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We study the scalar sector of the most general multi-Higgs doublet model satisfying explicitly an exact
symmetry. We prove that such a model will exhibit decoupling if and only if the vacuum also satisfies the
same symmetry. This general property is also shown independently and explicitly for three Higgs doublet
models by considering in detail all symmetry-constrained models and their possible vacua. We also discuss
some specific characteristics of different decoupling patterns.
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I. INTRODUCTION

There is great interest in models with extra scalars, for
they can correct many of the shortcomings of the Standard
Model (SM), such as the need for extra sources of CP
violation to drive baryogenesis, the need for dark matter, or
even, for example through a hierarchy of vacuum expect-
ation values (vev), explain the smallness of neutrino
masses. An independent source of interest lies in the fact
that the ATLAS and CMS collaborations [1,2] have found a
fundamental scalar (the 125 GeV Higgs boson h125),
prompting the obvious question: how many fundamental
scalars are there in nature? Will it happen as in the fermion
sector, where there are multiple families? As a result, many
articles focus on N Higgs doublet models (NHDM)—for
reviews, see, for example, [3–5] and references therein.
But multiscalar models are already constrained by data

from LHC. In particular, the couplings of the h125 to gauge
bosons and the heaviest charged fermions are known to
coincide with couplings expected in the SM, with errors of
order 20% or better [6–9]. This feature is easy to explain in
models which have a so-called decoupling limit [10]. In
that limit, the extra scalar fields have large masses and what
is left at low energy is a state whose properties approach
naturally those of the SM Higgs boson.1 The most general
NHDM does have a decoupling limit. However, it has too

many parameters and may suffer from large flavor chang-
ing neutral scalar couplings, which are very constrained by
flavor physics experiments. So, it has become common-
place to add specific symmetries to the NHDM.
Nevertheless, it has been appreciated for a while that

many such symmetry-constrained models cannot accom-
modate a decoupling limit; see, for example, [10,15–17]. In
this article, we use a very general method to show that for
any NHDM with an exact symmetry, there will be a
decoupling limit if and only if the vacuum also respects
that symmetry. In contrast, Ref. [18] considered partial
results applicable to NHDM with soft symmetry breaking.2

We present the notation in Sec. II and prove our theorem
in Sec. III. An alternative to the method mentioned in
Sec. III would be to identify all the symmetry-constrained
NHDM models for a given N; and, within those, all the
possible vacua. One would then study the existence (or lack
thereof) of a decoupling limit for each case. This was the
method mentioned in [18] in connection with the 2HDM.
The 3HDM is the only other case where all symmetry-
constrained models [20] and their respective vacua [21]
have been identified. We present that alternative (and long)
calculation in detail in Sec. IV. Of course, it confirms our
general theorem, but it highlights how simple and elegant
the general result is. We draw our conclusions in Sec. V.

II. NOTATION

A. The scalar potential

Consider a SUð2ÞL ×Uð1ÞY gauge theory with N scalar
doublets Φi with hypercharge Y ¼ 1=2 (Q ¼ T3 þ Y). The
scalar potential can be written as [22]
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1There is also the alternative possibility, not considered here,
that one has alignment without decoupling [11–14].

2It is interesting to note that that also bounded from below
conditions deduced for the case with an exact symmetry can
be invalidated by the introduction of soft symmetry breaking
terms [19].
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VH ¼ YijðΦ†
iΦjÞ þ Zij;klðΦ†

iΦjÞðΦ†
kΦlÞ; ð1Þ

where, by Hermiticity,

Yij ¼ Y�
ji; Zij;kl ¼ Zkl;ij ¼ Z�

ji;lk: ð2Þ

We take the vacuum expectation values (vev) which
preserve electromagnetism

hΦii ¼
�

0

vi=
ffiffiffi
2

p
�
; ð3Þ

which may in general be complex. The stationary con-
ditions are

ðYij þ Zij;klv�kvlÞvj ¼ 0: ð4Þ

Except where indicated otherwise, we use implicit sum-
mation of repeated indices. Since the mass matrix for the
charged scalars is

ðM2
�Þij ¼ Yij þ Zij;klv�kvl; ð5Þ

the stationarity conditions in (4) may be rewritten as

ðM2
�Þijvj ¼ 0: ð6Þ

This expression will turn out to be quite useful.

B. Basis transformations and symmetries

It is very important to make clear the distinct concepts of
basis transformations, on the one hand, and of symmetries,
on the other. We start with the former. The theory was
originally written in terms of fieldsΦi. These may be traded
for new fields Φ0

i:

Φi → Φ0
i ¼ UijΦj: ð7Þ

This is a basis transformation which leaves the kinetic
terms unchanged, makingU aN × N unitary matrix. Under
this transformation, the potential’s parameters and the vevs
become

Yij → Y 0
ij ¼ UikYklU�

jl; ð8Þ

Zij;kl → Z0
ij;kl ¼ UimUkoZmn;opU�

jnU
�
lp; ð9Þ

vi → v0i ¼ Uijvj: ð10Þ

Since such a transformation can have no effect on the
physical predictions, only basis invariant combinations can
be observed experimentally [22].

We now turn to the concept of symmetry. Take

Φi → ΦS
i ¼ SijΦj; ð11Þ

where S is also a N × N unitary matrix. If (11) is indeed a
symmetry of the potential (1), then

Yij ¼ YS
ij ¼ SikYklS�jl; ð12Þ

Zij;kl ¼ ZS
ij;kl ¼ SimSkoZmn;opS�jnS

�
lp: ð13Þ

The symmetry may (or not) be spontaneously broken,
depending on whether (or not)

vi ¼ vSi ¼ Sijvj: ð14Þ

The crucial difference between a basis transformation and a
symmetry is that in the former the potential parameters do
not remain the same, while in the latter those coefficients
must remain invariant.
Consider a theory in which VH, when written in terms of

the fields Φi, has the symmetry S. Now, perform the basis
transformation in Eq. (7). When written in terms of the new
fieldsΦ0

i, VH is no longer invariant under S; rather, it is now
invariant under

S0 ¼ USU†: ð15Þ

C. The charged Higgs basis

The mass matrix for the charged scalars in Eq. (5) can be
diagonalized via a unitary N × N matrix Uch. But the basis
freedom in Eq. (7) also involves a unitary N × N matrix.
Thus, we may perform a basis change into a basis where the
charged components of each doublet already correspond to
mass eigenstates:

Φch
1 ¼

� Gþ

1ffiffi
2

p ðvþH0þ iG0Þ
�
; Φch

k ¼
� Hþ

k
1ffiffi
2

p φC0
k

�
; ð16Þ

whereHþ
k (k ¼ 2…N) are the physical charged Higgs mass

eigenstate fields, with corresponding masses m2
�;k. H

�
1 ¼

G� is the massless would-be Goldstone boson: m2
�;1 ¼ 0.

This is known as the charged Higgs basis (CH basis)
[23,24]. In this basis, only the first doublet has a vev,

vch1 ¼ v; vchk≠1 ¼ 0: ð17Þ

Thus, the CH basis is a particular case of what was dubbed
a “Higgs basis” in Ref. [22]. The matrix that performs the
transformation from the original basis into the CH basis
clearly satisfies
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Uch
1k ¼

v�k
v
: ð18Þ

We write the potential in the CH basis as

VH ¼ Ych
ij ðΦch†

i Φch
j Þ þ Zch

ij;klðΦch†
i Φch

j ÞðΦch†
k Φch

l Þ: ð19Þ

The quadratic and quartic coefficients in the CH basis are
obtained by substituting U with Uch in Eqs. (8) and (9),
respectively. The matrix of the charged scalars of Eq. (5)
becomes, in the CH basis,

ðM2
�Þchij ¼ Ych

ij þ Zch
ij;klðvchk Þ�vchl ; ð20Þ

¼ δijm2
�;i ðno sumÞ: ð21Þ

Recall that we have chosen the transformation Uch pre-
cisely such that the mass matrix is diagonal and the last
equality holds.
As in any basis, the stationarity conditions may still be

written as

ðM2
�Þchij vchj ¼ 0; ð22Þ

c.f. Eq. (6). It is clear from Eqs. (17) and (21) that Eq. (22)
indeed holds.

D. Decoupling

As shown in Ref. [18], the CH basis is particularly useful
when investigating the decoupling limit. Looking back at
Eq. (16), if one wishes to decouple the extra doublets, one
merely needs to take the masses m2

�;k (k ≥ 2) to be much
larger than v2. Indeed, it was shown in [18] that taking the
charged scalars very massive makes all extra neutral scalars
very massive, and, simultaneously, suppresses any CP
violation in scalar-pseudoscalar mixing. For completeness,
we explain this result in the Appendix.
How can one make ðM2

�Þch very large? Inspecting
Eq. (20), one might think that there could be various ways
to achieve that. However, this may only be achieved by
making Ych large.3 The point is that the quartic coefficients
Zch are quite constrained by unitarity and perturbativity
arguments. Common estimates take these to lie below 4π or
8π, with more precise statements possible—see, for exam-
ple, Ref. [23]. So, the decoupling limit may be written
schematically as

M2ch
� ¼ Ych þ Zchvch�vch⟶

decoupling
M2ch

� ¼ Ych: ð23Þ

Of course, the effective decoupling hinges on the possibil-
ity that (again schematically) Ych can be chosen much
larger than v2. Is this still possible in a symmetry-
constrained potential? This is what we turn to next.

III. THEOREM AND PROOF

Let us imagine that the potential in Eq. (1) is constrained
by requiring it invariant under a symmetry S, as in Eqs. (12)
and (13). Then, according to Eq. (15), the potential (19) in
the CH basis is invariant under

Sch ¼ UchSUch†: ð24Þ

In particular,

Ych ¼ SchYchSch†: ð25Þ

Equation (24) is the crucial observation that has been
missed before and, in particular, in Ref. [18]. We can learn
quite a great deal by combining the simplicity of the CH
basis with the form of the symmetry when written in the
CH basis.
The possibility that the symmetry is not (is) sponta-

neously broken depends on whether (or not)

Schij v
ch
j ¼ vchi : ð26Þ

This is just the CH basis version of Eq. (14). Since Sch is
N × N unitary and vch satisfies Eq. (17), one can show that
Eq. (26) holds if and only if Sch is of the form

Schvev preserving ¼
�
1 0

0 S̃ch

�
; ð27Þ

where S̃ch is any unitary ðN − 1Þ × ðN − 1Þ matrix. Notice
that this must hold irrespectively of the specific form of the
symmetry S chosen in the original basis. All such sym-
metries of the vacuum will map in the CH basis into
symmetries Sch of the form (27). Conversely, all sym-
metries of the type (27), will through S ¼ Uch†SchUch map
in the original basis onto symmetries of the vacuum, where
Eq. (14) holds.
It is important to take a brief detour here. The last

paragraph means that there is a very large set of symmetries
of the vacuum in the original basis: a set that can be mapped
onto SUðN − 1Þ. Imagine that one has a group of sym-
metries fS1; S2;…g of the Lagrangian, and one wishes to
inquire whether they survive spontaneous symmetry break-
ing. If this group is small, then it is conceivable that a
vacuum may be found that breaks them all. In contrast, if
the Lagrangian is invariant under a very large group, and
given the fact that there are so many possible invariances of

3We are being slightly cavalier in this definition. Indeed,
m2

�;1 ¼ 0 cannot be “made large,” and neither can Ych
11,

nor Ych
ij≠i. In fact, the latter must obey Ych

11 þ Zch
11;11v

2 ¼ 0 and
Ych
ij≠i þ Zch

ij;11v
2 ¼ 0. But this subtlety does not affect our argu-

ment, so we will steer clear from overly well defined yet rather
convoluted details. Whenever we mention “schematically” in the
text, this is the detail we have in mind.
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the vacuum, it becomes unlikely or even impossible for all
symmetries of the Lagrangian to be spontaneously broken.
Said otherwise, for a large enough group there will always
be some remnant symmetries after spontaneous symmetry
breaking. This is mentioned explicitly for the 3HDM in
Sec. 5.2 of Ref. [21]. Our Eq. (27) shows why this must be
true in general. Moreover, the existence or not of remnant
symmetries is very important for a full theory including
fermions. Indeed, it was shown in Refs. [25,26] that the
only way of obtaining a physical CKM mixing matrix and,
simultaneously, nondegenerate and nonzero quark masses
is to require that the vevs of the Higgs fields break
completely the full flavor group. This ends our detour into
the importance of Eq. (27).
We now state our theorem.
Theorem: Given a Lagrangian with symmetry S, the

theory has a decoupling limit if and only if the vacuum also
has the same symmetry S.
Let us start our proof by assuming that S is a symmetry

of the Lagrangian. Then, in the CH basis, Eq. (25) holds.
We now assume that there is a decoupling limit, in the form
of Eq. (23). Combining, we find

ðM2
�Þch ¼ SchðM2

�ÞchSch†: ð28Þ

But Eq. (28) holds if and only if Sch is of the form (27). (We
will even derive much stronger implications after Eq. (29)
below.) This, in turn, holds if and only if Sch is a symmetry
of the vacuum vch, as mentioned above. Thus, S is a
symmetry of vk in the original basis. In short, if S is a
symmetry of the Lagrangian and we require a decoupling
limit, then S must also be a symmetry of the vacuum.
Conversely, imagine that S is a symmetry of the

Lagrangian and a symmetry of the vacuum. Then, we
know from Eq. (5) that S is also a symmetry of the charged
mass matrix. Thus, Eq. (28) holds in the CH basis, with Sch

given in Eq. (24). The question now is whether Eq. (28)
allows or not for decoupling. We start by writing Eq. (28) as
the commutator equation

½ðM2
�Þch; Sch� ¼ 0: ð29Þ

Given Eq. (21), this translates into

ðm2
�;i −m2

�;jÞ Schij ¼ 0 ðno sumÞ: ð30Þ

If i ¼ 1 and j ≠ 1, then, because G� has mass m2
�;1 ¼ 0,

while m2
�;j ≠ 0 (assume this for the moment), one con-

cludes that Sch1j ¼ 0. Similarly, Schi1 ¼ 0. Moreover, since Sch

is a unitary matrix, one is forced into Sch11 ¼ 1, and Sch must
have the form in Eq. (27). This is the assertion we have used
in the previous paragraph.
Equation (30) also means that if Sch has any nonzero

entry with i ≠ j, then the corresponding charged scalars

must be degenerate. In particular, one might consider
theories with symmetries S corresponding to Sch1;j≠1 ≠ 0.
But those theories would have more than one massless
scalar field, and, thus, be ruled out by experiment.4

Excluding those cases, the charged scalars have masses
that may be taken to infinity in a way consistent with the
symmetry Sch in the CH basis or (which is the same) S in
the original basis. Thus, the theory does have a decoupling
limit. In short, if S is a symmetry of the Lagrangian and of
the vacuum, then the theory has a decoupling limit.
Given our theorem, and starting from a scalar potential

invariant under S, Eq. (29) can be viewed as an effective
definition of decoupling. Indeed, since commuting matrices
do so in any basis, an alternative definition would be

½M2
�; S� ¼ 0: ð31Þ

Of course, it is much simpler to check whether or not
Sv ¼ v, as proposed in the theorem. Still Eq. (31) is
interesting.
Equation (30) is even more powerful than it seems. It

tells us exactly how the decoupling might be achieved. Let
us concentrate on i ≠ 1 and j ≠ 1. To do so we, think
of S̃chab, where a; b ¼ 2; 3;…N, thus sidestepping the
Goldstone boson issues already discussed. For a given
a ≠ b there are two possibilities
(1) S is such that S̃chab ≠ 0 ⇒ m2

�;a ¼ m2
�;b are degenerate.

(2) m2
�;a ≠ m2

�;b are not degenerate ⇒ S is such that
S̃chab ¼ 0.

As an illustration, let us consider the 3HDM to be fully
analyzed below. Requiring decoupling, there are two
possibilities for S. It may lead into

Sch ¼

0
B@

1 0 0

0 eiα 0

0 0 eiβ

1
CA; ð32Þ

in which case the two charged scalars may have different
masses m2

�;2 ≠ m2
�;3 that can be taken to infinity inde-

pendently. This includes in particular the possibility that
one decouples the 3HDM into an effective 2HDM by
taking only m2

�;3 → ∞. Alternatively, S may be such that

Sch ¼
�
1 0

0 S̃ch

�
; ð33Þ

where now S̃ch is a nondiagonal unitary 2 × 2matrix. Then,
m2

�;2 ¼ m2
�;3 and the 3HDM can only decouple directly

into the SM by taking m2
�;2 ¼ m2

�;3 → ∞.

4The presence of a second massless charged scalar field could
possibly be solved by including an extra gauge group, of which
this would be the corresponding would-be Goldstone boson. We
will not consider that possibility here.
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This study has an impact on non-Abelian symmetry
groups. Indeed, take some symmetry Sk (k ¼ 1; 2;…), and
the corresponding S0k, obtained from Sk through Eq. (15)
with the same basis transformation U for all. If ½S1; S2� ¼ 0
in one basis, then ½S01; S02� ¼ 0 in another. As a result, if the
generators of a group are not simultaneously diagonal in
some basis, neither will they be in any other basis. In
particular

½S1; S2� ≠ 0 ⇒ ½Sch1 ; Sch2 � ≠ 0: ð34Þ

Thus, in such a case, one of the two Schk will have off-
diagonal entries and the decoupling charged scalars cor-
responding to those entries will be degenerate. We will
illustrate both cases (32) and (33) with the full analysis of
the 3HDM in the next section.
In contrast, Abelian groups always permit nondegenerate

charged scalar masses. Indeed, if ½M2
�; S� ¼ 0, S is in its

diagonal basis, and S has nondegenerate eigenvalues, then
M2

� is diagonal and we are already in the charged Higgs
basis. If S has a degenerate subspace, then M2

� may be off
diagonal in that subspace. But bringing M2

� into its CH
basis diagonal form will not affect the diagonal form of S.
Indeed, in that subspace S is proportional to the unit matrix
and is unaffected by the mass diagonalization eventually
required in that subspace. We are again in the CH basis.
Thus proving our assertion.

IV. A FULL STUDY OF 3HDM

We have already proved for any NHDM that, given a
Lagrangian with symmetry S, the theory has a decoupling
limit if and only if the vacuum also has the same symmetry
S. However, the 3HDM is the only NHDM besides the
2HDM where all the symmetries and corresponding vacua
are known [20,21]. Thus, it is interesting to redo the proof
of our theorem for N ¼ 3 by (i) analyzing all possible
symmetry-vacua pairs one by one, (ii) studying their mass
matrices (charged and neutral), and (iii) probing whether
(or not) they allow for decoupling in accordance with the
theorem (as they must). This is also interesting because it
will allow us to illustrate some of the remarks on the exact
features of the alignment which we have made at the end of
the previous section.

A. General method

Here, we describe the method used to test whether the
masses of the particles predicted by several 3HDM have a
decoupling limit or not.
The inputs to this method are a potential VH and a

respective vev.
(1) The stationarity equations impose conditions on the

parameters of the potential, whose number depends
on the degrees of freedom the vev has. These
conditions will be referred to as ta.

(2) Every doublet is expanded around the vev—
c.f. Eq. (35)—and substituted back in the potential,
such that the potential will have extra functional
dependencies—c.f. Eq. (36):

Φi ¼
�

φþ
i

vi þ ðHi þ iχiÞ=
ffiffiffi
2

p
�
; ð35Þ

VH ¼ VHðφþ
i ;φ

−
i ; vi; Hi; χiÞ: ð36Þ

(3) The mass (squared) matrices are calculated as being
the Hessian of the potential in two different sub-
spaces: the charged subspace and the neutral one:

ðM2
�Þij ¼

∂2VH

∂φþ
i ∂φ−

j

����
ftag;ðφþ

b φ
−
b ;Hb;χbÞ→0

; ð37Þ

ðM2
neutralÞij ¼

∂2VH

∂ðH; χÞi∂ðH; χÞj

����
ftag;ðφþ

b φ
−
b ;Hb;χbÞ→0

;

ð38Þ

where, recall, ta are the conditions obtained from
minimization of the potential in step 1.

(4) The eigenvalues of these matrices are the (squared)
masses of the charged scalars in the first subspace
(φþ;φ−) and of the neutral scalars in the second
(H, χ).

(5) Whether the masses have a decoupling limit or not
can only be decided by looking at the parametrical
dependence of the eigenvalues. If any mass depends
on a free parameter such as mi (where i ¼ 1, 2, 3),
then there is a decoupling limit. Otherwise, the
masses are said to be nondecoupling.

It is often the case where the matrix in the subspace
(H, χ) is not diagonalizable analytically. Indeed, taking the
obvious massless Goldstone boson out of the matrix, this
still involves the solution of a polynomial of degree five. In
such cases we evaluate the decoupling limit using the trace
of the matrix. This works because the trace of the matrix is
the sum of its eigenvalues, all of which are masses squared
and, thus positive. Thus, the trace can be taken to infinity if
and only if there is at least one massive state which can.
In contrast, if no mass can decouple, then neither will
the trace.

B. Some simple examples

Using the method described above, we can now show
more concretely what is decoupling and nondecoupling. To
this end we apply the method to a three Higgs doublet
model with a Z2 × Z2 × Z�

2 symmetry. The potential for
the model may be written as
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VH ¼ −
X
1≤i≤3

m2
i ðϕ†

iϕiÞ þ
X

1≤i≤j≤3
λijðϕ†

iϕiÞðϕ†
jϕjÞ

þ
X

1≤i<j≤3
λ0ijðϕ†

iϕjÞðϕ†
jϕiÞ þ λ1ðϕ†

2ϕ3Þ2

þ λ2ðϕ†
3ϕ1Þ2 þ λ3ðϕ†

1ϕ2Þ2 þ H:c: ð39Þ

All possible vevs for this model (and to all other realizable
symmetry-constrained 3HDMmodels) can be found in [21].
First, as an example of decoupling, we take a vev that

does not break the Z2 × Z2 × Z�
2 symmetry: the vev

ðv; 0; 0Þ (with v real). Following the method described
in Sec. IVA, we obtain the mass matrices. For the charged
fields (φ�

i ), the mass matrix is

0
B@

0 0 0

0 λ12v2

2
−m2 0

0 0 λ13v2

2
−m3

1
CA: ð40Þ

The mass matrix for the neutral fields (i.e., Hi and χi) is

0
BBBBBBBBB@

2λ11v2 0 0 0 0 0

0 v2
2
ðλ12 þ λ012Þ −m2 0 0 0 0

0 0 v2
2
ðλ13 þ λ013Þ −m3 0 0 0

0 0 0 0 0 0

0 0 0 0 v2
2
ðλ12 þ λ012Þ −m2 0

0 0 0 0 0 v2
2
ðλ13 þ λ013Þ −m3

1
CCCCCCCCCA
: ð41Þ

The matrices obey the minimum conditionm1 ¼ λ11v2. We
see that both matrices are immediately diagonal. And, from
the eigenvalues, we notice that the fields Φ2 and Φ3 can
decouple, because both have a free parameter (m2 and m3,
respectively) that can be taken to be arbitrarily large. In this
case, the vev does not break the symmetry and there is
decoupling.
For the second example, we take the vev ð0; v2; v3Þ

for the case λ1 < 0. We note that this vev breaks the
Z2 × Z2 × Z�

2 symmetry, leaving a residual symmetry of
the type Z2 ⋊ Z�

2. Following the method described in
Sec. IVA, we obtain nondiagonal matrices. The mass
eigenvalues for the charged fields are

�
0;−

1

2
ð2λ1þ λ023Þðv22þv32Þ;

1

2
ðλ12v22þλ13v32−2m1Þ

	
;

ð42Þ
with corresponding eigenvectors��

0;
v2
v3

; 1

�
;

�
0;−

v3
v2

; 1

�
; ð1; 0; 0Þ

	
ð43Þ

in the basis (φþ
1 , φþ

2 , φþ
3 ). Note that the first two

eigenvectors need a normalization constant, which is
irrelevant for our purposes.
For the neutral fields the eigenvalues are

�
0;−2ðλ1v22 þ λ1v32Þ;

1

2
ðv22ðλ12 þ λ012 − 2λ3Þ þ v32ðλ13 þ λ013 − 2λ2Þ − 2m1Þ;

1

2
ðv22ðλ12 þ λ012 þ 2λ3Þ þ v32ðλ13 þ λ013 þ 2λ2Þ − 2m1Þ;

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v22v32ð2λ1 þ λ23 þ λ023Þ2 þ ðλ22v22 − λ33v32Þ2

q
þ λ22v22 þ λ33v32;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v22v32ð2λ1 þ λ23 þ λ023Þ2 þ ðλ22v22 − λ33v32Þ2
q

þ λ22v22 þ λ33v32
	
: ð44Þ

The eigenvectors associated with these eigenvalues are, in the basis ðH1; H2; H3; χ1; χ2; χ3Þ,��
0; 0; 0; 0;

v2
v3

; 1

	
;

�
0; 0; 0; 0;−

v3
v2

; 1

	
; f0; 0; 0; 1; 0; 0g; f1; 0; 0; 0; 0; 0g;

�
0;
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v22v32ð2λ1 þ λ23 þ λ023Þ2 þ ðλ22v22 − λ33v32Þ2

p þ λ22v22 − λ33v32

v2v3ð2λ1 þ λ23 þ λ023Þ
; 1; 0; 0; 0

	
;

�
0;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v22v32ð2λ1 þ λ23 þ λ023Þ2 þ ðλ22v22 − λ33v32Þ2

p
þ λ22v22 − λ33v32

v2v3ð2λ1 þ λ23 þ λ023Þ
; 1; 0; 0; 0

		
: ð45Þ
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We see from the eigenvalues that two of the fields
do not decouple (these are a mixture of Φ2 and Φ3

in the eigenbasis), since there is no λ free term that
we can make arbitrarily large. Here we see that the vev
breaks the symmetry of the model and there is no
decoupling limit.
We have only shown explicitly two simple examples.

There are other possible vevs in the Z2 × Z2 × Z�
2 model.

However, some of them will result in very complicated
mass matrices, where determining analytically the
eigenvalues is no longer possible. In such cases, it is
necessary to evaluate the trace of the matrices to see if
there is decoupling or not, as described at the end of the
previous section.

C. Exhaustive list of symmetry-constrained 3HDM

Following the method and examples above, we have
studied all the symmetry-vacua pairs identified in Ref. [21].
Our results are shown in Table I.
There are several things to note in Table I. The parameter

ω ¼ ei
2π
3 , meaning that ω3 ¼ 1. The parameter λ in ξi ¼

ξiðv1; v2; v3; λÞ stands for all the coupling parameters in the
potential. The dependence of ξi on these parameters can be
determined following the procedure described in [21]. There
arevevs thatwere notwritten down since they reduce trivially
to the other cases studied. There are several other vevs that
can be obtained from the ones listed by thegroup action; such
a collection of vevs is dubbed “orbits” in Ref. [21]. Vevs on
the same orbit lead to identical physical consequences.

TABLE I. List of all symmetry-constrained models via Higgs family symmetries in the 3HDMwith corresponding
vacua from [20,21]. The third column indicates whether or not the vacuum breaks the symmetry. For each pair, we
have found the charged and neutral scalar mass matrices and (as explained in the text) have identified whether or not
there is decoupling. This is noted in the fourth column.

Group G vev Breaks G? Decoupling ?

Z2 × Z2 × Z�
2 ðv; 0; 0Þ No Y

ð0; v2eiπ4; v3e−iπ4Þ Y No
ð0; v2;�v3Þ Y No

ðv1ei
k1π
2 ; v2ei

k2π
2 ; v3ei

k3π
2 Þ, ki ∈ Z Y No

ðv1eiξ1 ; v2eiξ2 ; v3eiξ3Þ, ξi ¼ ξiðv1; v2; v3; λÞ Y No

Z3 ⋊ Z�
2 ðv; 0; 0Þ No Y

ðv1; v2; 0Þ Y No

ðv1; v2ei
k2π
3 ; v3ei

k3π
3 Þ, ki ∈ Z Y No

ðv1eiξ1 ; v2eiξ2 ; v3eiξ3Þ, ξi ¼ ξiðv1; v2; v3; λÞ Y No

Z4 ⋊ Z�
2 ðv; 0; 0Þ No Y

ð0; v2ei
k2π
4 ; v3ei

k3π
4 Þ, ki ∈ Z Y No

ðv1;�v2e∓ikπ
4 ;∓ v3e∓ikπ

4 Þ, k ∈ Z Y No

D4 ðv; 0; 0Þ No Y
ðv1; v2; v3Þ Y No
ðv1;�v2eiξ;�v2e−iξÞ Y No
ðv1; v2; iv3Þ Y No

S3 ðv; 0; 0Þ No Y
ðv1; v2; v3Þ Y No
ðv1; v2eiξ; v2eiξÞ Y No

S4 ðv; 0; 0Þ Y No
ðv; v; vÞ Y No
ð�v; vω; vω2Þ Y No
ð0; v; ivÞ Y No

A4 ðv; 0; 0Þ Y No
ðv; v; vÞ Y No
ð�v; vω; vω2Þ Y No
ð0; v; veiαÞ Y No

Δð27Þ family ðvω; v; vÞ Y No
ðvω2; v; vÞ Y No
ðv; 0; 0Þ Y No
ðv; v; vÞ Y No
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Finally, from the table we can check that indeed for the
3HDM, whenever the vev breaks the group symmetry there
is no decoupling. Conversely, if the vev is invariant under
the group action, then there is a decoupling limit. This is a
confirmation of our theorem via an explicit independent
method, albeit it is only possible for the 3HDM.

D. The symmetry-constrained 3HDM models
with decoupling

Inspection of Table I shows that there are only five
symmetry-vacua pairs that do allow for a decoupling limit.
These are
(1) Z2 × Z2 × Z�

2 with vev ðv; 0; 0Þ. The charged scalar
masses has been presented in Eq. (40). This is an
Abelian group, and there are two different charged
scalar masses that, in agreement with the discussion
after Eq. (32), may be taken to infinity independently.

(2) Z3 ⋊ Z�
2 with vev ðv; 0; 0Þ. The charged scalar mass

matrix is

0
B@

0 0 0

0 −m2 þ v2λ12 0

0 0 −m3 þ v2λ13

1
CA: ð46Þ

Again, in accordance with the discussion after
Eq. (32), there are two different charged scalar
masses that may be taken to infinity independently.

(3) Z4 ⋊ Z�
2 and vev ðv; 0; 0Þ. The charged scalar mass

matrix is

0
B@

0 0 0

0 −m2 þ v2λ12 0

0 0 −m3 þ v2λ13

1
CA; ð47Þ

following the decoupling pattern of the previous
two cases.

(4) D4 with vev ðv; 0; 0Þ. Here the charged scalar mass
matrix is

0
B@

0 0 0

0 −m2
2 þ λ3v2 þ λ03v

2 0

0 0 −m2
2 þ λ3v2 þ λ03v

2

1
CA;

ð48Þ

which is degenerate. Thus, both charged scalar
masses must be taken to infinity simultaneously,
and one can only reach the full 3HDM → SM
decoupling limit. This is a confirmation of the
discussion following Eq. (33), and it is related with
the fact that the D4 generators can be taken as

a3 ¼ diagð1; i;−iÞ; g1 ¼

0
B@

1 0 0

0 0 1

0 1 0

1
CA; ð49Þ

which do not commute.
(5) S3 with vev ðv; 0; 0Þ. Here the charged scalar mass

matrix coincides with Eq. (48). Thus, as for D4, the
charged scalar masses are degenerate and the gen-
erators of S3,

a3 ¼ diagð1;ω;ω2Þ; g1 ¼

0
B@

1 0 0

0 0 1

0 1 0

1
CA; ð50Þ

are also noncommuting.
One might be surprised by the fact that all the vevs in

Table I that lead to decoupling are ðv; 0; 0Þ, which, by
definition, is equivalent to stating that the fields are already
in a Higgs basis. In fact, noticing that the matrices in
Eqs. (40) and (46)–(48) are already diagonal, we know that
the fields are actually written from the start in the CH basis.
(Recall that the CH basis is a particular case of a Higgs
basis.) As far as we can tell, this has no profound physical
justification. We know for certain that the vevs could have
been written in any other form in the same orbit, had we
changed the form of the symmetry generators. This is easily
illustrated in the 2HDM. One can study the Z2 group
generated by

�
1 0

0 −1

�
with vev ðv; 0Þ; ð51Þ

which does lead to decoupling, or one can study the group
generated by5

�
0 1

1 0

�
with vev ðv; vÞ=

ffiffiffi
2

p
; ð52Þ

which also leads to decoupling. In fact, the models and
vacua in Eqs. (51) and (52) are exactly the same but written
in different bases. Since the vev in Eq. (52) does not
correspond to a Higgs basis, we see that the fact that all the
situations in Table I that lead to decoupling are already in
the CH basis is a red herring. But, at least in principle, it
could happen that all vacua leading into decoupling should
be in the same orbit as a vev with only one nonzero entry.
We see no reason for that, but we cannot exclude it
forthright, so this is an open problem.

5The model based on the group generated by the matrix in
Eq. (52) was dubbed Π2 in Refs. [27,28]. Of course, it is just Z2

in a different basis. But the distinction is interesting if one were
going to impose a symmetry under both Eqs. (51) and (52) in the
same basis.
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V. CONCLUSIONS

We have studied the decoupling properties of the most
general NHDM model. We have shown a very powerful
theorem, stating that, given a Lagrangian with scalar family
symmetry S, the theory has a decoupling limit if and only if
the vacuum also has the same symmetry S. We have also
produced an independent proof for the special case of the
3HDM. This was possible because, in the 3HDM, all the
symmetry-constrained realizable models and their vacua
are known [21]. This special 3HDM proof complements a
proof along the same lines for the 2HDM, mentioned in
[18]. Producing results along these lines for any NHDM
with N ≥ 4 would require the knowledge of all the
symmetry-constrained models and corresponding vacua
for those cases as well. This is unknown at the moment
and is certainly exceedingly challenging. This highlights
how elegant our proof for the general NHDM really is.
Along the way, we proved an interesting result concern-

ing the behavior of the charged scalar mass matrix M2
�

under an exact symmetry. Symmetry under an Abelian
group can accommodate nondegenerate charged scalar
masses, while a non-Abelian group will per force imply
some degeneracy in charged scalar masses.
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APPENDIX: DECOUPLING CHARGED HIGGS
MASSES FORCE ALIGNMENT

In this Appendix, we show that taking all charged scalar
masses to infinity in NHDM forces alignment [18].

We write φC0
k ¼ ρk þ iχk in Eq. (16), and we substitute

Eq. (16) in Eq. (19), expanding all terms. The neutral
scalars’ mass matrix is found as [23]

M2
0 ¼

�
M2

ρρ M2
ρχ

ðM2
ρχÞT M2

χχ

�
; ðA1Þ

ðM2
ρρÞij ¼ δijm2

�;i þ v2RefZch
i1;1j þ Zch

i1;j1g; ðA2Þ

ðM2
χχÞij ¼ δijm2

�;i þ v2RefZch
i1;1j − Zch

i1;j1g; ðA3Þ

ðM2
ρχÞij ¼ −v2ImfZch

i1;1j − Zch
i1;j1g; ðA4Þ

where no sum over repeated indices is implied. Under the
canonical definition of CP, M2

ρρ is the mass matrix of the
CP-even scalars,M2

χχ of the CP-odd scalars, andM2
ρχ gives

the mixing between the CP-even and CP-odd scalars.
Assuming for simplicity that all couplings and vevs are
real, M2

ρχ ¼ 0, there is no CP violation in scalar-pseudo-
scalar mixing, and M2

0 becomes block diagonal. We now
turn to M2

ρρ in this case.
Recall that m2

�;1 ¼ 0 corresponds to the massless G�.
Thus, ðM2

ρρÞij is of order v2 for all elements where i ≠ j or
i ¼ j ¼ 1. Let us take the charged scalar masses very large,
i.e., m2

�;i≠1 ∼M2 ≫ v2. Then, all elements along the
diagonal of M2

ρρ (except for the first) become much larger
than the rest. Under these circumstances, there is one
eigenvalue of order v2 and N − 1 eigenvalues of order M2.
Moreover, the mixing angles between the first field (the one
that carries all the vev and, thus, that couples as in the SM)
and the rest, goes as v2=M2. That is, as we take larger and
larger charged scalar masses, we find that the lightest
neutral scalar particle becomes closer and closer to the SM
Higgs [18]. This is what we name “decoupling,” or, more to
the point, “alignment from decoupling.”
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