• As it is much faster, it enables a much more thorough and (thus) reliable scan of the
parameter space;

• Analytical inequalities are trivial to compute, regardless of the size of the scattering
matrix.

Thus, we present an example of the use of this technique with the following procedure:

1. Sample a very large number of random Hermitian matrices by making them check
eq. (3.3);

2. Loop through the random Hermitian matrices calculating the determinants D2(A+
cI) and D2(cI −A);

3. Check positivity of the determinants;

4. Trim the remaining Hermitian matrices;

5. Go to step 2, but now compute D3(A + cI) and D3(cI − A) until we reach the full
n-by-n determinants.

When finished, the remaining matrices are valid scattering matrices through unitarity.
We tested the comparison between the methods with minors and eigenvalues with a

python code, which we include in the paper as a supplementary material file. In this test,
we ran unitarity through 400000 symmetric matrices with size 5 × 5. We concluded that
our method runs about four times faster in this example.4

The use of the remaining principal minors is not as advantageous as with the case of
the diagonal elements. In fact, a matrix of size N has 2N − 1 principal minors. As our
algorithm uses only 2N − 1 principal minors, it scales linearly to larger matrices. Thus,
regarding the number of operations, our algorithm is O(N).

The procedure proposed here is interesting even for simple 3 × 3 matrices. We will
illustrate this point in section 4, using some 3×3 matrices which show up in our discussion
of the scattering matrices for all symmetry-constrained 3HDM models, to be performed
later, in section 5.

4The generalization from symmetric to Hermitian matrices is trivial to perform.
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4 Conditions for larger matrices

In the symmetry-constrained 3HDM cases to be presented in section 5 below, we will
find many matrices of large dimension. Even in the case of 3× 3 matrices, we can use the
formula for solutions of cubic equations or, else, we can utilize the new procedure described
in section 3. In this section, we provide a few examples of the latter. Though simple, they
illustrate well how powerful the procedure in section 3 is.

4.1 The Z2 × Z2 symmetry

In this case we will find,5

M++
2 ⊃ A = 2

r1 c3 c5
c∗3 r2 c17
c∗5 c

∗
17 r3

 , (4.1)

and the conditions are

D1(A+ 8πI) > 0⇒ r1 > −4π ,
D2(A+ 8πI) > 0⇒ (r1 + 4π) (r2 + 4π)− |c3|2 > 0 ,
D3(A+ 8πI) > 0⇒ 2< [c3c17c

∗
5] + (r1 + 4π) (r2 + 4π) (r3 + 4π)

− (r3 + 4π) |c3|2 − (r1 + 4π) |c17|2 − (r2 + 4π) |c5|2 > 0
⇔ det (A+ 8πI) > 0 ,

(4.2)

and

D1(8πI −A) > 0⇒ r1 < 4π ,
D2(8πI −A) > 0⇒ (r1 − 4π) (r2 − 4π)− |c3|2 > 0 ,
D3(8πI −A) > 0⇒ det (8πI −A) > 0 .

(4.3)

With these six conditions we have necessary and sufficient conditions for unitarity. We
may also add, in consequence of eq. (3.3), that |r2| < 4π and |r3| < 4π, althought it does
not yield any new information.

The next matrix is

M+
0 ⊃ A = 2

r1 r7 r8
r7 r2 r9
r8 r9 r3

 , (4.4)

5The notation for the subscripts and superscripts in the M matrices is defined in section 5.
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and the conditions are

D1(A+ 8πI) > 0⇒ r1 > −4π ,
D2(A+ 8πI) > 0⇒ (r1 + 4π) (r2 + 4π)− r2

7 > 0 ,
D3(A+ 8πI) > 0⇒ 2r7r8r9 + (r1 + 4π) (r2 + 4π) (r3 + 4π)

− (r3 + 4π) r2
7 − (r1 + 4π) r2

9 − (r2 + 4π) r2
8 > 0

⇔ det (A+ 8πI) > 0 ,
(4.5)

and

D1(8πI −A) > 0⇒ r1 < 4π ,
D2(8πI −A) > 0⇒ (r1 − 4π) (r2 − 4π)− r2

7 > 0 ,
D3(8πI −A) > 0⇒ det (8πI −A) > 0 .

(4.6)

The next matrix is

M0
0 ⊃ A = 2

 3r1 2r4 + r7 2r5 + r8
2r4 + r7 3r2 2r6 + r9
2r5 + r8 2r6 + r9 3r3

 , (4.7)

and the conditions are

D1(A+ 8πI) > 0⇒ 3r1 > −4π ,
D2(A+ 8πI) > 0⇒ (3r1 + 4π) (3r2 + 4π)− (2r4 + r7)2 > 0 ,
D3(A+ 8πI) > 0⇒ det (A+ 8πI) > 0 ,

(4.8)

and

D1(8πI −A) > 0⇒ 3r1 < 4π ,
D2(8πI −A) > 0⇒ (3r1 − 4π) (3r2 − 4π)− (2r4 + r7)2 > 0 ,
D3(8πI −A) > 0⇒ det (8πI −A) > 0 .

(4.9)

We note that this matrix yields a stronger bound on r1, r2, r3 than the previous ones. We
have |ri| < 4π/3 for i = 1, 2, 3.

4.2 The S3 symmetry

In the case of this symmetry, we will find

M+
0 ⊃ A = 2

 r4 c12 c
∗
12

c∗12 r5 c11
c12 c

∗
11 r5

 , (4.10)
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and the conditions are

D1(A+ 8πI) > 0⇒ r4 > −4π ,
D2(A+ 8πI) > 0⇒ (r4 + 4π) (r5 + 4π)− |c12|2 > 0 ,

D3(A+ 8πI) > 0⇒ 2<
[
c11c

2
12

]
+ (r1 + 4π) (r5 + 4π)2

− (r4 + 4π) |c11|2 − 2 (r5 + 4π) |c12|2 > 0
⇔ det (A+ 8πI) > 0 ,

(4.11)

and

D1(8πI −A) > 0⇒ r4 < 4π ,
D2(8πI −A) > 0⇒ (r4 − 4π) (r5 − 4π)− |c11|2 > 0 ,
D3(8πI −A) > 0⇒ det (8πI −A) > 0 .

(4.12)

The next matrix is

M0
0 ⊃ A = 2

r4 + 2r7 3c12 3c∗12
3c∗12 r5 + 2r8 3c11
3c12 3c∗11 r5 + 2r8

 , (4.13)

and the conditions are

D1(A+ 8πI) > 0⇒ (r4 + 2r7) + 4π > 0 ,
D2(A+ 8πI) > 0⇒ (r4 + 2r7 + 4π) (r5 + 2r8 + 4π)− 9 |c12|2 > 0 ,
D3(A+ 8πI) > 0⇒ det (A+ 8πI) > 0 ,

(4.14)

and

D1(8πI −A) > 0⇒ 4π − (r4 + 2r7) > 0 ,
D2(8πI −A) > 0⇒ (r4 + 2r7 − 4π) (r5 + 2r8 − 4π)− 9 |c12|2 > 0 ,
D3(8πI −A) > 0⇒ det (8πI −A) > 0 .

(4.15)

5 Unitarity bounds for all symmetry-constrained 3HDM

In NHDM, there are neutral scalars and charge ± scalars (in units of the positron charge).
Thus, in 2→ 2 scattering, the initial (and final) charges can be 0, + (same scattering ma-
trices as −), or ++ (same matrices as −−). Following the method provided in [26] for tree-
level unitarity bounds, we present the eigenvalues for the matricesM++

2 ,M+
2 ,M

+
0 ,M

0
2 ,M

0
0 ,

– 9 –
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where MQ
2Y are scattering matrices with hypercharge 2Y and6 electric charge Q. We will

state that a matrix M is “equal” (=) to its block-diagonal form by only making use of
permutations. To identify the relevant permutations, we use the algorithm presented in
appendix C. For M0

0 we will also use orthogonal matrices of the type

O = 1√
2

(
−1 1

1 1

)
, (5.1)

to further reduce the size of the matrices. For this operation we will use the symbol of
“similar” (∼ ). These operations will simplify the presentation, while at the same time
preserving the final results. It is then without loss of generality that we use them.

We will denote the eigenvalues as ΛQ,2Yi for the ith eigenvalue of charge Q and hyper-
charge Y.7 These correspond to the eigenvalues of the corresponding matrices MQ

2Y . The
unitarity bounds provided by using |Λ| < 8π for symmetry-constrained 3HDMs are given
in the following subsections.

5.1 The Z(CP)
2 symmetry

By imposing G = Z(CP)
2 we get the most general 3HDM but now with real coefficients.

This is the smallest symmetry possible. In general, we must contend with 9× 9 irreducible
scattering matrices and, thus, its unitarity bounds should be obtained numerically. As
mentioned in section 3, for these cases we advocate a faster procedure based on principle
minors.

5.2 The Z2 symmetry

By imposing G = Z2 with representation diag(1, 1,−1) we get the quartic potential

VZ2 =
3∑
i=1

ri|φi|4 + 2r4(φ†1φ1)(φ†2φ2) + 2r5(φ†1φ1)(φ†3φ3) + 2r6(φ†2φ2)(φ†3φ3)

+ 2r7|φ†1φ2|2 + 2r8|φ†1φ3|2 + 2r9|φ†2φ3|2 +
[
2c1(φ†1φ1)(φ†1φ2) + c3(φ†1φ2)2

+ c5(φ†1φ3)2 + 2c7(φ†1φ2)(φ†2φ2) + 2c11(φ†1φ3)(φ†2φ3)

+ 2c13(φ†1φ2)(φ†3φ3) + 2c14(φ†1φ3)(φ†3φ2) + c17(φ†2φ3)2 + h.c.
]
, (5.2)

with the following scattering matrices.

The matrix M++
2 . From M++

2 we get

1
2 M

++
2 = diag




r1

√
2c1 c3 c5√

2c∗1 r4 + r7
√

2c7
√

2c11
c∗3

√
2c∗7 r2 c17

c∗5
√

2c∗11 c∗17 r3

 ,
(
r5 + r8 c13 + c14
c∗13 + c∗14 r6 + r9

) (5.3)

6In our notation, Q = T3 + Y, where T3 is the third component of weak isospin.
7Since when Q = ++ only 2Y = 2 exists, we suppress the explicit reference to the hypercharge in the

corresponding eigenvalues: Λ++,2
i → Λ++

i .
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and thus we get the eigenvalues of M++
2 :

Λ++
1−4 = Eigenvalues of first matrix ,

Λ++
5,6 = ±

√
4 |c13 + c14|2 + (r5 − r6 + r8 − r9) 2 + r5 + r6 + r8 + r9 . (5.4)

The matrix M+
2 . From M+

2 we get

1
2 M

+
2 = diag




r1 c1 c1 c3 c5
c∗1 r4 r7 c7 c11
c∗1 r7 r4 c7 c11
c∗3 c∗7 c∗7 r2 c17
c∗5 c

∗
11 c

∗
11 c

∗
17 r3

 ,

r5 c13 r8 c14
c∗13 r6 c∗14 r9
r8 c14 r5 c13
c∗14 r9 c∗13 r6




, (5.5)

with eigenvalues of M+
2 :

Λ+,2
1−5 = Eigenvalues of first matrix ,

Λ+,2
6,7 = Λ++

5,6 ,

Λ+,2
8,9 = ±

√
4 |c13 − c14|2 + (r5 − r6 − r8 + r9) 2 + r5 + r6 − r8 − r9 . (5.6)

The matrix M+
0 . From M+

0 we get

1
2 M

+
0 = diag




r1 c∗1 c1 r7 r8
c1 r4 c3 c7 c14
c∗1 c∗3 r4 c∗7 c

∗
14

r7 c∗7 c7 r2 r9
r8 c

∗
14 c14 r9 r3

 ,

r5 c13 c5 c11
c∗13 r6 c11 c17
c∗5 c∗11 r5 c∗13
c∗11 c

∗
17 c13 r6




, (5.7)

with eigenvalues of M+
0 :

Λ+,0
1−5 = Eigenvalues of first matrix ,

Λ+,0
6−9 = Eigenvalues of second matrix . (5.8)

The matrix M0
2 . From M0

2 we get

1
2 M

0
2 = 1

2 M
++
2 , (5.9)

with eigenvalues of M0
2 :

Λ0,2
1−6 = Λ++

1−6 . (5.10)

The matrix M0
0 . From M0

0 we get

1
2 M

0
0 ∼ diag

{1
2 M

+
0 , A,B

}
, (5.11)
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with

A =


3r1 3c∗1 3c1 2r4 + r7 2r5 + r8
3c1 r4 + 2r7 3c3 3c7 2c13 + c14
3c∗1 3c∗3 r4 + 2r7 3c∗7 2c∗13 + c∗14

2r4 + r7 3c∗7 3c7 3r2 2r6 + r9
2r5 + r8 2c∗13 + c∗14 2c13 + c14 2r6 + r9 3r3

 , (5.12)

B =


r5 + 2r8 c13 + 2c14 3c5 3c11
c∗13 + 2c∗14 r6 + 2r9 3c11 3c17

3c∗5 3c∗11 r5 + 2r8 c∗13 + 2c∗14
3c∗11 3c∗17 c13 + 2c14 r6 + 2r9

 , (5.13)

with eigenvalues of M0
0 :

Λ0,0
1−5 = Eigenvalues of second matrix ,

Λ0,0
6−9 = Eigenvalues of third matrix . (5.14)

5.3 The Z2 × Z(CP)
2 symmetry

By imposing G = Z2 × Z(CP)
2 we get the quartic potential

VZ2×Z(CP)
2

=
3∑
i=1

ri|φi|4 + 2r4(φ†1φ1)(φ†2φ2) + 2r5(φ†1φ1)(φ†3φ3) + 2r6(φ†2φ2)(φ†3φ3)

+ 2r7|φ†1φ2|2 + 2r8|φ†1φ3|2 + 2r9|φ†2φ3|2 +
[
2r10(φ†1φ1)(φ†1φ2) + r11(φ†1φ2)2

+ r12(φ†1φ3)2 + 2r13(φ†1φ2)(φ†2φ2) + 2r14(φ†1φ3)(φ†2φ3)

+ 2r15(φ†1φ2)(φ†3φ3) + 2r16(φ†1φ3)(φ†3φ2) + r17(φ†2φ3)2 + h.c.
]
, (5.15)

with the following scattering matrices. This case is obtained from eq. (5.2) by making all
coefficients real. Here, and in similar cases below, we stress the fact that all parameters
are real by changing the ck in the notation of [28], into rj with j ≥ 10. Specifically, in this
case, we do (c1, c3, c5, c7, c11, c13, c14, c17)→ (r10, r11, r12, r13, r14, r15, r16, r17).

The matrix M++
2 . From M++

2 we get

1
2 M

++
2 = diag




r1

√
2r10 r11 r12√

2r10 r4 + r7
√

2r13
√

2r14
r11

√
2r13 r2 r17

r12
√

2r14 r17 r3

 ,
(
r5 + r8 r15 + r16
r15 + r16 r6 + r9

) , (5.16)

and thus we get the eigenvalues of M++
2 :

Λ++
1−4 = Eigenvalues of first matrix ,

Λ++
5,6 = ±

√
4 (r15 + r16)2 + (r5 − r6 + r8 − r9) 2 + r5 + r6 + r8 + r9 . (5.17)
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The matrix M+
2 . From M+

2 we get

1
2 M

+
2 = diag




r1 r10 r10 r11 r12
r10 r4 r7 r13 r14
r10 r7 r4 r13 r14
r11 r13 r13 r2 r17
r12 r14 r14 r17 r3

 ,

r5 r15 r8 r16
r15 r6 r16 r9
r8 r16 r5 r15
r16 r9 r15 r6




, (5.18)

with eigenvalues of M+
2 :

Λ+,2
1−5 = Eigenvalues of first matrix ,

Λ+,2
6,7 = Λ++

5,6 ,

Λ+,2
8,9 = ±

√
4 (r15 − r16)2 + (r5 − r6 − r8 + r9) 2 + r5 + r6 − r8 − r9 . (5.19)

The matrix M+
0 . From M+

0 we get

1
2 M

+
0 = diag




r1 r10 r10 r7 r8
r10 r4 r11 r13 r16
r10 r11 r4 r13 r16
r7 r13 r13 r2 r9
r8 r16 r16 r9 r3

 ,

r5 r15 r12 r14
r15 r6 r14 r17
r12 r14 r5 r15
r14 r17 r15 r6




, (5.20)

with eigenvalues of M+
0 :

Λ+,0
1−5 = Eigenvalues of first matrix ,

Λ+,0
6,7 = ±

√
4 (r14 + r15) 2 + (r5 − r6 + r12 − r17) 2 + r5 + r6 + r12 + r17 ,

Λ+,0
8,9 = ±

√
4 (r14 − r15) 2 + (r5 − r6 − r12 + r17) 2 + r5 + r6 − r12 − r17 . (5.21)

The matrix M0
2 . From M0

2 we get

1
2 M

0
2 = 1

2 M
++
2 , (5.22)

with eigenvalues of M0
2 :

Λ0,2
1−6 = Λ++

1−6 . (5.23)

The matrix M0
0 . From M0

0 we get

1
2 M

0
0 ∼ diag

{1
2 M

+
0 , A,B

}
, (5.24)
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with

A =


3r1 3r10 3r10 2r4 + r7 2r5 + r8
3r10 r4 + 2r7 3r11 3r13 2r15 + r16
3r10 3r11 r4 + 2r7 3r13 2r15 + r16

2r4 + r7 3r13 3r13 3r2 2r6 + r9
2r5 + r8 2r15 + r16 2r15 + r16 2r6 + r9 3r3

 , (5.25)

B =


r5 + 2r8 r15 + 2r16 3r12 3r14
r15 + 2r16 r6 + 2r9 3r14 3r17

3r12 3r14 r5 + 2r8 r15 + 2r16
3r14 3r17 r15 + 2r16 r6 + 2r9

 , (5.26)

with eigenvalues of M0
0 :

Λ0,0
1−9 = Λ+,0

1−9 ,

Λ0,0
10−14 = Eigenvalues of first matrix ,

Λ0,0
15,16 = ±

√
4 (−3r14 + r15 + 2r16) 2 + (r5 − r6 + 2r8 − 2r9 − 3r12 + 3r17) 2

+ r5 + r6 + 2r8 + 2r9 − 3 (r12 + r17) ,

Λ0,0
17,18 = ±

√
4 (3r14 + r15 + 2r16) 2 + (r5 − r6 + 2r8 − 2r9 + 3r12 − 3r17) 2

+ r5 + r6 + 2r8 + 2r9 + 3 (r12 + r17) . (5.27)

5.4 The Z4 symmetry

By imposing G = Z4 with representation diag(i,−i, 1) we get the quartic potential

VZ4 =
3∑
i=1

ri|φi|4 + 2r4(φ†1φ1)(φ†2φ2) + 2r5(φ†1φ1)(φ†3φ3) + 2r6(φ†2φ2)(φ†3φ3)

+ 2r7|φ†1φ2|2 + 2r8|φ†1φ3|2 + 2r9|φ†2φ3|2 + r10
[
(φ†1φ2)2 + h.c.

]
+ 2r11

[
(φ†1φ3)(φ†2φ3) + h.c.

]
, (5.28)

which can be easily achieved by setting from Z2 the constraints {c1, c5, c7, c13, c14, c17} → 0.
Thus, we get the following scattering matrices.

The matrix M++
2 . From M++

2 we get

1
2 M

++
2 = diag

{(
r1 r10
r10 r2

)
,

(
r4 + r7

√
2r11√

2r11 r3

)
, (r5 + r8), (r6 + r9)

}
, (5.29)

and thus we get the eigenvalues of M++
2 :

Λ++
1,2 = ±

√
4r2

10 + (r1 − r2) 2 + r1 + r2 ,

Λ++
3,4 = ±

√
8r2

11 + (−r3 + r4 + r7) 2 + r3 + r4 + r7 ,

Λ++
5 = 2(r5 + r8) ,

Λ++
6 = 2(r6 + r9) . (5.30)
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The matrix M+
2 . From M+

2 we get

1
2 M

+
2 = diag


 r4 r7 r11
r7 r4 r11
r11 r11 r3

 ,( r1 r10
r10 r2

)
,

(
r5 r8
r8 r5

)
,

(
r6 r9
r9 r6

) , (5.31)

with eigenvalues of M+
2 :

Λ+,2
1,2 = Λ++

3,4 ,

Λ+,2
3 = 2(r4 − r7) ,

Λ+,2
4,5 = Λ++

1,2 ,

Λ+,2
6,7 = 2(r5 ± r8)

Λ+,2
8,9 = 2(r6 ± r9) . (5.32)

The matrix M+
0 . From M+

0 we get

1
2 M

+
0 = diag


r1 r7 r8
r7 r2 r9
r8 r9 r3

 ,( r4 r10
r10 r4

)
,

(
r5 r11
r11 r6

)
,

(
r6 r11
r11 r5

) , (5.33)

with eigenvalues of M+
0 :

Λ+,0
1−3 = Roots of:

x3 − 2(r1 + r2 + r3)x2 + 4(−r2
7 − r2

8 − r2
9 + r1r2 + r1r3 + r2r3)x

+ 8(r3r
2
7 − 2r8r9r7 + r2r

2
8 + r1r

2
9 − r1r2r3) = 0 ,

Λ+,0
4,5 = 2 (r4 ± r10) ,

Λ+,0
6−9 = ±

√
4r2

11 + (r5 − r6) 2 + r5 + r6 . (5.34)

The matrix M0
2 . As shown in complete generality in appendix B,

1
2 M

0
2 = 1

2 M
++
2 , (5.35)

and, thus, the eigenvalues of M0
2 and M++

2 coincide:

Λ0,2
1−6 = Λ++

1−6 . (5.36)

The matrix M0
0 . From M0

0 we get

1
2 M

0
0 ∼ diag

1
2M

+
0 ,

 3r1 2r4 + r7 2r5 + r8
2r4 + r7 3r2 2r6 + r9
2r5 + r8 2r6 + r9 3r3

 ,(r4 + 2r7 3r10
r10 r4 + 2r7

)
,

(
r5 + 2r8 3r11

3r11 r6 + 2r9

)
,

(
r6 + 2r9 3r11

3r11 r5 + 2r8

)}
, (5.37)
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with eigenvalues of M0
0 :

Λ0,0
1−9 = Λ+,0

1−9 ,

Λ0,0
10−12 = Roots of:

x3 + 2 (−3r1 − 3r2 − 3r3)x2 + 4
(
− 4r2

4 − 4r7r4 − 4r2
5 − 4r2

6 − r2
7 − r2

8 − r2
9

+ 9r1r2 + 9r1r3 + 9r2r3 − 4r5r8 − 4r6r9
)
x+ 8

(
12r3r

2
4 + 12r2r

2
5 + 12r1r

2
6

+ 3r3r
2
7 + 3r2r

2
8 + 3r1r

2
9 − 27r1r2r3 − 16r4r5r6 + 12r3r4r7 − 8r5r6r7

+ 12r2r5r8 − 8r4r6r8 − 4r6r7r8 − 8r4r5r9 + 12r1r6r9 − 4r5r7r9 − 4r4r8r9

− 2r7r8r9
)

= 0 ,

Λ0,0
13,14 = 2 (r4 + 2r7 ± 3r10) ,

Λ0,0
15−18 = ±

√
36r2

11 + (r5 − r6 + 2r8 − 2r9) 2 + r5 + r6 + 2r8 + 2r9 . (5.38)

5.5 The Z3 symmetry

By imposing G = Z3 with representation diag(e 2πi
3 , e

−2πi
3 , 1) we get the quartic potential

VZ3 =
3∑
i=1

ri|φi|4 + 2r4(φ†1φ1)(φ†2φ2) + 2r5(φ†1φ1)(φ†3φ3) + 2r6(φ†2φ2)(φ†3φ3)

+ 2r7|φ†1φ2|2 + 2r8|φ†1φ3|2 + 2r9|φ†2φ3|2 +
[
2c4(φ†1φ2)(φ†1φ3)

+ 2c11(φ†1φ3)(φ†2φ3) + 2c12(φ†1φ2)(φ†3φ2) + h.c.
]
, (5.39)

with the following scattering matrices.

The matrix M++
2 . From M++

2 we get

1
2 M

++
2 = diag

{(
r1

√
2c4√

2c∗4 r6 + r9

)
,

(
r4 + r7

√
2c11√

2c∗11 r3

)
,

(
r5 + r8

√
2c12√

2c∗12 r2

)}
, (5.40)

and thus we get the eigenvalues of M++
2 :

Λ++
1,2 = ±

√
8|c4|2 + (−r1 + r6 + r9) 2 + r1 + r6 + r9 ,

Λ++
3,4 = ±

√
8|c11|2 + (−r3 + r4 + r7) 2 + r3 + r4 + r7 ,

Λ++
5,6 = ±

√
8|c12|2 + (−r2 + r5 + r8) 2 + r2 + r5 + r8 . (5.41)

The matrix M+
2 . From M+

2 we get

1
2 M

+
2 = diag


r1 c4 c4
c∗4 r6 r9
c∗4 r9 r6

 ,
 r4 r7 c11
r7 r4 c11
c∗11 c

∗
11 r3

 ,
 r5 c12 r8
c∗12 r2 c∗12
r8 c12 r5


 , (5.42)
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with eigenvalues of M+
2 :

Λ+,2
1 = 2(r6 − r9) ,

Λ+,2
2,3 = Λ++

1,2 ,

Λ+,2
4 = 2(r4 − r7) ,

Λ+,2
5,6 = Λ++

3,4

Λ+,2
7 = 2(r5 − r8)

Λ+,2
8,9 = Λ++

5,6 . (5.43)

The matrix M+
0 . From M+

0 we get

1
2 M

+
0 = diag


r1 r7 r8
r7 r2 r9
r8 r9 r3

 ,
 r4 c12 c4
c∗12 r6 c11
c∗4 c∗11 r5

 ,
 r5 c4 c11
c∗4 r4 c∗12
c∗11 c12 r6


 , (5.44)

with eigenvalues of M+
0 :

Λ+,0
1−3 = Roots of:

x3 − 2(r1 + r2 + r3)x2 + 4(−r2
7 − r2

8 − r2
9 + r1r2 + r1r3 + r2r3)x

+ 8
(
r3r

2
7 − 2r8r9r7 + r2r

2
8 + r1r

2
9 − r1r2r3

)
= 0 ,

Λ+,0
4−6 = Roots of:

x3 − 2(r4 + r5 + r6)x2 + 4(−|c4|2 − |c11|2 − |c12|2 + r4r5 + r4r6 + r5r6)x

+ 8
(
r6|c4|2 + r4|c11|2 + r5|c12|2 − 2<(c4c

∗
11c
∗
12)− r4r5r6

)
= 0 ,

Λ+,0
7−9 = Λ+,0

4−6 . (5.45)

The matrix M0
2 . From M0

2 we get

1
2 M

0
2 = 1

2 M
++
2 , (5.46)

with eigenvalues of M0
2 :

Λ0,2
1−6 = Λ++

1−6 . (5.47)

The matrix M0
0 . From M0

0 we get

1
2 M

0
0 ∼ diag

1
2M

+
0 ,

 3r1 2r4 + r7 2r5 + r8
2r4 + r7 3r2 2r6 + r9
2r5 + r8 2r6 + r9 3r3

 ,
r4 + 2r7 3c12 3c4

3c∗12 r6 + 2r9 3c11
3c∗4 3c∗11 r5 + 2r8

 ,
r5 + 2r8 3c4 3c11

3c∗4 r4 + 2r7 3c∗12
3c∗11 3c12 r6 + 2r9


 , (5.48)
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with eigenvalues of M0
0 :

Λ0,0
1−9 = Λ+,0

1−9 ,

Λ0,0
10−12 = Roots of:

x3 + 2 (−3r1 − 3r2 − 3r3)x2 + 4
(
− 4r2

4 − 4r7r4 − 4r2
5 − 4r2

6 − r2
7 − r2

8 − r2
9

+ 9r1r2 + 9r1r3 + 9r2r3 − 4r5r8 − 4r6r9
)
x+ 8

(
12r3r

2
4 + 12r2r

2
5 + 12r1r

2
6

+ 3r3r
2
7 + 3r2r

2
8 + 3r1r

2
9 − 27r1r2r3 − 16r4r5r6 + 12r3r4r7 − 8r5r6r7

+ 12r2r5r8 − 8r4r6r8 − 4r6r7r8 − 8r4r5r9 + 12r1r6r9 − 4r5r7r9 − 4r4r8r9

− 2r7r8r9
)

= 0 ,

Λ0,0
13−15 = Roots of:

x3 + 2 (−r4 − r5 − r6 − 2r7 − 2r8 − 2r9)x2 + 4
(
− 9|c4|2 − 9|c11|2 − 9|c12|2

+ r4r5 + r4r6 + r5r6 + 2r5r7 + 2r6r7 + 2r4r8 + 2r6r8 + 4r7r8 + 2r4r9

+ 2r5r9 + 4r7r9 + 4r8r9
)
x+ 8

(
9r6|c4|2 + 18r9|c4|2 + 9r4|c11|2 + 9r5|c12|2

+ 18r7|c11|2 + 18r8|c12|2 − 54<(c4c
∗
11c
∗
12)− r4r5r6 − 2r5r6r7 − 2r4r6r8

− 4r6r7r8 − 2r4r5r9 − 4r5r7r9 − 4r4r8r9 − 8r7r8r9
)

= 0 ,

Λ0,0
16−18 = Λ0,0

13−15 . (5.49)

5.6 The Z3 o Z(CP)
2 symmetry

By imposing G = Z3 o Z(CP)
2 we get the quartic potential

VZ3oZ(CP)
2

=
3∑
i=1

ri|φi|4 + 2r4(φ†1φ1)(φ†2φ2) + 2r5(φ†1φ1)(φ†3φ3) + 2r6(φ†2φ2)(φ†3φ3)

+ 2r7|φ†1φ2|2 + 2r8|φ†1φ3|2 + 2r9|φ†2φ3|2 + 2r10
[
(φ†1φ2)(φ†1φ3) + h.c.

]
+ 2r11

[
(φ†1φ3)(φ†2φ3) + h.c.

]
+ 2r12

[
(φ†1φ2)(φ†3φ2) + h.c.

]
, (5.50)

which can be easily achieved by setting from Z3 the constraints {c4, c11, c12} ∈ R. Thus,
we get the following eigenvalues.

The matrix M++
2 . From M++

2 we get

1
2 M

++
2 = diag

{(
r1

√
2r10√

2r10 r6 + r9

)
,

(
r4 + r7

√
2r11√

2r11 r3

)
,

(
r5 + r8

√
2r12√

2r12 r2

)}
, (5.51)

and thus we get the eigenvalues of M++
2 :

Λ++
1,2 = ±

√
8r2

10 + (−r1 + r6 + r9) 2 + r1 + r6 + r9 ,

Λ++
3,4 = ±

√
8r2

11 + (−r3 + r4 + r7) 2 + r3 + r4 + r7 ,

Λ++
5,6 = ±

√
8r2

12 + (−r2 + r5 + r8) 2 + r2 + r5 + r8 . (5.52)
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The matrix M+
2 . From M+

2 we get

1
2 M

+
2 = diag


 r1 r10 r10
r10 r6 r9
r10 r9 r6

 ,
 r4 r7 r11
r7 r4 r11
r11 r11 r3

 ,
 r5 r12 r8
r12 r2 r12
r8 r12 r5


 , (5.53)

with eigenvalues of M+
2 :

Λ+,2
1 = 2(r6 − r9) ,

Λ+,2
2,3 = Λ++

1,2 ,

Λ+,2
4 = 2(r4 − r7) ,

Λ+,2
5,6 = Λ++

3,4

Λ+,2
7 = 2(r5 − r8)

Λ+,2
8,9 = Λ++

5,6 . (5.54)

The matrix M+
0 . From M+

0 we get

1
2 M

+
0 = diag


r1 r7 r8
r7 r2 r9
r8 r9 r3

 ,
 r4 r12 r10
r12 r6 r11
r10 r11 r5

 ,
 r5 r10 r11
r10 r4 r12
r11 r12 r6


 , (5.55)

with eigenvalues of M+
0 :

Λ+,0
1−3 = Roots of:

x3 − 2(r1 + r2 + r3)x2 + 4(−r2
7 − r2

8 − r2
9 + r1r2 + r1r3 + r2r3)x

+ 8
(
r3r

2
7 − 2r8r9r7 + r2r

2
8 + r1r

2
9 − r1r2r3

)
= 0 ,

Λ+,0
4−6 = Roots of:

x3 − 2(r4 + r5 + r6)x2 + 4(−r2
10 − r2

11 − r2
12 + r4r5 + r4r6 + r5r6)x

+ 8
(
r6r

2
10 + r4r

2
11 + r5r

2
12 − 2r10r11r12 − r4r5r6

)
= 0 ,

Λ+,0
7−9 = Λ+,0

4−6 . (5.56)

The matrix M0
2 . From M0

2 we get
1
2 M

0
2 = 1

2 M
++
2 , (5.57)

with eigenvalues of M0
2 :

Λ0,2
1−6 = Λ++

1−6 . (5.58)

The matrix M0
0 . From M0

0 we get

1
2 M

0
0 ∼ diag

1
2M

+
0 ,

 3r1 2r4 + r7 2r5 + r8
2r4 + r7 3r2 2r6 + r9
2r5 + r8 2r6 + r9 3r3

 ,
r4 + 2r7 3r12 3r10

3r12 r6 + 2r9 3r11
3r10 3r11 r5 + 2r8

 ,
r5 + 2r8 3r10 3r11

3r10 r4 + 2r7 3r12
3r11 3r12 r6 + 2r9


 , (5.59)
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with eigenvalues of M0
0 :

Λ0,0
1−9 = Λ+,0

1−9 ,

Λ0,0
10−12 = Roots of:

x3 + 2 (−3r1 − 3r2 − 3r3)x2 + 4
(
− 4r2

4 − 4r7r4 − 4r2
5 − 4r2

6 − r2
7 − r2

8 − r2
9

+ 9r1r2 + 9r1r3 + 9r2r3 − 4r5r8 − 4r6r9
)
x+ 8

(
12r3r

2
4 + 12r2r

2
5 + 12r1r

2
6

+ 3r3r
2
7 + 3r2r

2
8 + 3r1r

2
9 − 27r1r2r3 − 16r4r5r6 + 12r3r4r7 − 8r5r6r7

+ 12r2r5r8 − 8r4r6r8 − 4r6r7r8 − 8r4r5r9 + 12r1r6r9 − 4r5r7r9 − 4r4r8r9

− 2r7r8r9
)

= 0 ,

Λ0,0
13−15 = Roots of:

x3 + 2 (−r4 − r5 − r6 − 2r7 − 2r8 − 2r9)x2 + 4
(
− 9r2

10 − 9r2
11 − 9r2

12

+ r4r5 + r4r6 + r5r6 + 2r5r7 + 2r6r7 + 2r4r8 + 2r6r8 + 4r7r8 + 2r4r9

+ 2r5r9 + 4r7r9 + 4r8r9
)
x+ 8

(
9r6r

2
10 + 18r9r

2
10 + 9r4r

2
11 + 9r5r

2
12

+ 18r7r
2
11 + 18r8r

2
12 − 54r10r11r12 − r4r5r6 − 2r5r6r7 − 2r4r6r8

− 4r6r7r8 − 2r4r5r9 − 4r5r7r9 − 4r4r8r9 − 8r7r8r9
)

= 0 ,

Λ0,0
16−18 = Λ0,0

13−15 . (5.60)

5.7 The U(1)2 symmetry

By imposing G = U(1)2 with representation diag(1, 1, eiα), with α 6= {0, π}, we get the
quartic potential

VU(1)2 =
3∑
i=1

ri|φi|4 + 2r4(φ†1φ1)(φ†2φ2) + 2r5(φ†1φ1)(φ†3φ3) + 2r6(φ†2φ2)(φ†3φ3)

+ 2r7|φ†1φ2|2 + 2r8|φ†1φ3|2 + 2r9|φ†2φ3|2 +
[
2c1(φ†1φ1)(φ†1φ2) + c3(φ†1φ2)2

+ 2c7(φ†1φ2)(φ†2φ2) + 2c13(φ†1φ2)(φ†3φ3) + 2c14(φ†1φ3)(φ†3φ2) + h.c.
]
, (5.61)

which can be easily achieved by setting from Z2 the constraints {c5, c17} → 0.
Thus, we get the following scattering matrices.

The matrix M++
2 . From M++

2 we get

1
2 M

++
2 = diag


 r1

√
2c1 c3√

2c∗1 r4 + r7
√

2c7
c∗3

√
2c∗7 r2

 ,( r5 + r8 c13 + c14
c∗13 + c∗14 r6 + r9

)
, r3

 , (5.62)
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and thus we get the eigenvalues of M++
2 :

Λ++
1−3 = Roots of:

x3 + 2x2 (−r1 − r2 − r4 − r7) + 4x
(
− 2|c1|2 − |c3|2 − 2|c7|2 + r1r2 + r1r4

+ r2r4 + r1r7 + r2r7
)

+ 8
(
2r1|c7|2 + 2r2|c1|2 + (r4 + r7)|c3|2 − 4<(c1c

∗
3c7)

− r1r2r4 − r1r2r7
)

= 0 ,

Λ++
4,5 = ±

√
4|c13 + c14|2 + (r5 − r6 + r8 − r9) 2 + r5 + r6 + r8 + r9 ,

Λ++
6 = 2r3 . (5.63)

The matrix M+
2 . From M+

2 we get

1
2 M

+
2 = diag




r1 c1 c1 c3
c∗1 r4 r7 c7
c∗1 r7 r4 c7
c∗3 c

∗
7 c
∗
7 r2

 ,

r5 c13 r8 c14
c∗13 r6 c∗14 r9
r8 c14 r5 c13
c∗14 r9 c∗13 r6

 , r3

 , (5.64)

with eigenvalues of M+
2 :

Λ+,2
1−3 = Λ++

1−3 ,

Λ+,2
4 = 2(r4 − r7) ,

Λ+,2
5,6 = Λ++

4,5 ,

Λ+,2
7,8 = ±

√
4|c13 − c14|2 + (r5 − r6 − r8 + r9) 2 + r5 + r6 − r8 − r9

Λ+,2
9 = Λ++

6 . (5.65)

The matrix M+
0 . From M+

0 we get

1
2 M

+
0 = diag




r1 c∗1 c1 r7 r8
c1 r4 c3 c7 c14
c∗1 c∗3 r4 c∗7 c

∗
14

r7 c∗7 c7 r2 r9
r8 c

∗
14 c14 r9 r3

 ,
(
r5 c13
c∗13 r6

)
,

(
r5 c∗13
c13 r6

)

, (5.66)

with eigenvalues of M+
0 :

Λ+,0
1−5 = Eigenvalues of first matrix ,

Λ+,0
6,7 = ±

√
4|c13|2 + (r5 − r6) 2 + r5 + r6 ,

Λ+,0
8,9 = Λ+,0

6,7 . (5.67)

The matrix M0
2 . From M0

2 we get
1
2 M

0
2 = 1

2 M
++
2 , (5.68)

with eigenvalues of M0
2 :

Λ0,2
1−6 = Λ++

1−6 . (5.69)
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The matrix M0
0 . From M0

0 we get

1
2 M

0
0 ∼ diag


1
2M

+
0 ,


3r1 3c∗1 3c1 2r4 + r7 2r5 + r8
3c1 r4 + 2r7 3c3 3c7 2c13 + c14
3c∗1 3c∗3 r4 + 2r7 3c∗7 2c∗13 + c∗14

2r4 + r7 3c∗7 3c7 3r2 2r6 + r9
2r5 + r8 2c∗13 + c∗14 2c13 + c14 2r6 + r9 3r3

 ,
(
r5 + 2r8 c13 + 2c14
c∗13 + 2c∗14 r6 + 2r9

)
,

(
r5 + 2r8 c∗13 + 2c∗14
c13 + 2c14 r6 + 2r9

)}
. (5.70)

with eigenvalues of M0
0 :

Λ0,0
1−9 = Λ+,0

1−9 ,

Λ0,0
10−14 = Eigenvalues of second matrix ,

Λ0,0
15,16 = ±

√
4|c13 + 2c14|2 + (r5 − r6 + 2r8 − 2r9) 2 + r5 + r6 + 2r8 + 2r9 ,

Λ0,0
17−18 = Λ0,0

15−16 . (5.71)

5.8 The U(1)1 symmetry

By imposing G = U(1)1 with representation diag(eiα, e−iα, 1), with α 6= {0, π/2, 2π/3, π},
we get the quartic potential

VU(1)1 =
3∑
i=1

ri|φi|4 + 2r4(φ†1φ1)(φ†2φ2) + 2r5(φ†1φ1)(φ†3φ3) + 2r6(φ†2φ2)(φ†3φ3)

+ 2r7|φ†1φ2|2 + 2r8|φ†1φ3|2 + 2r9|φ†2φ3|2 + 2r11
[
(φ†1φ3)(φ†2φ3) + h.c.

]
, (5.72)

which can be easily achieved by setting from Z4 the constraint r10 → 0.
Thus, we get the following scattering matrices.

The matrix M++
2 . From M++

2 we get

1
2 M

++
2 = diag

{(
r4 + r7

√
2r11√

2r11 r3

)
, r1, r2, (r5 + r8), (r6 + r9)

}
, (5.73)

and thus we get the eigenvalues of M++
2 :

Λ++
1,2 = ±

√
8r2

11 + (−r3 + r4 + r7) 2 + r3 + r4 + r7 ,

Λ++
3 = 2r1 ,

Λ++
4 = 2r2 ,

Λ++
5 = 2(r5 + r8) ,

Λ++
6 = 2(r6 + r9) . (5.74)
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The matrix M+
2 . From M+

2 we get

1
2 M

+
2 = diag


 r4 r7 r11
r7 r4 r11
r11 r11 r3

 ,(r5 r8
r8 r5

)
,

(
r6 r9
r9 r6

)
, r1, r2

 , (5.75)

with eigenvalues of M+
2 :

Λ+,2
1,2 = Λ++

1,2 ,

Λ+,2
3 = 2 (r4 − r7) ,

Λ+,2
4,5 = 2(r5 ± r8) ,

Λ+,2
6,7 = 2(r6 ± r9) ,

Λ+,2
8,9 = Λ++

3,4 . (5.76)

The matrix M+
0 . From M+

0 we get

1
2 M

+
0 = diag


r1 r7 r8
r7 r2 r9
r8 r9 r3

 ,( r5 r11
r11 r6

)
,

(
r6 r11
r11 r5

)
, r4, r4

 , (5.77)

with eigenvalues of M+
0 :

Λ+,0
1−3 = Roots of:

x3 − 2(r1 + r2 + r3)x2 + 4(−r2
7 − r2

8 − r2
9 + r1r2 + r1r3 + r2r3)x

+ 8(r3r
2
7 − 2r8r9r7 + r2r

2
8 + r1r

2
9 − r1r2r3) = 0 ,

Λ+,0
4,5 = ±

√
4r2

11 + (r5 − r6) 2 + r5 + r6 ,

Λ+,0
6,7 = Λ+,0

4,5 ,

Λ+,0
8,9 = 2r4 . (5.78)

The matrix M0
2 . From M0

2 we get

1
2 M

0
2 = 1

2 M
++
2 , (5.79)

with eigenvalues of M0
2 :

Λ0,2
1−6 = Λ++

1−6 . (5.80)

The matrix M0
0 . From M0

0 we get

1
2 M

0
0 ∼ diag

1
2M

+
0 ,

 3r1 2r4 + r7 2r5 + r8
2r4 + r7 3r2 2r6 + r9
2r5 + r8 2r6 + r9 3r3

 ,(r5 + 2r8 3r11
3r11 r6 + 2r9

)
,

(
r6 + 2r9 3r11

3r11 r5 + 2r8

)
, (r4 + 2r7), (r4 + 2r7)

}
. (5.81)
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with eigenvalues of M0
0 :

Λ0,0
1−9 = Λ+,0

1−9 ,

Λ0,0
10−12 = Roots of:

x3 + 2 (−3r1 − 3r2 − 3r3)x2 + 4
(
− 4r2

4 − 4r7r4 − 4r2
5 − 4r2

6 − r2
7 − r2

8 − r2
9

+ 9r1r2 + 9r1r3 + 9r2r3 − 4r5r8 − 4r6r9
)
x+ 8

(
12r3r

2
4 + 12r2r

2
5 + 12r1r

2
6

+ 3r3r
2
7 + 3r2r

2
8 + 3r1r

2
9 − 27r1r2r3 − 16r4r5r6 + 12r3r4r7 − 8r5r6r7

+ 12r2r5r8 − 8r4r6r8 − 4r6r7r8 − 8r4r5r9 + 12r1r6r9 − 4r5r7r9 − 4r4r8r9

− 2r7r8r9
)

= 0 ,

Λ0,0
13,14 = ±

√
36r2

11 + (r5 − r6 + 2r8 − 2r9) 2 + r5 + r6 + 2 (r8 + r9) ,

Λ0,0
15,16 = Λ0,0

13,14 ,

Λ0,0
17,18 = 2(r4 + 2r7) . (5.82)

5.9 The U(1) × Z2 symmetry

By imposing G = U(1)×Z2 with representation diag(1,−1, eiα), with α 6= kπ/2, k ∈ Z, we
get the quartic potential8

VU(1)×Z2 =
3∑
i=1

ri|φi|4 + 2r4(φ†1φ1)(φ†2φ2) + 2r5(φ†1φ1)(φ†3φ3) + 2r6(φ†2φ2)(φ†3φ3)

+ 2r7|φ†1φ2|2 + 2r8|φ†1φ3|2 + 2r9|φ†2φ3|2 + r10
[
(φ†1φ2)2 + h.c.

]
, (5.83)

which can be easily achieved by setting from Z4 the constraint r11 → 0.
Thus, we get the following scattering matrices.

The matrix M++
2 . From M++

2 we get

1
2 M

++
2 = diag

{(
r1 r10
r10 r2

)
, (r4 + r7), (r5 + r8), (r6 + r9), r3

}
, (5.84)

and thus we get the eigenvalues of M++
2 :

Λ++
1,2 = ±

√
4r2

10 + (r1 − r2) 2 + r1 + r2 ,

Λ++
3 = 2(r4 + r7) ,

Λ++
4 = 2(r5 + r8) ,

Λ++
5 = 2(r6 + r9) ,

Λ++
6 = 2r3 . (5.85)

8In [28], the authors state that α 6= {0, π} but if α 6= kπ/2, k ∈ Z we also get a generator for Z4.
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The matrix M+
2 . From M+

2 we get

1
2 M

+
2 = diag

{(
r1 r10
r10 r2

)
,

(
r4 r7
r7 r4

)
,

(
r5 r8
r8 r5

)
,

(
r6 r9
r9 r6

)
, r3

}
, (5.86)

with eigenvalues of M+
2 :

Λ+,2
1,2 = Λ++

1,2 ,

Λ+,2
3,4 = 2(r4 ± r7) ,

Λ+,2
5,6 = 2(r5 ± r8) ,

Λ+,2
7,8 = 2(r6 ± r9) ,

Λ+,2
9 = Λ++

6 . (5.87)

The matrix M+
0 . From M+

0 we get

1
2 M

+
0 = diag


r1 r7 r8
r7 r2 r9
r8 r9 r3

 ,( r4 r10
r10 r4

)
, r5, r5, r6, r6

 , (5.88)

with eigenvalues of M+
0 :

Λ+,0
1−3 = Roots of:

x3 − 2(r1 + r2 + r3)x2 + 4(−r2
7 − r2

8 − r2
9 + r1r2 + r1r3 + r2r3)x

+ 8(r3r
2
7 − 2r8r9r7 + r2r

2
8 + r1r

2
9 − r1r2r3) = 0 ,

Λ+,0
4,5 = 2 (r4 ± r10) ,

Λ+,0
6,7 = 2r5 ,

Λ+,0
8,9 = 2r6 . (5.89)

The matrix M0
2 . From M0

2 we get

1
2 M

0
2 = 1

2 M
++
2 , (5.90)

with eigenvalues of M0
2 :

Λ0,2
1−6 = Λ++

1−6 . (5.91)

The matrix M0
0 . From M0

0 we get

1
2 M

0
0 ∼ diag

1
2M

+
0 ,

 3r1 2r4 + r7 2r5 + r8
2r4 + r7 3r2 2r6 + r9
2r5 + r8 2r6 + r9 3r3

 ,(r4 + 2r7 3r10
3r10 r4 + 2r7

)
,

(r5 + 2r8), (r5 + 2r8), (r6 + 2r9), (r6 + 2r9)
}
. (5.92)
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with eigenvalues of M0
0 :

Λ0,0
1−9 = Λ+,0

1−9 ,

Λ0,0
10−12 = Roots of:

x3 + 2 (−3r1 − 3r2 − 3r3)x2 + 4
(
− 4r2

4 − 4r7r4 − 4r2
5 − 4r2

6 − r2
7 − r2

8 − r2
9

+ 9r1r2 + 9r1r3 + 9r2r3 − 4r5r8 − 4r6r9
)
x+ 8

(
12r3r

2
4 + 12r2r

2
5 + 12r1r

2
6

+ 3r3r
2
7 + 3r2r

2
8 + 3r1r

2
9 − 27r1r2r3 − 16r4r5r6 + 12r3r4r7 − 8r5r6r7

+ 12r2r5r8 − 8r4r6r8 − 4r6r7r8 − 8r4r5r9 + 12r1r6r9 − 4r5r7r9 − 4r4r8r9

− 2r7r8r9
)

= 0 ,

Λ0,0
13,14 = 2 (±3r10 + r4 + 2r7) ,

Λ0,0
15,16 = 2(r5 + 2r8) ,

Λ0,0
17,18 = 2(r6 + 2r9) . (5.93)

5.10 The Z2 × Z2 symmetry

By imposing G = Z2×Z2 we get the quartic potential of the model originally proposed by
Weinberg [31],

VZ2×Z2 =
3∑
i=1

ri|φi|4 + 2r4(φ†1φ1)(φ†2φ2) + 2r5(φ†1φ1)(φ†3φ3) + 2r6(φ†2φ2)(φ†3φ3)

+ 2r7|φ†1φ2|2 + 2r8|φ†1φ3|2 + 2r9|φ†2φ3|2 +
[
c3(φ†1φ2)2 + c5(φ†1φ3)2

+ c17(φ†2φ3)2 + h.c.
]
, (5.94)

which can be easily achieved by setting from the Z2 symmetric 3HDM potential the con-
straints {c1, c7, c11, c13, c14} → 0.

Thus, we get the following scattering matrices which reproduce in the limit of real
coefficients the conditions (91)–(100) of ref. [27].

The matrix M++
2 . From M++

2 we get

1
2 M

++
2 = diag


r1 c3 c5
c∗3 r2 c17
c∗5 c

∗
17 r3

 , (r4 + r7), (r5 + r8), (r6 + r9)

 , (5.95)

and thus we get the eigenvalues of M++
2 :

Λ++
1−3 = Roots of:

x3 + 2 (−r1 − r2 − r3)x2 + 4
(
−|c3|2 − |c5|2 − |c17|2 + r1r2 + r1r3 + r2r3

)
x

+ 8
(
r3|c3|2 + r2|c5|2 + r1|c17|2 − 2Re(c3c

∗
5c17)− r1r2r3

)
= 0 ,

Λ++
4 = 2(r4 + r7) ,

Λ++
5 = 2(r5 + r8) ,

Λ++
6 = 2(r6 + r9) . (5.96)
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The matrix M+
2 . From M+

2 we get

1
2 M

+
2 = diag


r1 c3 c5
c∗3 r2 c17
c∗5 c

∗
17 r3

 ,(r4 r7
r7 r4

)
,

(
r5 r8
r8 r5

)
,

(
r6 r9
r9 r6

) , (5.97)

with eigenvalues of M+
2 :

Λ+,2
1−3 = Λ++

1−3 ,

Λ+,2
4,5 = 2(r4 ± r7) ,

Λ+,2
6,7 = 2(r5 ± r8) ,

Λ+,2
8,9 = 2(r6 ± r9) . (5.98)

The matrix M+
0 . From M+

0 we get

1
2 M

+
0 = diag


r1 r7 r8
r7 r2 r9
r8 r9 r3

 ,(r4 c3
c∗3 r4

)
,

(
r5 c5
c∗5 r5

)
,

(
r6 c17
c∗17 r6

) , (5.99)

with eigenvalues of M+
0 :

Λ+,0
1−3 = Roots of:

x3 − 2(r1 + r2 + r3)x2 + 4(−r2
7 − r2

8 − r2
9 + r1r2 + r1r3 + r2r3)x

+ 8
(
r3r

2
7 − 2r8r9r7 + r2r

2
8 + r1r

2
9 − r1r2r3

)
= 0 ,

Λ+,0
4,5 = 2

(
r4 ±

√
c3
√
c∗3

)
,

Λ+,0
6,7 = 2

(
r5 ±

√
c5
√
c∗5

)
,

Λ+,0
8,9 = 2

(
r6 ±

√
c17
√
c∗17

)
. (5.100)

The matrix M0
2 . From M0

2 we get

1
2 M

0
2 = 1

2 M
++
2 , (5.101)

with eigenvalues of M0
2 :

Λ0,2
1−6 = Λ++

1−6 . (5.102)

The matrix M0
0 . From M0

0 we get

1
2 M

0
0 ∼ diag

1
2M

+
0 ,

 3r1 2r4 + r7 2r5 + r8
2r4 + r7 3r2 2r6 + r9
2r5 + r8 2r6 + r9 3r3

 ,(r4 + 2r7 3c3
3c∗3 r4 + 2r7

)
,

(
r5 + 2r8 3c5

3c∗5 r5 + 2r8

)
,

(
r6 + 2r9 3c17

3c∗17 r6 + 2r9

)}
. (5.103)
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with eigenvalues of M0
0 :

Λ0,0
1−9 = Λ+,0

1−9 ,

Λ0,0
10−12 = Roots of:

x3 + 2 (−3r1 − 3r2 − 3r3)x2 + 4
(
− 4r2

4 − 4r7r4 − 4r2
5 − 4r2

6 − r2
7 − r2

8 − r2
9

+ 9r1r2 + 9r1r3 + 9r2r3 − 4r5r8 − 4r6r9
)
x+ 8

(
12r3r

2
4 + 12r2r

2
5 + 12r1r

2
6

+ 3r3r
2
7 + 3r2r

2
8 + 3r1r

2
9 − 27r1r2r3 − 16r4r5r6 + 12r3r4r7 − 8r5r6r7

+ 12r2r5r8 − 8r4r6r8 − 4r6r7r8 − 8r4r5r9 + 12r1r6r9 − 4r5r7r9 − 4r4r8r9

− 2r7r8r9
)

= 0 ,

Λ0,0
13,14 = 2

(
±3√c3

√
c∗3 + r4 + 2r7

)
,

Λ0,0
15,16 = 2

(
±3√c5

√
c∗5 + r5 + 2r8

)
,

Λ0,0
17,18 = 2

(
−3√c17

√
c∗17 + r6 + 2r9

)
. (5.104)

5.11 The Z2 × Z2 × Z(CP)
2 symmetry

By imposing G = Z2 × Z2 × Z(CP)
2 , the so called Branco model [32], we get the quartic

potential

VZ2×Z2×Z(CP)
2

=
3∑
i=1

ri|φi|4 + 2r4(φ†1φ1)(φ†2φ2) + 2r5(φ†1φ1)(φ†3φ3) + 2r6(φ†2φ2)(φ†3φ3)

+ 2r7|φ†1φ2|2 + 2r8|φ†1φ3|2 + 2r9|φ†2φ3|2 + r10
[
(φ†1φ2)2 + h.c.

]
+ r11

[
(φ†1φ3)2 + h.c.

]
+ r12

[
(φ†2φ3)2 + h.c.

]
, (5.105)

which can be easily achieved by setting from Z2 × Z2 the constraints {c3, c5, c17} ∈ R.
Thus, we get the following scattering matrices which reproduce the conditions (91)–

(100) of refs. [27, 30].

The matrix M++
2 . From M++

2 we get

1
2 M

++
2 = diag


 r1 r10 r11
r10 r2 r12
r11 r12 r3

 , (r4 + r7), (r5 + r8), (r6 + r9)

 , (5.106)

and thus we get the eigenvalues of M++
2 :

Λ++
1−3 = Roots of:

x3 + 2 (−r1 − r2 − r3)x2 + 4
(
−r2

10 − r2
11 − r2

12 + r1r2 + r1r3 + r2r3
)
x

+ 8
(
r3r

2
10 + r2r

2
11 + r1r

2
12 − 2r10r11r12 − r1r2r3

)
= 0 ,

Λ++
4 = 2(r4 + r7) ,

Λ++
5 = 2(r5 + r8) ,

Λ++
6 = 2(r6 + r9) . (5.107)
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The matrix M+
2 . From M+

2 we get

1
2 M

+
2 = diag


 r1 r10 r11
r10 r2 r12
r11 r12 r3

 ,(r4 r7
r7 r4

)
,

(
r5 r8
r8 r5

)
,

(
r6 r9
r9 r6

) , (5.108)

with eigenvalues of M+
2 :

Λ+,2
1−3 = Λ++

1−3 ,

Λ+,2
4,5 = 2(r4 ± r7) ,

Λ+,2
6,7 = 2(r5 ± r8) ,

Λ+,2
8,9 = 2(r6 ± r9) . (5.109)

The matrix M+
0 . From M+

0 we get

1
2 M

+
0 = diag


r1 r7 r8
r7 r2 r9
r8 r9 r3

 ,( r4 r10
r10 r4

)
,

(
r5 r11
r11 r5

)
,

(
r6 r12
r12 r6

) , (5.110)

with eigenvalues of M+
0 :

Λ+,0
1−3 = Roots of:

x3 − 2(r1 + r2 + r3)x2 + 4
(
−r2

7 − r2
8 − r2

9 + r1r2 + r1r3 + r2r3
)
x

+ 8
(
r3r

2
7 − 2r8r9r7 + r2r

2
8 + r1r

2
9 − r1r2r3

)
= 0 ,

Λ+,0
4,5 = 2 (r4 ± r10) ,

Λ+,0
6,7 = 2 (r5 ± r11) ,

Λ+,0
8,9 = 2 (r6 ± r12) . (5.111)

The matrix M0
2 . From M0

2 we get

1
2 M

0
2 = 1

2 M
++
2 , (5.112)

with eigenvalues of M0
2 :

Λ0,2
1−6 = Λ++

1−6 . (5.113)

The matrix M0
0 . From M0

0 we get

1
2 M

0
0 ∼ diag

1
2M

+
0 ,

 3r1 2r4 + r7 2r5 + r8
2r4 + r7 3r2 2r6 + r9
2r5 + r8 2r6 + r9 3r3

 ,(r4 + 2r7 3r10
3r10 r4 + 2r7

)
,

(
r5 + 2r8 3r11

3r11 r5 + 2r8

)
,

(
r6 + 2r9 3r12

3r12 r6 + 2r9

)}
. (5.114)
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with eigenvalues of M0
0 :

Λ0,0
1−9 = Λ+,0

1−9 ,

Λ0,0
10−12 = Roots of:

x3 + 2 (−3r1 − 3r2 − 3r3)x2 + 4
(
− 4r2

4 − 4r7r4 − 4r2
5 − 4r2

6 − r2
7 − r2

8 − r2
9

+ 9r1r2 + 9r1r3 + 9r2r3 − 4r5r8 − 4r6r9
)
x+ 8

(
12r3r

2
4 + 12r2r

2
5 + 12r1r

2
6

+ 3r3r
2
7 + 3r2r

2
8 + 3r1r

2
9 − 27r1r2r3 − 16r4r5r6 + 12r3r4r7 − 8r5r6r7

+ 12r2r5r8 − 8r4r6r8 − 4r6r7r8 − 8r4r5r9 + 12r1r6r9 − 4r5r7r9 − 4r4r8r9

− 2r7r8r9
)

= 0 ,

Λ0,0
13,14 = 2 (r4 + 2r7 ± 3r10) ,

Λ0,0
15,16 = 2 (r5 + 2r8 ± 3r11) ,

Λ0,0
17,18 = 2 (r6 + 2r9 ± 3r12) . (5.115)

5.12 The U(1) × U(1) symmetry

By imposing G = U(1) × U(1) with representation diag(1, eiα, eiβ), with α 6= {0, π} and
β 6= {0, π,±α}, we get the quartic potential

VU(1)×U(1) =
3∑
i=1

ri|φi|4 + 2r4(φ†1φ1)(φ†2φ2) + 2r5(φ†1φ1)(φ†3φ3) + 2r6(φ†2φ2)(φ†3φ3)

+ 2r7|φ†1φ2|2 + 2r8|φ†1φ3|2 + 2r9|φ†2φ3|2 , (5.116)

which can be easily achieved by setting from U(1)1 the constraint c11 → 0.

The matrix M++
2 . From M++

2 we get

1
2 M

++
2 = diag {r1, r2, r3, (r4 + r7), (r5 + r8), (r6 + r9)} , (5.117)

and thus we get the eigenvalues of M++
2 :

Λ++
1 = 2r1 ,

Λ++
2 = 2r2 ,

Λ++
3 = 2r3 ,

Λ++
4 = 2(r4 + r7) ,

Λ++
5 = 2(r5 + r8) ,

Λ++
6 = 2(r6 + r9) . (5.118)

The matrix M+
2 . From M+

2 we get

1
2 M

+
2 = diag

{(
r4 r7
r7 r4

)
,

(
r5 r8
r8 r5

)
,

(
r6 r9
r9 r6

)
, r1, r2, r3

}
, (5.119)
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with eigenvalues of M+
2 :

Λ+,2
1,2 = 2(r4 ± r7) ,

Λ+,2
3,4 = 2(r5 ± r8) ,

Λ+,2
5,6 = 2(r6 ± r9) ,

Λ+,2
7 = Λ++

1 ,

Λ+,2
8 = Λ++

2 ,

Λ+,2
9 = Λ++

3 . (5.120)

The matrix M+
0 . From M+

0 we get

1
2 M

+
0 = diag


r1 r7 r8
r7 r2 r9
r8 r9 r3

 , r4, r4, r5, r5, r6, r6

 , (5.121)

with eigenvalues of M+
0 :

Λ+,0
1−3 = Roots of:

x3 − 2(r1 + r2 + r3)x2 + 4
(
−r2

7 − r2
8 − r2

9 + r1r2 + r1r3 + r2r3
)
x

+ 8
(
r3r

2
7 − 2r8r9r7 + r2r

2
8 + r1r

2
9 − r1r2r3

)
= 0 ,

Λ+,0
4,5 = 2r4 ,

Λ+,0
6,7 = 2r5 ,

Λ+,0
8,9 = 2r6 . (5.122)

The matrix M0
2 . From M0

2 we get

1
2 M

0
2 = 1

2 M
++
2 , (5.123)

with eigenvalues of M0
2 :

Λ0,2
1−6 = Λ++

1−6 . (5.124)

The matrix M0
0 . From M0

0 we get

1
2 M

0
0 ∼ diag

1
2M

+
0 ,

 3r1 2r4 + r7 2r5 + r8
2r4 + r7 3r2 2r6 + r9
2r5 + r8 2r6 + r9 3r3

 , (r4 + 2r7), (r4 + 2r7),

(r5 + 2r8), (r5 + 2r8), (r6 + 2r9), (r6 + 2r9)
}
. (5.125)
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with eigenvalues of M0
0 :

Λ0,0
1−9 = Λ+,0

1−9 ,

Λ0,0
10−12 = Roots of:

x3 + 2 (−3r1 − 3r2 − 3r3)x2 + 4
(
− 4r2

4 − 4r7r4 − 4r2
5 − 4r2

6 − r2
7 − r2

8 − r2
9

+ 9r1r2 + 9r1r3 + 9r2r3 − 4r5r8 − 4r6r9
)
x+ 8

(
12r3r

2
4 + 12r2r

2
5 + 12r1r

2
6

+ 3r3r
2
7 + 3r2r

2
8 + 3r1r

2
9 − 27r1r2r3 − 16r4r5r6 + 12r3r4r7 − 8r5r6r7

+ 12r2r5r8 − 8r4r6r8 − 4r6r7r8 − 8r4r5r9 + 12r1r6r9 − 4r5r7r9 − 4r4r8r9

− 2r7r8r9
)

= 0 ,

Λ0,0
13,14 = 2(r4 + 2r7) ,

Λ0,0
15,16 = 2(r5 + 2r8) ,

Λ0,0
17,18 = 2(r6 + 2r9) . (5.126)

5.13 The U(2) symmetry

By imposing G = U(2) we get the quartic potential

VU(2) =r1
[
(φ†1φ1) + (φ†2φ2)

]2
+ r3|φ3|4 + 2r5(φ†1φ1 + φ†2φ2)(φ†3φ3)

+ 2r7
[
|φ†1φ2|2 − (φ†1φ1)(φ†2φ2)

]
+ 2r8

[
|φ†1φ3|2 + |φ†2φ3|2

]
, (5.127)

with the following scattering matrices.

The matrix M++
2 . From M++

2 we get

1
2 M

++
2 = diag {r1, r1, r1, r3, (r5 + r8), (r5 + r8)} , (5.128)

and thus we get the eigenvalues of M++
2 :

Λ++
1,2,3 = 2r1 ,

Λ++
4 = 2r3 ,

Λ++
5,6 = 2(r5 + r8) . (5.129)

The matrix M+
2 . From M+

2 we get

1
2 M

+
2 = diag

{(
r1 − r7 r7
r7 r1 − r7

)
,

(
r5 r8
r8 r5

)
,

(
r5 r8
r8 r5

)
, r1, r1, r3

}
, (5.130)

with eigenvalues of M+
2 :

Λ+,2
1 = 2(r1 − 2r7) ,

Λ+,2
2−5 = 2(r5 ± r8) ,

Λ+,2
6−8 = 2r1 ,

Λ+,2
9 = 2r3 . (5.131)
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The matrix M+
0 . From M+

0 we get

1
2 M

+
0 = diag


r1 r7 r8
r7 r1 r8
r8 r8 r3

 , (r1 − r7), (r1 − r7), r5, r5, r5, r5

 , (5.132)

with eigenvalues of M+
0 :

Λ+,0
1,2 = ±

√
r2

1 − 2 (r3 − r7) r1 + r2
3 + r2

7 + 8r2
8 − 2r3r7 + r1 + r3 + r7 ,

Λ+,0
3−5 = 2(r1 − r7) ,

Λ+,0
6−9 = 2r5 . (5.133)

The matrix M0
2 . From M0

2 we get

1
2 M

0
2 = 1

2 M
++
2 , (5.134)

with eigenvalues of M0
2 :

Λ0,2
1−6 = Λ++

1−6 . (5.135)

The matrix M0
0 . From M0

0 we get

1
2 M

0
0 ∼ diag

1
2M

+
0 ,

 3r1 2r1 − r7 2r5 + r8
2r1 − r7 3r1 2r5 + r8
2r5 + r8 2r5 + r8 3r3

 , (r1 + r7), (r1 + r7),

(r5 + 2r8), (r5 + 2r8), (r5 + 2r8), (r5 + 2r8)
}
. (5.136)

with eigenvalues of M0
0 :

Λ0,0
1−9 = Λ+,0

1−9 ,

Λ0,0
10,11 = ±

√
(−5r1 − 3r3 + r7) 2+4

(
8r2

5 + 8r8r5 + 2r2
8 − 15r1r3 + 3r3r7

)
+ 5r1 + 3r3 − r7,

Λ0,0
12−14 = 2(r1 + r7) ,

Λ0,0
15−18 = 2(r5 + 2r8) . (5.137)

5.14 The O(2) symmetry

By imposing G = O(2) we get the quartic potential

VO(2) =r1
[
(φ†1φ1)2 + (φ†2φ2)2

]
+ r3|φ3|4 + 2r4(φ†1φ1)(φ†2φ2)

+ 2r5(φ†1φ1 + φ†2φ2)(φ†3φ3) + 2r7|φ†1φ2|2

+ 2r8
[
|φ†1φ3|2 + |φ†2φ3|2

]
+ 2r10

[
(φ†1φ3)(φ†2φ3) + h.c.

]
, (5.138)

with the following scattering matrices.
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The matrix M++
2 . From M++

2 we get

1
2 M

++
2 = diag

{(
r4 + r7

√
2r10√

2r10 r3

)
, (r5 + r8), (r5 + r8), r1, r1

}
, (5.139)

and thus we get the eigenvalues of M++
2 :

Λ++
1,2 = ±

√
8r2

10 + (−r3 + r4 + r7) 2 + r3 + r4 + r7 ,

Λ++
3,4 = 2(r5 + r8) ,

Λ++
5,6 = 2r1 . (5.140)

The matrix M+
2 . From M+

2 we get

1
2 M

+
2 = diag


 r4 r7 r10
r7 r4 r10
r10 r10 r3

 ,(r5 r8
r8 r5

)
,

(
r5 r8
r8 r5

)
, r1, r1

 , (5.141)

with eigenvalues of M+
2 :

Λ+,2
1,2 = ±

√
8r2

10 + (−r3 + r4 + r7) 2 + r3 + r4 + r7 ,

Λ+,2
3 = 2(r4 − r7) ,

Λ+,2
4−7 = 2(r5 ± r8) ,

Λ+,2
8,9 = 2r1 . (5.142)

The matrix M+
0 . From M+

0 we get

1
2 M

+
0 = diag


r1 r7 r8
r7 r1 r8
r8 r8 r3

 ,( r5 r10
r10 r5

)
,

(
r5 r10
r10 r5

)
, r4, r4

 , (5.143)

with eigenvalues of M+
0 :

Λ+,0
1,2 = ±

√
(r1 − r3 + r7) 2 + 8r2

8 + r1 + r3 + r7 ,

Λ+,0
3 = 2(r1 − r7) ,

Λ+,0
4−7 = 2 (r5 ± r10) ,

Λ+,0
8,9 = 2r4 . (5.144)

The matrix M0
2 . From M0

2 we get

1
2 M

0
2 = 1

2 M
++
2 , (5.145)

with eigenvalues of M0
2 :

Λ0,2
1−6 = Λ++

1−6 . (5.146)

– 34 –



J
H
E
P
0
8
(
2
0
2
2
)
2
7
3

The matrix M0
0 . From M0

0 we get

1
2 M

0
0 ∼ diag

1
2M

+
0 ,

 3r1 2r4 + r7 2r5 + r8
r4 + r7 3r1 2r5 + r8
2r5 + r8 2r5 + r8 3r3

 ,(r5 + 2r8 3r10
3r10 r5 + 2r8

)
,

(
r5 + 2r8 3r10

3r10 r5 + 2r8

)
, (r4 + 2r7), (r4 + 2r7)

}
. (5.147)

with eigenvalues of M0
0 :

Λ0,0
1−9 = Λ+,0

1−9 ,

Λ0,0
10,11 = ±

√
8 (2r5 + r8) 2 + (3r1 − 3r3 + 2r4 + r7) 2

+ 3r1 + 3r3 + 2r4 + r7 ,

Λ0,0
12 = 6r1 − 2 (2r4 + r7) ,

Λ0,0
13−16 = 2 (r5 + 2r8 ± 3r10) ,

Λ0,0
17,18 = 2(r4 + 2r7) . (5.148)

5.15 The D4 symmetry

By imposing G = D4 we get the quartic potential

VD4 =r1
[
(φ†1φ1)2 + (φ†2φ2)2

]
+ r3|φ3|4 + 2r4(φ†1φ1)(φ†2φ2)

+ 2r5(φ†1φ1 + φ†2φ2)(φ†3φ3) + 2r7|φ†1φ2|2

+ 2r8
[
|φ†1φ3|2 + |φ†2φ3|2

]
+ r10

[
(φ†1φ2)2 + h.c.

]
+ 2r11

[
(φ†1φ3)(φ†2φ3) + h.c.

]
, (5.149)

which can be easily achieved by setting from Z4 the constraints r2 → r1, r6 → r5, r9 → r8.
Thus, we get the following scattering matrices.

The matrix M++
2 . From M++

2 we get

1
2 M

++
2 = diag

{(
r4 + r7

√
2r11√

2r11 r3

)
,

(
r1 r10
r10 r1

)
, (r5 + r8), (r5 + r8)

}
, (5.150)

and thus we get the eigenvalues of M++
2 :

Λ++
1,2 = ±

√
8r2

11 + (−r3 + r4 + r7) 2 + r3 + r4 + r7 ,

Λ++
3,4 = 2 (r1 ± r10) ,

Λ++
5,6 = 2(r5 + r8) . (5.151)

The matrix M+
2 . From M+

2 we get

1
2 M

+
2 = diag


 r4 r7 r11
r7 r4 r11
r11 r11 r3

 ,( r1 r10
r10 r1

)
,

(
r5 r8
r8 r5

)
,

(
r5 r8
r8 r5

) , (5.152)
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with eigenvalues of M+
2 :

Λ+,2
1,2 = Λ++

1,2 ,

Λ+,2
3 = 2(r4 − r7) ,

Λ+,2
4,5 = Λ++

3,4 ,

Λ+,2
6−9 = 2(r5 ± r8) . (5.153)

The matrix M+
0 . From M+

0 we get

1
2 M

+
0 = diag


r1 r7 r8
r7 r1 r8
r8 r8 r3

 ,( r4 r10
r10 r4

)
,

(
r5 r11
r11 r5

)
,

(
r5 r11
r11 r5

) , (5.154)

with eigenvalues of M+
0 :

Λ+,0
1,2 = ±

√
8r2

8 + (r1 − r3 + r7) 2 + r1 + r3 + r7 ,

Λ+,0
3 = 2(r1 − r7) ,

Λ+,0
4,5 = 2 (r4 ± r10) ,

Λ+,0
6−9 = 2 (r5 ± r11) . (5.155)

The matrix M0
2 . From M0

2 we get

1
2 M

0
2 = 1

2 M
++
2 , (5.156)

with eigenvalues of M0
2 :

Λ0,2
1−6 = Λ++

1−6 . (5.157)

The matrix M0
0 . From M0

0 we get

1
2 M

0
0 ∼ diag

1
2M

+
0 ,

 3r1 2r4 + r7 2r5 + r8
2r4 + r7 3r1 2r5 + r8
2r5 + r8 2r5 + r8 3r3

 ,(r4 + 2r7 3r10
3r10 r4 + 2r7

)
,

(
r5 + 2r8 3r11

3r11 r5 + 2r8

)
,

(
r5 + 2r8 3r11

3r11 r5 + 2r8

)}
, (5.158)

with eigenvalues of M0
0 :

Λ0,0
1−9 = Λ+,0

1−9 ,

Λ0,0
10,11 = ±

√
(3r1 − 3r3 + 2r4 + r7) 2 + 8 (2r5 + r8) 2 + 3r1 + 3r3 + 2r4 + r7, ,

Λ0,0
12 = 6r1 − 2 (2r4 + r7) ,

Λ0,0
13,14 = 2 (±3r10 + r4 + 2r7) ,

Λ0,0
15−18 = 2 (±3r11 + r5 + 2r8) . (5.159)
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5.16 The S3 symmetry

By imposing G = S3 we get the quartic potential

VS3 =r1
[
(φ†1φ1)2 + (φ†2φ2)2

]
+ r3|φ3|4 + 2r4(φ†1φ1)(φ†2φ2)

+ 2r5(φ†1φ1 + φ†2φ2)(φ†3φ3) + 2r7|φ†1φ2|2 + 2r8
[
|φ†1φ3|2 + |φ†2φ3|2

]
+
[
2c11(φ†1φ3)(φ†2φ3) + 2c12

[
(φ†1φ2)(φ†3φ2) + (φ†2φ1)(φ†3φ1)

]
+ h.c.

]
, (5.160)

which can be easily achieved by setting from Z3 the constraints r2 → r1, r6 → r5, r9 →
r8, c4 → c∗12.

Thus, we get the following scattering matrices which reproduce in the limit of real
coefficients the conditions (37a)–(37l) of ref. [25].

The matrix M++
2 . From M++

2 we get

1
2 M

++
2 = diag

{(
r1

√
2c12√

2c∗12 r5 + r8

)
,

(
r5 + r8

√
2c12√

2c∗12 r1

)
,

(
r4 + r7

√
2c11√

2c∗11 r3

)}
, (5.161)

and thus we get the eigenvalues of M++
2 :

Λ++
1,2 = ±

√
8|c12|2 + (−r1 + r5 + r8) 2 + r1 + r5 + r8 ,

Λ++
3,4 = Λ++

1,2 ,

Λ++
5,6 = ±

√
8|c11|2 + (−r3 + r4 + r7) 2 + r3 + r4 + r7 . (5.162)

The matrix M+
2 . From M+

2 we get

1
2 M

+
2 = diag


 r1 c∗12 c

∗
12

c12 r5 r8
c12 r8 r5

 ,
 r5 c12 r8
c∗12 r1 c∗12
r8 c12 r5

 ,
 r4 r7 c11
r7 r4 c11
c∗11 c

∗
11 r3


 , (5.163)

with eigenvalues of M+
2 :

Λ+,2
1 = 2(r5 − r8) ,

Λ+,2
2,3 = Λ++

1,2 ,

Λ+,2
4−6 = Λ+,2

1−3 ,

Λ+,2
7 = 2(r4 − r7)

Λ+,2
8,9 = Λ++

5,6 . (5.164)

The matrix M+
0 . From M+

0 we get

1
2 M

+
0 = diag


r1 r7 r8
r7 r1 r8
r8 r8 r3

 ,
 r4 c12 c

∗
12

c∗12 r5 c11
c12 c

∗
11 r5

 ,
 r5 c∗12 c11
c12 r4 c∗12
c∗11 c12 r5


 , (5.165)
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with eigenvalues of M+
0 :

Λ+,0
1 = 2 (r1 − r7) ,

Λ+,0
2,3 = ±

√
(r1 − r3 + r7) 2 + 8r2

8 + r1 + r3 + r7 ,

Λ+,0
4−6 = Roots of:

x3 − 2(r4 + 2r5)x2 + 4(−2|c12|2 − |c11|2 + 2r4r5 + r2
5)x

+ 8
(
2r5|c12|2 + r4|c11|2 − 2<(c11c

2
12)− r4r

2
5

)
= 0 ,

Λ+,0
7−9 = Λ+,0

4−6 . (5.166)

The matrix M0
2 . From M0

2 we get

1
2 M

0
2 = 1

2 M
++
2 , (5.167)

with eigenvalues of M0
2 :

Λ0,2
1−6 = Λ++

1−6 . (5.168)

The matrix M0
0 . From M0

0 we get

1
2 M

0
0 ∼ diag

1
2M

+
0 ,

 3r1 2r4 + r7 2r5 + r8
2r4 + r7 3r1 2r5 + r8
2r5 + r8 2r5 + r8 3r3

 ,
r4 + 2r7 3c12 3c∗12

3c∗12 r5 + 2r8 3c11
3c12 3c∗11 r5 + 2r8

 ,
r5 + 2r8 3c∗12 3c11

3c12 r4 + 2r7 3c∗12
3c∗11 3c12 r5 + 2r8


 , (5.169)

with eigenvalues of M0
0 :

Λ0,0
1−9 = Λ+,0

1−9 ,

Λ0,0
10 = 6r1 − 2 (2r4 + r7) ,

Λ0,0
11,12 = ±

√
(3r1 − 3r3 + 2r4 + r7) 2 + 8 (2r5 + r8) 2 + 3r1 + 3r3 + 2r4 + r7 ,

Λ0,0
13−15 = Roots of:

x3 + 2 (−r4 − 2r5 − 2r7 − 4r8)x2 + 4
(
−18|c12|2 − 9|c11|2

+r2
5 + 2r4r5 + 4r7r5 + 4r8r5 + 4r2

8 + 4r4r8 + 8r7r8
)
x

+ 8
[
(r4 + 2r7)

(
9|c11|2 − (r5 + 2r8) 2

)
−54<(c11c

2
12) + (r5 + 2r8) |c12|2

]
= 0 ,

Λ0,0
16−18 = Λ0,0

13−15 . (5.170)
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5.17 The S3 × Z(CP)
2 symmetry

By imposing G = S3 × Z(CP)
2 we get the quartic potential

V
S3×Z(CP)

2
=r1

[
(φ†1φ1)2 + (φ†2φ2)2

]
+ r3|φ3|4 + 2r4(φ†1φ1)(φ†2φ2)

+ 2r5(φ†1φ1 + φ†2φ2)(φ†3φ3) + 2r7|φ†1φ2|2 + 2r8
[
|φ†1φ3|2 + |φ†2φ3|2

]
+ 2r10

[
(φ†1φ3)(φ†2φ3) + h.c.

]
+ 2r11

[
(φ†1φ2)(φ†3φ2) + (φ†2φ1)(φ†3φ1) + h.c.

]
,

(5.171)

which can be easily achieved by setting from S3 the constraints {c11, c
∗
12} ∈ R.

Thus, we get the following scattering matrices which reproduce the conditions (37a)–
(37l) of ref. [25].

The matrix M++
2 . From M++

2 we get

1
2 M

++
2 = diag

{(
r1

√
2r11√

2r11 r5 + r8

)
,

(
r5 + r8

√
2r11√

2r11 r1

)
,

(
r4 + r7

√
2r10√

2r10 r3

)}
, (5.172)

and thus we get the eigenvalues of M++
2 :

Λ++
1,2 = ±

√
8r2

11 + (−r1 + r5 + r8) 2 + r1 + r5 + r8 ,

Λ++
3,4 = Λ++

1,2 ,

Λ++
5,6 = ±

√
8r2

10 + (−r3 + r4 + r7) 2 + r3 + r4 + r7 . (5.173)

The matrix M+
2 . From M+

2 we get

1
2 M

+
2 = diag


 r1 r11 r11
r11 r5 r8
r11 r8 r5

 ,
 r5 r11 r8
r11 r1 r11
r8 r11 r5

 ,
 r4 r7 r10
r7 r4 r10
r10 r10 r3


 , (5.174)

with eigenvalues of M+
2 :

Λ+,2
1 = 2(r5 − r8) ,

Λ+,2
2,3 = Λ++

1,2 ,

Λ+,2
4−6 = Λ+,2

1−3 ,

Λ+,2
7 = 2(r4 − r7)

Λ+,2
8,9 = Λ++

5,6 . (5.175)

The matrix M+
0 . From M+

0 we get

1
2 M

+
0 = diag


r1 r7 r8
r7 r1 r8
r8 r8 r3

 ,
 r4 r11 r11
r11 r5 r10
r11 r10 r5

 ,
 r5 r11 r10
r11 r4 r11
r10 r11 r5


 , (5.176)
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with eigenvalues of M+
0 :

Λ+,0
1 = 2 (r1 − r7) ,

Λ+,0
2,3 = ±

√
(r1 − r3 + r7) 2 + 8r2

8 + r1 + r3 + r7 ,

Λ+,0
4−6 = ±

√
(−r4 + r5 + r10) 2 + 8r2

11 + r4 + r5 + r10 ,

Λ+,0
7−9 = Λ+,0

4−6 . (5.177)

The matrix M0
2 . From M0

2 we get
1
2 M

0
2 = 1

2 M
++
2 , (5.178)

with eigenvalues of M0
2 :

Λ0,2
1−6 = Λ++

1−6 . (5.179)

The matrix M0
0 . From M0

0 we get

1
2 M

0
0 ∼ diag

1
2M

+
0 ,

 3r1 2r4 + r7 2r5 + r8
2r4 + r7 3r1 2r5 + r8
2r5 + r8 2r5 + r8 3r3

 ,
r4 + 2r7 3r11 3r11

3r11 r5 + 2r8 3r10
3r11 3r10 r5 + 2r8

 ,
r5 + 2r8 3r11 3r10

3r11 r4 + 2r7 3r11
3r10 3r11 r5 + 2r8


 , (5.180)

with eigenvalues of M0
0 :

Λ0,0
1−9 = Λ+,0

1−9 ,

Λ0,0
10 = 6r1 − 2 (2r4 + r7) ,

Λ0,0
11,12 = ±

√
(3r1 − 3r3 + 2r4 + r7) 2 + 8 (2r5 + r8) 2 + 3r1 + 3r3 + 2r4 + r7 ,

Λ0,0
13,14 = ±

√
(−r4 + r5 − 2r7 + 2r8 + 3r10) 2 + 72r2

11 + r4 + r5 + 2r7 + 2r8 + 3r10 ,

Λ0,0
15 = 2 (r5 + 2r8 − 3r10) ,

Λ0,0
16−18 = Λ0,0

13−15 . (5.181)

5.18 The CP 4 symmetry

By imposing G = CP4 we get the quartic potential

VCP4 =r1(φ†1φ1)2 + r2
[
(φ†2φ2)2 + (φ†3φ3)2

]
+ 2r4(φ†1φ1)(φ†2φ2 + φ†3φ3)

+ 2r6(φ†2φ2)(φ†3φ3) + 2r7
[
|φ†1φ2|2 + |φ†1φ3|2

]
+ 2r9|φ†2φ3|2

+ 2r10
[
(φ†2φ1)(φ†3φ1) + h.c.

]
+ r11

[
(φ†1φ2)2 − (φ†1φ3)2 + h.c.

]
+
[
c17(φ†2φ3)2 + 2c16(φ†2φ3)(φ†2φ2 − φ†3φ3) + h.c.

]
. (5.182)

Thus, we get the following scattering matrices which reproduce the conditions (4.24)–(4.32)
of ref. [26].
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The matrix M++
2 . From M++

2 we get

1
2 M

++
2 = diag




r1 r11

√
2r10 −r11

r11 r2
√

2c16 c17√
2r10

√
2c∗16 r6 + r9 −

√
2c16

−r11 c∗17 −
√

2c∗16 r2

 , (r4 + r7), (r4 + r7)

 , (5.183)

and thus we get the eigenvalues of M++
2 :

Λ++
1−4 = Roots of:

x4 + 2 (−r1 − 2r2 − r6 − r9)x3 + 4
[
−4 |c16| 2 − |c17| 2 + r1 (2r2 + r6 + r9)

+r2 (r2 + 2 (r6 + r9))− 2
(
r2

10 + r2
11

)]
x2 + 8

[
4 (r1 + r2) |c16| 2

+ (r1 + r6 + r9) |c17| 2 + 4<
(
c2

16c
∗
17

)
+ 2r2

11 (< (c17) + r2 + r6 + r9)

−8r10r11< (c16)− r2
(
−4r2

10 + r2 (r6 + r9) + r1 (r2 + 2 (r6 + r9))
)]
x

+ 16
[
4r2

11 |c16| 2 − 4r1r2 |c16| 2 + 2r2
10 |c17| 2 − r1r6 |c17| 2 − r1r9 |c17| 2

− 2r2
11 (c∗16) 2 − 2c2

16r1c
∗
17 − 2c17r1 (c∗16) 2 + 4c16r10r11c

∗
17

+ 4c17r10r11c
∗
16 − 2r6r

2
11< (c17)− 2r9r

2
11< (c17) + 8r2r10r11< (c16)

−2c2
16r

2
11 − 2r2

2r
2
10 − 2r2r6r

2
11 − 2r2r9r

2
11 + r1r

2
2r6 + r1r

2
2r9
]

= 0 ,

Λ++
5,6 = 2(r4 + r7) . (5.184)

The matrix M+
2 . From M+

2 we get

1
2 M

+
2 ∼ diag


1
2


r1 r11 2r10 −r11
r11 r2 2c16 c17
2r10 2c∗16 2(r6 + r9) −2c16
−r11 c∗17 −2c∗16 r2

 , r6 − r9,

(
r4 r7
r7 r4

)
,

(
r4 r7
r7 r4

) . (5.185)

Here, the procedure we have mentioned thus far, which includes the algorithm in ap-
pendix C, yields a 5× 5 matrix. Supplemented by a suitable rotation, it can be written in
the 4× 4 and 1× 1 blocks given in eq. (5.185). The eigenvalues of M+

2 are:

Λ+,2
1−4 = Λ++

1−4 ,

Λ+,2
5 = 2(r6 − r9) ,

Λ+,2
6,7 = 2(r4 ± r7) ,

Λ+,2
8,9 = Λ++

6,7 . (5.186)

The matrix M+
0 . From M+

0 we get

1
2 M

+
0 = diag




r1 r7 r7 0 0
r7 r2 r9 c∗16 c16
r7 r9 r2 −c∗16 −c16
0 c16 −c16 r6 c17
0 c∗16 −c∗16 c∗17 r6

 ,

r4 r11 r10 0
r11 r4 0 r10
r10 0 r4 −r11
0 r10 −r11 r4




, (5.187)
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As in eq. (5.185), each matrix can be further block diagonalized in an easy way, leading to
one 3×3 block, one 2×2 block, and two identical 2×2 blocks. The eigenvalues of M+

0 are:

Λ+,0
1−3 = Roots of:

x3 − 2(−r2 − 2r6 + r9)x2 + 4(−4 |c16| 2 − |c17| 2 + r2
6 + 2r2r6 − 2r6r9)x

+ 8
(
4r6 |c16| 2 + (r2 − r9)

(
|c17| 2 − r2

6

)
− 4<

(
c2

16c
∗
17

))
= 0 ,

Λ+,0
4,5 = ±

√
8r2

7 + (−r1 + r2 + r9) 2 + r1 + r2 + r9 ,

Λ+,0
6−7 = Λ+,0

8−9 = 2
(
r4 ±

√
r2

10 + r2
11

)
. (5.188)

The matrix M0
2 . From M0

2 we get

1
2 M

0
2 = 1

2 M
++
2 , (5.189)

with eigenvalues of M0
2 :

Λ0,2
1−6 = Λ++

1−6 . (5.190)

The matrix M0
0 . From M0

0 we get the eigenvalues of M0
0 :

Λ0,0
1−9 = Λ+,0

1−9 ,

Λ0,0
10−12 = Roots of:

x3 + 2 (−3r2 − 3r9)x2 + 4
(
−36 |c16| 2 − 9 |c17| 2 − 3r2

6

+6r2r6 + 12r2r9 − 6r6r9)x+ 8
[
36 (r6 + 2r9) |c16| 2

− (3r2 − 2r6 − r9)
(
(r6 + 2r9) 2 − 9 |c17| 2

)
−108<

(
c2

16c
∗
17

)]
= 0 ,

Λ0,0
13,14 = ±

√
8 (2r4 + r7) 2 + (−3r1 + 3r2 + 2r6 + r9) 2 + 3r1 + 3r2 + 2r6 + r9 ,

Λ0,0
15−18 = 2

(
±3
√
r2

10 + r2
11 + r4 + 2r7

)
, (5.191)

where we have suppressed the form of the matrix due to its size.

5.19 The SU(3) symmetry

By imposing G = SU(3) we get the quartic potential

VSU(3) =r1
[
(φ†1φ1) + (φ†2φ2) + (φ†3φ3)

]2
+ 2r7

[
|φ†1φ2|2 + |φ†1φ3|2 + |φ†2φ3|2

−(φ†1φ1)(φ†2φ2)− (φ†1φ1)(φ†3φ3)− (φ†2φ2)(φ†3φ3)
]
, (5.192)

with the following scattering matrices.
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The matrix M++
2 . From M++

2 we get

1
2 M

++
2 = diag(r1, r1, r1, r1, r1, r1) , (5.193)

and thus we get the eigenvalues of M++
2 :

Λ++
1−6 = 2r1 . (5.194)

The matrix M+
2 . From M+

2 we get

1
2 M

+
2 = diag

{(
r1 − r7 r7
r7 r1 − r7

)
,

(
r1 − r7 r7
r7 r1 − r7

)
,

(
r1 − r7 r7
r7 r1 − r7

)
, r1, r1, r1

}
,

(5.195)
with eigenvalues of M+

2 :

Λ+,2
1 = 2r1 ,

Λ+,2
2 = 2 (r1 − 2r7) ,

Λ+,2
3,4 = Λ+,2

1,2 ,

Λ+,2
5,6 = Λ+,2

1,2

Λ+,2
7−9 = Λ+,2

1 . (5.196)

The matrix M+
0 . From M+

0 we get

1
2 M

+
0 = diag


r1 r7 r7
r7 r1 r7
r7 r7 r1

 , r1 − r7, r1 − r7, r1 − r7, r1 − r7, r1 − r7, r1 − r7

 , (5.197)

with eigenvalues of M+
0 :

Λ+,0
1 = 2 (r1 + 2r7) ,

Λ+,0
2,3 = 2(r1 − r7) ,

Λ+,0
4−9 = 2(r1 − r7) . (5.198)

The matrix M0
2 . From M0

2 we get

1
2 M

0
2 = 1

2 M
++
2 , (5.199)

with eigenvalues of M0
2 :

Λ0,2
1−6 = Λ++

1−6 . (5.200)
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The matrix M0
0 . From M0

0 we get

1
2 M

0
0 ∼ diag

1
2M

+
0 ,

 3r1 2r1 + r7 2r1 − r7
2r1 − r7 3r1 2r1 − r7
2r1 − r7 2r1 − r7 3r1

 , (r1 + r7),

(r1 + r7), (r1 + r7), (r1 + r7), (r1 + r7), (r1 + r7)
}
, (5.201)

with eigenvalues of M0
0 :

Λ0,0
1−9 = Λ+,0

1−9 ,

Λ0,0
10 = 14r1 − 4r7 ,

Λ0,0
11,12 = 2 (r1 + r7) ,

Λ0,0
13−18 = 2 (r1 + r7) . (5.202)

5.20 The A4 symmetry

Imposing G = A4 we get the quartic potential

VA4 =r1 + 2r4
3

[
(φ†1φ1) + (φ†2φ2) + (φ†3φ3)

]2
+ 2(r1 − r4)

3
[
(φ†1φ1)2 + (φ†2φ2)2

+(φ†3φ3)2 − (φ†1φ1)(φ†2φ2)− (φ†2φ2)(φ†3φ3)− (φ†3φ3)(φ†1φ1)
]

+ 2r7
(
|φ†1φ2|2 + |φ†2φ3|2 + |φ†3φ1|2

)
+
[
c3
[
(φ†1φ2)2 + (φ†2φ3)2 + (φ†3φ1)2

]
+ h.c.

]
, (5.203)

which can be easily achieved by setting from Z2 × Z2 with the constraints r2 = r3 = r1,
r5 = r6 = r4, r8 = r9 = r7 and c∗5 = c17 = c3. It can not be easily achieved from Z3 due to
our choice of basis. Nevertheless, we work it out in appendix D.

Thus, we get the following scattering matrices.

The matrix M++
2 . From M++

2 we get

1
2 M

++
2 = diag


r1 c3 c

∗
3

c∗3 r1 c3
c3 c

∗
3 r1

 , (r4 + r7), (r4 + r7), (r4 + r7)

 , (5.204)

and thus we get the eigenvalues of M++
2 :

Λ++
1 = 2 (2Re(c3) + r1) ,

Λ++
2,3 = 2

(
±
√

3 |= (c3)| − < (c3) + r1
)
,

Λ++
4−6 = 2(r4 + r7) . (5.205)
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The matrix M+
2 . From M+

2 we get

1
2 M

+
2 = diag


r1 c3 c

∗
3

c∗3 r1 c3
c3 c

∗
3 r1

 ,(r4 r7
r7 r4

)
,

(
r4 r7
r7 r4

)
,

(
r4 r7
r7 r4

) , (5.206)

with eigenvalues of M+
2 :

Λ+,2
1−3 = Λ++

1−3 ,

Λ+,2
4−9 = 2(r4 ± r7) . (5.207)

The matrix M+
0 . From M+

0 we get

1
2 M

+
0 = diag


r1 r7 r7
r7 r1 r7
r7 r7 r1

 ,(r4 c3
c∗3 r4

)
,

(
r4 c

∗
3

c3 r4

)
,

(
r4 c3
c∗3 r4

) , (5.208)

with eigenvalues of M+
0 :

Λ+,0
1 = 2 (r1 + 2r7) ,

Λ+,0
2,3 = 2 (r1 − r7) ,

Λ+,0
4−9 = 2

(
r4 ±

√
c3
√
c∗3

)
. (5.209)

The matrix M0
2 . From M0

2 we get

1
2 M

0
2 = 1

2 M
++
2 , (5.210)

with eigenvalues of M0
2 :

Λ0,2
1−6 = Λ++

1−6 . (5.211)

The matrix M0
0 . From M0

0 we get

1
2 M

0
0 ∼ diag

1
2M

+
0 ,

 3r1 2r4 + r7 2r4 + r7
2r4 + r7 3r1 2r4 + r7
2r4 + r7 2r4 + r7 3r1

 ,(r4 + 2r7 3c3
3c∗3 r4 + 2r7

)
,

(
r4 + 2r7 3c∗3

3c3 r4 + 2r7

)
,

(
r4 + 2r7 3c3

3c∗3 r4 + 2r7

)}
. (5.212)

with eigenvalues of M0
0 :

Λ0,0
1−9 = Λ+,0

1−9 ,

Λ0,0
10 = 6r1 + 8r4 + 4r7 ,

Λ0,0
11,12 = 6r1 − 2 (2r4 + r7) ,

Λ0,0
13−18 = ±6√c3

√
c∗3 + 2r4 + 4r7 . (5.213)
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5.21 The S4 symmetry

Imposing G = S4 we get the quartic potential

VS4 =r1 + 2r4
3

[
(φ†1φ1) + (φ†2φ2) + (φ†3φ3)

]2
+ 2(r1 − r4)

3
[
(φ†1φ1)2 + (φ†2φ2)2

+(φ†3φ3)2 − (φ†1φ1)(φ†2φ2)− (φ†2φ2)(φ†3φ3)− (φ†3φ3)(φ†1φ1)
]

+ 2r7
(
|φ†1φ2|2 + |φ†2φ3|2 + |φ†3φ1|2

)
+ r10

(
(φ†1φ2)2 + (φ†2φ3)2 + (φ†3φ1)2 + (φ†2φ1)2 + (φ†3φ2)2 + (φ†1φ3)2

)
. (5.214)

which can be easily achieved by setting from A4 with the constraint c3 ∈ R. It can not be
easily achieved from D4 or S3 due to our choice of basis.

Thus, we get the following scattering matrices.

The matrix M++
2 . From M++

2 we get

1
2 M

++
2 = diag


 r1 r10 r10
r10 r1 r10
r10 r10 r1

 , (r4 + r7), (r4 + r7), (r4 + r7)

 , (5.215)

and thus we get the eigenvalues of M++
2 :

Λ++
1 = 2 (r1 + 2r10) ,

Λ++
2,3 = 2 (r1 − r10) ,

Λ++
4−6 = 2(r4 + r7) . (5.216)

The matrix M+
2 . From M+

2 we get

1
2 M

+
2 = diag


 r1 r10 r10
r10 r1 r10
r10 r10 r1

 ,(r4 r7
r7 r4

)
,

(
r4 r7
r7 r4

)
,

(
r4 r7
r7 r4

) , (5.217)

with eigenvalues of M+
2 :

Λ+,2
1−3 = Λ++

1−3 ,

Λ+,2
4−9 = 2(r4 ± r7) . (5.218)

The matrix M+
0 . From M+

0 we get

1
2 M

+
0 = diag


r1 r7 r7
r7 r1 r7
r7 r7 r1

 ,( r4 r10
r10 r4

)
,

(
r4 r10
r10 r4

)
,

(
r4 r10
r10 r4

) , (5.219)

with eigenvalues of M+
0 :

Λ+,0
1 = 2 (r1 + 2r7) ,

Λ+,0
2,3 = 2 (r1 − r7) ,

Λ+,0
4−9 = 2 (r4 ± r10) . (5.220)
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The matrix M0
2 . From M0

2 we get
1
2 M

0
2 = 1

2 M
++
2 , (5.221)

with eigenvalues of M0
2 :

Λ0,2
1−6 = Λ++

1−6 . (5.222)

The matrix M0
0 . From M0

0 we get

1
2 M

0
0 ∼ diag

1
2M

+
0 ,

 3r1 2r4 + r7 2r4 + r7
2r4 + r7 3r1 2r4 + r7
2r4 + r7 2r4 + r7 3r1

 ,(r4 + 2r7 3r10
3r10 r4 + 2r7

)
,

(
r4 + 2r7 3r10

3r10 r4 + 2r7

)
,

(
r4 + 2r7 3r10

3r10 r4 + 2r7

)}
. (5.223)

with eigenvalues of M0
0 :

Λ0,0
1−9 = Λ+,0

1−9 ,

Λ0,0
10 = 6r1 + 8r4 + 4r7 ,

Λ0,0
11,12 = 6r1 − 2 (2r4 + r7) ,

Λ0,0
13−18 = 2 (r4 + 2r7 ± 3r10) . (5.224)

5.22 The SO(3) symmetry

Imposing G = SO(3) we get the quartic potential

VSO(3) =r1 + 2r4
3

[
(φ†1φ1) + (φ†2φ2) + (φ†3φ3)

]2
+ 2(r1 − r4)

3
[
(φ†1φ1)2 + (φ†2φ2)2

+(φ†3φ3)2 − (φ†1φ1)(φ†2φ2)− (φ†2φ2)(φ†3φ3)− (φ†3φ3)(φ†1φ1)
]

+ 2r7
(
|φ†1φ2|2 + |φ†2φ3|2 + |φ†3φ1|2

)
+ (r1 − r4 − r7)

(
(φ†1φ2)2 + (φ†2φ3)2 + (φ†3φ1)2 + (φ†2φ1)2 + (φ†3φ2)2 + (φ†1φ3)2

)
.

(5.225)
which can be easily achieved by setting from S4 with the constraint r10 → r1 − r4 − r7.

Thus, we get the following scattering matrices.

The matrix M++
2 . From M++

2 we get

1
2 M

++
2 = diag


 r1 r1 − r4 − r7 r1 − r4 − r7
r1 − r4 − r7 r1 r1 − r4 − r7
r1 − r4 − r7 r1 − r4 − r7 r1

 , (r4 + r7), (r4 + r7), (r4 + r7)

 ,

(5.226)

and thus we get the eigenvalues of M++
2 :

Λ++
1 = 2 (3r1 − 2r4 − 2r7) ,

Λ++
2,3 = 2(r4 + r7) ,

Λ++
4−6 = 2(r4 + r7) . (5.227)
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The matrix M+
2 . From M+

2 we get

1
2 M

+
2 = diag


 r1 r1 − r4 − r7 r1 − r4 − r7
r1 − r4 − r7 r1 r1 − r4 − r7
r1 − r4 − r7 r1 − r4 − r7 r1

 ,(r4 r7
r7 r4

)
,

(
r4 r7
r7 r4

)
,

(
r4 r7
r7 r4

) ,

(5.228)

with eigenvalues of M+
2 :

Λ+,2
1−3 = Λ++

1−3 ,

Λ+,2
4−9 = 2(r4 ± r7) . (5.229)

The matrix M+
0 . From M+

0 we get

1
2 M

+
0 =diag


r1 r7 r7
r7 r1 r7
r7 r7 r1

 ,( r4 r1 − r4 − r7
r1 − r4 − r7 r4

)
,

(
r4 r1 − r4 − r7

r1 − r4 − r7 r4

)
,

(
r4 r1 − r4 − r7

r1 − r4 − r7 r4

)}
, (5.230)

with eigenvalues of M+
0 :

Λ+,0
1 = 2 (r1 + 2r7) ,

Λ+,0
2,3 = 2 (r1 − r7) ,

Λ+,0
4−9 = 2 (r4 ± (r1 − r4 − r7)) . (5.231)

The matrix M0
2 . From M0

2 we get
1
2 M

0
2 = 1

2 M
++
2 , (5.232)

with eigenvalues of M0
2 :

Λ0,2
1−6 = Λ++

1−6 . (5.233)

The matrix M0
0 . From M0

0 we get

1
2 M

0
0 ∼ diag

1
2M

+
0 ,

 3r1 2r4 + r7 2r4 + r7
2r4 + r7 3r1 2r4 + r7
2r4 + r7 2r4 + r7 3r1

 , ( r4 + 2r7 3 (r1 − r4 − r7)
3 (r1 − r4 − r7) r4 + 2r7

)
,

(
r4 + 2r7 3 (r1 − r4 − r7)

3 (r1 − r4 − r7) r4 + 2r7

)
,

(
r4 + 2r7 3 (r1 − r4 − r7)

3 (r1 − r4 − r7) r4 + 2r7

)}
.

(5.234)

with eigenvalues of M0
0 :

Λ0,0
1−9 = Λ+,0

1−9 ,

Λ0,0
10 = 6r1 + 8r4 + 4r7 ,

Λ0,0
11,12 = 6r1 − 2 (2r4 + r7) ,

Λ0,0
13−18 = 2(r4 + 2r7)± 6(r1 − r4 − r7) . (5.235)

– 48 –



J
H
E
P
0
8
(
2
0
2
2
)
2
7
3

5.23 The ∆(54) symmetry

Imposing G = ∆(54) we get the quartic potential

V∆(54) =r1 + 2r4
3

[
(φ†1φ1) + (φ†2φ2) + (φ†3φ3)

]2
+ 2(r1 − r4)

3
[
(φ†1φ1)2 + (φ†2φ2)2

+(φ†3φ3)2 − (φ†1φ1)(φ†2φ2)− (φ†2φ2)(φ†3φ3)− (φ†3φ3)(φ†1φ1)
]

+ 2r7
(
|φ†1φ2|2 + |φ†2φ3|2 + |φ†3φ1|2

)
+
[
2c11

(
(φ†1φ3)(φ†2φ3) + (φ†2φ1)(φ†3φ1) + (φ†3φ2)(φ†1φ2)

)
+ h.c.

]
. (5.236)

which can not be easily achieved from S3 due to our choice of basis. The details are
contained in appendix C

We get the following scattering matrices.

The matrix M++
2 . From M++

2 we get

1
2 M

++
2 = diag

{(
r1

√
2c∗11√

2c11 r4 + r7

)
,

(
r4 + r7

√
2c11√

2c∗11 r1

)
,

(
r4 + r7

√
2c11√

2c∗11 r1

)}
, (5.237)

and thus we get the eigenvalues of M++
2 :

Λ++
1−6 = ±

√
8 |c11| 2 + (−r1 + r4 + r7) 2 + r1 + r4 + r7 . (5.238)

The matrix M+
2 . From M+

2 we get

1
2 M

+
2 = diag


 r1 c∗11 c

∗
11

c11 r4 r7
c11 r7 r4

 ,
 r4 r7 c11
r7 r4 c11
c∗11 c

∗
11 r1

 ,
 r4 c11 r7
c∗11 r1 c∗11
r7 c11 r4


 , (5.239)

with eigenvalues of M+
2 :

Λ+,2
1 = 2 (r4 − r7) ,

Λ+,2
2,3 = ±

√
8 |c11| 2 + (−r1 + r4 + r7) 2 + r1 + r4 + r7 ,

Λ+,2
4−6 = Λ+,2

1−3 ,

Λ+,2
7−9 = Λ+,2

1−3 . (5.240)

The matrix M+
0 . From M+

0 we get

1
2 M

+
0 = diag


r1 r7 r7
r7 r1 r7
r7 r7 r1

 ,
 r4 c11 c

∗
11

c∗11 r4 c11
c11 c

∗
11 r4

 ,
 r4 c∗11 c11
c11 r4 c∗11
c∗11 c11 r4


 , (5.241)

with eigenvalues of M+
0 :

Λ+,0
1 = 2 (r1 + 2r7) ,

Λ+,0
2,3 = 2 (r1 − r7) ,

Λ+,0
4 = 2 (2< (c11) + r4) ,

Λ+,0
5,6 = 2

(
±
√

3 |= (c11)| − < (c11) + r4
)
,

Λ+,0
7−9 = Λ+,0

4−6 . (5.242)
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The matrix M0
2 . From M0

2 we get
1
2 M

0
2 = 1

2 M
++
2 , (5.243)

with eigenvalues of M0
2 :

Λ0,2
1−6 = Λ++

1−6 . (5.244)

The matrix M0
0 . From M0

0 we get

1
2 M

0
0 ∼ diag

1
2M

+
0 ,

 3r1 2r4 + r7 2r4 + r7
2r4 + r7 3r1 2r4 + r7
2r4 + r7 2r4 + r7 3r1

 ,
r4 + 2r7 3c11 3c∗11

3c∗11 r4 + 2r7 3c11
3c11 3c∗11 r4 + 2r7

 ,
r4 + 2r7 3c∗11 3c11

3c11 r4 + 2r7 3c∗11
3c∗11 3c11 r4 + 2r7


 . (5.245)

with eigenvalues of M0
0 :

Λ0,0
1−9 = Λ+,0

1−9 ,

Λ0,0
10 = 6r1 + 8r4 + 4r7 ,

Λ0,0
11,12 = 6r1 − 2 (2r4 + r7) ,
Λ0,0

13 = 2 (6< (c11) + r4 + 2r7) ,

Λ0,0
14,15 = 2

(
±3
√

3 |= (c11)| − 3< (c11) + r4 + 2r7
)
,

Λ0,0
16−18 = Λ0,0

13−15 . (5.246)

5.24 The ∆(54) o Z(CP)
2 symmetry

Imposing G = ∆(54) o Z(CP)
2 we get the quartic potential

V∆(54)oZ(CP)
2

=r1 + 2r4
3

[
(φ†1φ1) + (φ†2φ2) + (φ†3φ3)

]2
+ 2(r1 − r4)

3
[
(φ†1φ1)2 + (φ†2φ2)2

+(φ†3φ3)2 − (φ†1φ1)(φ†2φ2)− (φ†2φ2)(φ†3φ3)− (φ†3φ3)(φ†1φ1)
]

+ 2r7
(
|φ†1φ2|2 + |φ†2φ3|2 + |φ†3φ1|2

)
+ 2r10

[
(φ†1φ3)(φ†2φ3) + (φ†2φ1)(φ†3φ1) + (φ†3φ2)(φ†1φ2) + h.c.

]
. (5.247)

which can be easily achieved by setting from ∆(54) the constraints c11 ∈ R.
Thus we get the following scattering matrices.

The matrix M++
2 . From M++

2 we get

1
2 M

++
2 = diag

{(
r1

√
2r10√

2r10 r4 + r7

)
,

(
r4 + r7

√
2r10√

2r10 r1

)
,

(
r4 + r7

√
2r10√

2r10 r1

)}
, (5.248)

and thus we get the eigenvalues of M++
2 :

Λ++
1−6 = ±

√
8r2

10 + (−r1 + r4 + r7) 2 + r1 + r4 + r7 . (5.249)

– 50 –



J
H
E
P
0
8
(
2
0
2
2
)
2
7
3

The matrix M+
2 . From M+

2 we get

1
2 M

+
2 = diag


 r1 r10 r10
r10 r4 r7
r10 r7 r4

 ,
 r4 r7 r10
r7 r4 r10
r10 r10 r1

 ,
 r4 r10 r7
r10 r1 r10
r7 r10 r4


 , (5.250)

with eigenvalues of M+
2 :

Λ+,2
1 = 2 (r4 − r7) ,

Λ+,2
2,3 = ±

√
8r2

10 + (−r1 + r4 + r7) 2 + r1 + r4 + r7 ,

Λ+,2
4−6 = Λ+,2

1−3 ,

Λ+,2
7−9 = Λ+,2

1−3 . (5.251)

The matrix M+
0 . From M+

0 we get

1
2 M

+
0 = diag


r1 r7 r7
r7 r1 r7
r7 r7 r1

 ,
 r4 r10 r10
r10 r4 r10
r10 r10 r4

 ,
 r4 r10 r10
r10 r4 r10
r10 r10 r4


 , (5.252)

with eigenvalues of M+
0 :

Λ+,0
1 = 2 (r1 + 2r7) ,

Λ+,0
2,3 = 2 (r1 − r7) ,

Λ+,0
4 = 2 (r4 + 2r10) ,

Λ+,0
5,6 = 2 (r4 − r10) ,

Λ+,0
7−9 = Λ+,0

4−6 . (5.253)

The matrix M0
2 . From M0

2 we get

1
2 M

0
2 = 1

2 M
++
2 , (5.254)

with eigenvalues of M0
2 :

Λ0,2
1−6 = Λ++

1−6 . (5.255)

The matrix M0
0 . From M0

0 we get

1
2 M

0
0 ∼ diag

1
2M

+
0 ,

 3r1 2r4 + r7 2r4 + r7
2r4 + r7 3r1 2r4 + r7
2r4 + r7 2r4 + r7 3r1

 ,
r4 + 2r7 3r10 3r10

3r10 r4 + 2r7 3r10
3r10 3r10 r4 + 2r7

 ,
r4 + 2r7 3r10 3r10

3r10 r4 + 2r7 3r10
3r10 3r10 r4 + 2r7


 . (5.256)
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with eigenvalues of M0
0 :

Λ0,0
1−9 = Λ+,0

1−9 ,

Λ0,0
10 = 6r1 + 8r4 + 4r7 ,

Λ0,0
11,12 = 6r1 − 2 (2r4 + r7) ,
Λ0,0

13 = 2 (6r10 + r4 + 2r7) ,
Λ0,0

14,15 = 2 (r4 + 2r7 − 3r10) ,
Λ0,0

16−18 = Λ0,0
13−15 . (5.257)

5.25 The Σ(36) symmetry

Imposing G = Σ(36) we get the quartic potential

VΣ(36) =r1 + 2r4
3

[
(φ†1φ1) + (φ†2φ2) + (φ†3φ3)

]2
+ 2(r1 − r4)

3
[
(φ†1φ1)2 + (φ†2φ2)2

+(φ†3φ3)2 − (φ†1φ1)(φ†2φ2)− (φ†2φ2)(φ†3φ3)− (φ†3φ3)(φ†1φ1)
]

+ 2r7
(
|φ†1φ2|2 + |φ†2φ3|2 + |φ†3φ1|2

)
+ (r1 − r4 − r7)

(
(φ†1φ3)(φ†2φ3) + (φ†2φ1)(φ†3φ1) + (φ†3φ2)(φ†1φ2) + h.c.

)
. (5.258)

which can be easily achieved by setting from ∆(54) with the constraint c11 → r1− r4− r7.
Thus, we get the following scattering matrices.

The matrix M++
2 . From M++

2 we get

1
2 M

++
2 = diag


 r1

r1−r4−r7√
2

r1−r4−r7√
2 r4 + r7

 ,
 r4 + r7

r1−r4−r7√
2

r1−r4−r7√
2 r1

 ,
 r4 + r7

r1−r4−r7√
2

r1−r4−r7√
2 r1

 ,

(5.259)

and thus we get the eigenvalues of M++
2 :

Λ++
1−6 = ±

√
3 |−r1 + r4 + r7|+ (r1 + r4 + r7) . (5.260)

The matrix M+
2 . From M+

2 we get

1
2 M

+
2 =diag


 r1

1
2 (r1 − r4 − r7) 1

2 (r1 − r4 − r7)
1
2 (r1 − r4 − r7) r4 r7
1
2 (r1 − r4 − r7) r7 r4

 ,
 r4 r7

1
2 (r1 − r4 − r7)

r7 r4
1
2 (r1 − r4 − r7)

1
2 (r1 − r4 − r7) 1

2 (r1 − r4 − r7) r1

 ,
 r4

1
2 (r1 − r4 − r7) r7

1
2 (r1 − r4 − r7) r1

1
2 (r1 − r4 − r7)

r7
1
2 (r1 − r4 − r7) r4


 , (5.261)
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with eigenvalues of M+
2 :

Λ+,2
1 = 2 (r4 − r7) ,

Λ+,2
2,3 = Λ++

1,2 ,

Λ+,2
4−6 = Λ+,2

1−3 ,

Λ+,2
7−9 = Λ+,2

1−3 . (5.262)

The matrix M+
0 . From M+

0 we get

1
2 M

+
0 =diag


r1 r7 r7
r7 r1 r7
r7 r7 r1

 ,
 r4

1
2 (r1 − r4 − r7) 1

2 (r1 − r4 − r7)
1
2 (r1 − r4 − r7) r4

1
2 (r1 − r4 − r7)

1
2 (r1 − r4 − r7) 1

2 (r1 − r4 − r7) r4

 ,
 r4

1
2 (r1 − r4 − r7) 1

2 (r1 − r4 − r7)
1
2 (r1 − r4 − r7) r4

1
2 (r1 − r4 − r7)

1
2 (r1 − r4 − r7) 1

2 (r1 − r4 − r7) r4


 , (5.263)

with eigenvalues of M+
0 :

Λ+,0
1 = 2 (r1 + 2r7) ,

Λ+,0
2,3 = 2 (r1 − r7) ,

Λ+,0
4 = Λ+,0

2 ,

Λ+,0
5,6 = −r1 + 3r4 + r7 ,

Λ+,0
7−9 = Λ+,0

4−6 . (5.264)

The matrix M0
2 . From M0

2 we get

1
2 M

0
2 = 1

2 M
++
2 , (5.265)

with eigenvalues of M0
2 :

Λ0,2
1−6 = Λ++

1−6 . (5.266)

The matrix M0
0 . From M0

0 we get

1
2 M

0
0 ∼ diag

1
2M

+
0 ,

 3r1 2r4 + r7 2r4 + r7
2r4 + r7 3r1 2r4 + r7
2r4 + r7 2r4 + r7 3r1

 ,
1
2

 2(r4 + 2r7) 3(r1 − r4 − r7) 3(r1 − r4 − r7)
3(r1 − r4 − r7) 2(r4 + 2r7) 3(r1 − r4 − r7)
3(r1 − r4 − r7) 3(r1 − r4 − r7) 2(r4 + 2r7)

 ,
1
2

 2(r4 + 2r7) 3(r1 − r4 − r7) 3(r1 − r4 − r7)
3(r1 − r4 − r7) 2(r4 + 2r7) 3(r1 − r4 − r7)
3(r1 − r4 − r7) 3(r1 − r4 − r7) 2(r4 + 2r7)


 . (5.267)
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with eigenvalues of M0
0 :

Λ0,0
1−9 = Λ+,0

1−9 ,

Λ0,0
10 = 6r1 + 8r4 + 4r7 ,

Λ0,0
11,12 = 6r1 − 2 (2r4 + r7) ,
Λ0,0

13 = Λ0,0
11 ,

Λ0,0
14,15 = −3r1 + 5r4 + 7r7 ,

Λ0,0
16−18 = Λ0,0

13−15 . (5.268)

6 Conclusions

Having found one elementary scalar particle, the most important issue is the determination
of how many such scalars exist in nature. The possibility that there could be three Higgs
doublets has several interesting features.

A 3HDM, in what we denote here by the symmetry-constrained Z2 × Z2 version, was
originally proposed by Weinberg [31], in order to have a model which simultaneously allows
for CP violation and for the natural flavour conservation (NFC) mechanism [6, 7] designed
to preclude flavour-changing neutral scalar exchanges. It is also the simplest NHDM where
one can have the fifth type of fermion NFC couplings to scalars. Indeed, one can show that
the usual NFC is only stable under the renormalization group if one single Higgs doublet
has Yukawa couplings to the right-handed fermions of each electric charge [33]. This yields
only five cases, dubbed in [34] types I, II, X, Y, and Z. The first four are possible in the
2HDM. The fifth, where each charged fermion sector (up-type quarks, down-type quarks,
and charged leptons) couples to a different scalar, becomes possible in 3HDM (and for
N > 3). 3HDM are also interesting because the list of all symmetry-constrained limits is
known [9–12], while no such list exists (currently) for larger N .

Such models must obey the theoretical bounds from bounded from below potential,
verification that the chosen solution of the stationarity equations is the global minimum,
and perturbative unitarity. This article lists explicitly and exhaustively the perturbative
unitarity conditions for all symmetry-constrained 3HDM.

We have explored the method advocated in [26] of classifying the scattering matrices
by the charge Q and hypercharge Y of the initial/final states. If there is an additional
substructure induced by the charges of the symmetry group, it is identified easily via the
new algorithm we propose in appendix C, without the prior need to study the implications
of each specific symmetry in detail. Appendix D will be useful for those wishing to relate
the conditions in a large group with those in one of its subgroups, when the former and
the latter are naturally written in different basis for the group generators.

An important part of this article is also the use of principal minors in order to obtain
unitarity bounds without the need to perform matrix diagonalizations. This is explained
in detail in section 3, with examples provided in section 4.

Together, these results will be necessary for anyone interested in the rich and varied
landscape of properties and signals of 3HDM.
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An interesting avenue for further exploration concerns the relation between the uni-
tarity bounds on the quartics couplings zij,kl of (2.1), on the one hand, and physical scalar
masses, on the other. If the vacuum expectation values (vev) of the scalar fields are non-
vanishing, then, in general, the physical masses involve also the µij couplings (to be precise,
those µij not fixed by the quartic couplings and vevs via the stationarity equations). Thus,
in general, there is no direct relation. For example, the soflty broken Z2 2HDM has a
µ12 coupling which controls the decoupling limit for all masses heavier than the 125GeV
Higgs. Thus, in that case, one cannot in general find bounds on masses arising from uni-
tarity bounds.9 In contrast, in the µ12 = 0, exact Z2-symmetric 2HDM, which does not
have a decoupling limit [35], unitarity bounds do turn into bounds on scalar masses. The
connection between symmetries, decoupling, and the impact on masses due to unitarity
bounds could be fruitful, especially given the fact that a symmetry-constrained NHDM
will exhibit decoupling if and only if the vacuum also satisfies the same symmetry [36].

An additional extension would be to consider the finite energy contributions. The
results presented here are valid for energies large enough that the s-, t-, and u-channels
can be ignored, but low enough that there is no significant RGE running of the quartic
couplings. Indeed, as shown in [37], and used in a specific case, for example, in [38], a
very precise calculation would encompass finite scattering energy contributions. This will
involve cubic couplings and alter slightly the bounds on quartic couplings. These extensions
lie beyond the scope of the present study.
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A Notations of the 3HDM

A.1 As in Ferreira and Silva

The notation in ref. [28] is

zij,kl =



r1 c1 c2
c∗1 r4 c6
c∗2 c

∗
6 r5


c1 c3 c4
r7 c7 c8
c∗9 c12 c13


c2 c4 c5
c9 c10 c11
r8 c14 c15


c
∗
1 r7 c9
c∗3 c

∗
7 c
∗
12

c∗4 c
∗
8 c
∗
13


 r4 c7 c10
c∗7 r2 c16
c∗10 c

∗
16 r6


 c6 c8 c11
c∗12 c16 c17
c∗14 r9 c18


c
∗
2 c∗9 r8
c∗4 c

∗
10 c

∗
14

c∗5 c
∗
11 c

∗
15


 c
∗
6 c12 c14
c∗8 c∗16 r9
c∗11 c

∗
17 c

∗
18


 r5 c13 c15
c∗13 r6 c18
c∗15 c

∗
18 r3




. (A.1)

In general, the parameters c (r) are complex (real).

A.2 As in Varzielas and Ivanov

The (partial) notation in ref. [11] is:

zij,kl = 1
2



2λ1 × ×
× λ12 ×
× × λ13


 × 2λ̄12 λ

∗
6

λ′12 × ×
× λ7 ×


 × λ∗6 2λ̄∗31
× × λ5
λ′13 λ̄

′
8 ×


 × λ′12 ×

2λ̄∗12 × λ∗7
λ6 × ×


λ12 × ×
× 2λ2 ×
× × λ23


 × × λ5
λ∗7 × 2λ̄23
λ̄′
∗
8 λ
′
23 ×


 × × λ′13
λ6 × λ̄′

∗
8

2λ̄31 λ
∗
5 ×


× λ7 λ̄′8
× × λ′23
λ∗5 2λ̄∗23 ×


λ13 × ×
× λ23 ×
× × 2λ3




, (A.2)

where the entries denoted here by “×” have not been named in ref. [11].

B Proof that M0
2 = M++

2

The proof is trivial and it follows from the definition of the matrices. Let

V4 = λij,kl(Φ†iΦj)(Φ†kΦl) , (B.1)

with ΦT
i =

(
w+
i ni

)
. Because

(M++
2 )αβ = ∂2V4

∂S−−α ∂S++
β

,

(M0
2 )αβ = ∂2V4

∂S0
α
∗∂S0

β

, (B.2)
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where S0
α = {n1n1, n1n2, n2n2, · · · , n3n3} and S++

α = {w+
1 w

+
1 , w

+
1 w

+
2 , w

+
2 w

+
2 , · · · , w

+
3 w

+
3 },

an exchange n ↔ w+ suffices to go from one matrix to another. Thus, we only need to
show that V4 is invariant under the exchange in the doublet space. Indeed, we have for
every pair (Φ†iΦj)

Φ†iΦj = w−i w
+
j + n∗inj =

(
w−i n∗i

)(0 1
1 0

)(
0 1
1 0

)(
w+
j

nj

)

=
(
n∗i w

−
i

)( nj
w+
j

)
= Φ̃†i Φ̃j , (B.3)

where Φ̃ is the doublet after the exchange of n ↔ w+. Thus, for every NHDM we have
M0

2 = M++
2 .

C A generalized algorithm for block diagonalization

There is a procedure in which we may not even care about the hypercharge and electric
charge. In section 5 we first separate the matrices into its hypercharge and electric charge
charges. Then, we use an algorithm to put the matrices into block diagonal form using
only permutations.

The method described in this appendix block diagonalizes an Hermitian matrix of
arbitrary size. Let M be the matrix created with all possible combinations of quadratic
forms (w−i nj), as we have done so far. The procedure is as follows.

• Build the matrix M from all combinations.

• Build a matrix P of the same size with zeros everywhere.

• Go to the first line of M and for every M1j 6= 0, put Pkj = 1 in consecutive lines
(where k runs from 1 to the number of nonzero entries in M1j).

• Repeat this process until every line of P has exactly one entry equal to 1.

• Compute M̃ = PMP T . This matrix M̃ is now block diagonalized up to permutations.

Let us consider as an explicit example the matrix in eq. (5.3):

M =



2r1 2
√

2c1 0 2c3 0 2c5
2
√

2c∗1 2 (r4 + r7) 0 2
√

2c7 0 2
√

2c11
0 0 2 (r5 + r8) 0 2 (c13 + c14) 0

2c∗3 2
√

2c∗7 0 2r2 0 2c17
0 0 2 (c∗13 + c∗14) 0 2 (r6 + r9) 0

2c∗5 2
√

2c∗11 0 2c∗17 0 2r3


, (C.1)
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which arises in the M++
2 scattering matrix of the Z2-symmetric 3HDM. Then,

P =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1
0 0 1 0 0 0
0 0 0 0 1 0


, (C.2)

where:

• The first line of M has non-zero entries in columns {1, 2, 4, 6}. Then for every line in
P we put 1 for the columns {1, 2, 4, 6}.

• The second line is equal to the first.

• The third line of M has non-zero entries in columns {3, 5}. Then for every remaining
line in P we put 1 for the columns {3, 5}.

• We are done as there are no other unique lines in M or (equivalently) more lines
in P .

• Now we compute M̃ = PMP T . This matrix M̃ is now block diagonalized up to
permutations.

Thus,

M̃ =



r1
√

2c1 c3 c5 0 0√
2c∗1 r4 + r7

√
2c7
√

2c11 0 0
c∗3

√
2c∗7 r2 c17 0 0

c∗5
√

2c∗11 c∗17 r3 0 0
0 0 0 0 r5 + r8 c13 + c14
0 0 0 0 c∗13 + c∗14 r6 + r9


. (C.3)

This technique allows us to separate the diagonal blocks that arise from electric charge,
hypercharge and global symmetries in general.

D Relating basis

The potentials are shown in section 5 choosing some particular representation for the
respective symmetry. Typically, for each symmetry, we made the choice which simplifies
the presentation of the quartic part of the respective symmetry-constrained potential. For
example, eq. (5.39) for the Z3-symmetric 3HDM was written in the basis where the Z3
generator is represented by diag(e 2πi

3 , e
−2πi

3 , 1).
But we see from figure 1 that the A4-symmetric 3HDM can be obtained from the Z3-

symmetric 3HDM. When the Z3-symmetric 3HDM is written as in eq. (5.39), the A4 limit
arises from a complicated relation among the parameters in eq. (5.39), and, moreover, it
does not have the simple form in eq. (5.203).
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In contrast, had we written the Z3-symmetric 3HDM potential in the basis where the
generator is written as in eq. (D.1) below, then, imposing invariance under the appropriate
additional diagonal generator, diag(1,−1,−1), the A4 potential would have the simple
form in eq. (5.203). This is what we show next. The remaining subsections are intended
to facilitate the interpretation of other limiting cases shown in figure 1. The limiting cases
present in figure 1 and not covered in this appendix, are trivially found using the basis
choices made in section 5.

D.1 A4 from Z3

Going to A4 from Z3 is easier to see with a good choice for the basis of the latter symmetry.
Let us choose the generator of Z3 to be

b =

0 1 0
0 0 1
1 0 0

 , (D.1)

instead of the usual diagonal form diag(ω, ω2, 1). Then, the quartic potential is given by

VZ3 = r1
[
(φ†1φ1)2 + (φ†2φ2)2 + (φ†3φ3)2

]
+ 2r4

[
(φ†1φ1)(φ†2φ2) + (φ†1φ1)(φ†3φ3) + (φ†2φ2)(φ†3φ3)

]
+ 2r7

[
|φ†1φ2|2 + |φ†2φ3|2 + |φ†3φ1|2

]
+
[
2c1

[
(φ†1φ1)(φ†1φ2) + (φ†2φ2)(φ†2φ3) + (φ†3φ3)(φ†3φ1)

]
+ 2c2

[
(φ†1φ1)(φ†1φ3) + (φ†2φ2)(φ†2φ1) + (φ†3φ3)(φ†3φ2)

]
+ c3

[
(φ†1φ2)2 + (φ†2φ3)2 + (φ†3φ1)2

]
+ 2c4

[
(φ†1φ2)(φ†1φ3) + (φ†2φ3)(φ†2φ1) + (φ†3φ1)(φ†3φ2)

]
+ 2c6

[
(φ†1φ1)(φ†2φ3) + (φ†2φ2)(φ†3φ1) + (φ†3φ3)(φ†1φ2)

]
+ 2c8

[
(φ†1φ2)(φ†2φ3) + (φ†2φ3)(φ†3φ1) + (φ†3φ1)(φ†1φ2)

]
+ h.c.

]
. (D.2)

This is, of course, equivalent to the usual basis for the symmetry. By enforcing, in addition,
the generator diag(1,−1,−1), or equivalently, further removing the complex coefficients
{c1, c2, c4, c6, c8}, we get

VA4 = r1
[
(φ†1φ1)2 + (φ†2φ2)2 + (φ†3φ3)2

]
+ 2r4

[
(φ†1φ1)(φ†2φ2) + (φ†1φ1)(φ†3φ3) + (φ†2φ2)(φ†3φ3)

]
+ 2r7

[
|φ†1φ2|2 + |φ†1φ3|2 + |φ†2φ3|2

]
+
[
c3
(
(φ†1φ2)2 + (φ†2φ3)2 + (φ†3φ1)2

)
+ h.c.

]
, (D.3)

which coincides with eq. (5.203).
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D.2 S4 from S3

Going to S4 from S3 is easier to see with a good choice for the basis of the latter symmetry.
Let us choose the generators of S3 to be

b =

0 1 0
0 0 1
1 0 0

 , c =

0 1 0
1 0 0
0 0 1

 , (D.4)

instead of the usual diagonal form diag(ω, ω2, 1) and c.10 Then, the quartic potential is
given by

VS3 = r1
[
(φ†1φ1)2 + (φ†2φ2)2 + (φ†3φ3)2

]
+ 2r4

[
(φ†1φ1)(φ†2φ2) + (φ†1φ1)(φ†3φ3) + (φ†2φ2)(φ†3φ3)

]
+ 2r7

[
|φ†1φ2|2 + |φ†2φ3|2 + |φ†3φ1|2

]
+
[
2c1

(
(φ†1φ1)(φ†1φ2) + (φ†2φ2)(φ†2φ3) + (φ†3φ3)(φ†3φ1)

+(φ†1φ1)(φ†1φ3) + (φ†2φ2)(φ†2φ1) + (φ†3φ3)(φ†3φ2)
)

+ h.c.
]

+ r10
[
(φ†1φ2)2 + (φ†2φ3)2 + (φ†3φ1)2 + h.c.

]
+
[
2c4

(
(φ†1φ2)(φ†1φ3) + (φ†2φ3)(φ†2φ1) + (φ†3φ1)(φ†3φ2)

)
+ h.c.

]
+ 2r11

[
(φ†1φ1)(φ†2φ3) + (φ†2φ2)(φ†3φ1) + (φ†3φ3)(φ†1φ2) + h.c.

]
+ 2r12

[
(φ†1φ2)(φ†2φ3) + (φ†2φ3)(φ†3φ1) + (φ†3φ1)(φ†1φ2) + h.c.

]
. (D.5)

By enforcing the generators diag(−1, 1, 1) and diag(1, 1,−1), or equivalently, removing the
coefficients {c1, c4, r11, r12} we get the potential of S4

VS4 = r1
[
(φ†1φ1)2 + (φ†2φ2)2 + (φ†3φ3)2

]
+ 2r4

[
(φ†1φ1)(φ†2φ2) + (φ†1φ1)(φ†3φ3) + (φ†2φ2)(φ†3φ3)

]
+ 2r7

[
|φ†1φ2|2 + |φ†2φ3|2 + |φ†3φ1|2

]
+ r10

[
(φ†1φ2)2 + (φ†2φ3)2 + (φ†3φ1)2 + h.c.

]
. (D.6)

The unitarity of S3 in the new basis, from which we go to S4 is not trivial to compute.
Although we know what the result should be, the new scattering matrices are rotated with
an orthogonal transformation. Thus, they can not be trivially block diagonalized.

D.3 D4 from Z2 × Z2

Going to D4 from Z2 × Z2 is easier to see with a good choice for the basis of the latter
symmetry.

10Notice that the rotation of the diagonal generator diag(ω, ω2, 1) to b leaves c invariant.
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Let us choose the generators of Z2 × Z2 to be

c′ =

0 1 0
1 0 0
0 0 −1

 , c = −

1 0 0
0 0 1
0 1 0

 , (D.7)

instead of the usual diagonal forms diag(−1,−1, 1) and diag(1,−1,−1). Then, the quartic
potential is given by

VZ2×Z2 = r1
[
(φ†1φ1)2 + (φ†2φ2)2

]
+ r3|φ3|4 + 2r4(φ†1φ1)(φ†2φ2)

+ 2r5(φ†1φ1 + φ†2φ2)(φ†3φ3) + 2r7|φ†1φ2|2

+ 2r8
[
|φ†1φ3|2 + |φ†2φ3|2

]
+ complex terms . (D.8)

By enforcing the generator of Z4 given by diag(i,−i, 1) we remove all complex coefficients
except c3 and c11, which can be rephased to be real. Thus, we get the potential

VD4 = r1
[
(φ†1φ1)2 + (φ†2φ2)2

]
+ r3|φ3|4 + 2r4(φ†1φ1)(φ†2φ2)

+ 2r5(φ†1φ1 + φ†2φ2)(φ†3φ3) + 2r7|φ†1φ2|2

+ 2r8
[
|φ†1φ3|2 + |φ†2φ3|2

]
+ r10

[
(φ†1φ2)2 + h.c.

]
+ 2r11

[
(φ†1φ3)(φ†2φ3) + h.c.

]
, (D.9)

D.4 S3 from Z2

Going to S3 from Z2 is easier to see with a good choice for the basis of the latter symmetry.
Let us choose the generator of Z2 to be

a′2 =

0 1 0
1 0 0
0 0 1

 , (D.10)

instead of the usual diagonal form diag(1, 1,−1). Then, the quartic potential is given by

VZ2 = r1
[
(φ†1φ1)2 + (φ†2φ2)2

]
+ r3|φ3|4 + 2r4(φ†1φ1)(φ†2φ2)

+ 2r5(φ†1φ1 + φ†2φ2)(φ†3φ3) + 2r7|φ†1φ2|2

+ 2r8
[
|φ†1φ3|2 + |φ†2φ3|2

]
+ complex terms . (D.11)

By enforcing the generator of Z3 given by diag(ω, ω2, 1) we remove all remaining complex
coefficients except c11 and c12. Thus, we get the potential

VS3 = r1
[
(φ†1φ1)2 + (φ†2φ2)2

]
+ r3|φ3|4 + 2r4(φ†1φ1)(φ†2φ2)

+ 2r5(φ†1φ1 + φ†2φ2)(φ†3φ3) + 2r7|φ†1φ2|2 + 2r8
[
|φ†1φ3|2 + |φ†2φ3|2

]
+
[
2c11(φ†1φ3)(φ†2φ3) + 2c12

(
(φ†1φ2)(φ†3φ2) + (φ†2φ1)(φ†3φ1)

)
+ h.c.

]
, (D.12)
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D.5 Σ(36) from Z4

Going to Σ(36) from Z4 is easier to see with a good choice for the basis of the latter
symmetry.

Let us choose the generator of Z4 to be

d = i√
3

ω
2 ω 1
ω ω2 1
1 1 1

 , (D.13)

instead of the usual diagonal form diag(i,−i, 1). Then, by also using

b =

0 1 0
0 0 1
1 0 0

 , c =

0 1 0
1 0 0
0 0 1

 , (D.14)

and diag(ω, ω2, 1), we get the symmetry Σ(36).
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