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Abstract Models with scalar doublets and charged scalar
singlets have the interesting property that they have couplings
between one Z boson and two charged scalars of different
masses. This property is often ignored in phenomenological
analysis, as it is absent from models with only extra scalar
doublets. We explore this issue in detail, considering h →
Zγ , B → Xsγ , and the decay of a heavy charged scalar into
a lighter one and a Z boson. We propose that the latter be
actively searched for at the LHC, using the scalar sector of
the Zee-type models as a prototype and proposing benchmark
points which obey all current experimental data, and could
be within reach of the LHC.

1 Introduction

Over many decades, the Standard Model (SM) [1–3] has been
confirmed to unprecedented precision. This culminated with
the 2012 experimental detection of a fundamental scalar par-
ticle with mass 125 GeV (the Higgs Boson h125) [4,5], which
had been proposed in the early 1960’s [6,7]. Still, the SM
leaves unanswered questions, from the nature of neutrino
masses, to the origin of Dark Matter (DM). Having found
one fundamental scalar, the most pressing question is: are
there more fundamental scalars in Nature? There is a large
international effort to answer this question, both from the
theoretical point of view, and from the robust experimental
physics programs currently pursued at CERN’s LHC.

Thus, one is lead to study and search for signals of extra
scalars. It is known experimentally that the masses of the W
and Z bosons bear a relation very close to that predicted in the
SM: MZ cos θW /MW ∼ 1, where θW is the Weinberg angle.
This holds automatically if the extra scalars are in doublets
or singlets of the electroweak gauge group. Thus, we are lead
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to study theories with any number of scalar doublets and/or
singlets; the latter neutral and/or charged.

A case of particular interest is the Zee model [8] with
two Higgs doublets and one charged singlet, originally pro-
posed to explain naturally small neutrino masses, and later
adapted to explain also DM [9,10]. The Zee model with an
extra Z2 symmetry proposed by Wolfenstein [11] is not con-
sistent with current data from neutrino oscillations [12,13],
but the original proposal is still consistent with all leptonic
experimental results [14,15]. But the scalar sector of the Zee
model (and of models having the same scalar sector, which
we dub “Zee-type” models) also has another striking feature
which is mostly ignored; it is the minimal model predicting
the existence of couplings ZH±

1 H∓
2 between the Z gauge

boson and two charged scalars (H+
1 and H+

2 ) of different
mass. This is the feature highlighted in this article.

Even before direct detection of the extra charged scalar
particles, ZH±

1 H∓
2 couplings could potentially have a vir-

tual effect on current measurements, such as h125 → Zγ .
We discuss this example in detail. In fact, the contribution of
the charged scalars to the branching ratio can even vanish,
but that is not because the Z couples to two different charged
scalars, but rather because there are two charged scalars con-
tributing in the loop. Indeed, this feature is already present for
instance in the 3HDM, where there are two charged scalars
but the coupling of the Z to them is diagonal. Although there
is a modulation of the result with the mixing angle between
the two charged Higgs, this is hidden when the sum over all
diagrams is performed.

To study this model we took into account all the theo-
retical and experimental constraints coming from the scalar
and quark sectors. In particular, we considered in detail the
influence of the bounds coming from BR(B → Xsγ ) [16].
This is especially important because, as there are two charged
Higgs, one can evade the 580 GeV limit for the 2HDM [17].
We will discuss the implications of this for Zee-type models.
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A distinctive signal for this model with its ZH±
1 H∓

2 cou-
plings is the decay of the heavier charged Higgs into the
lightest one and one Z . We performed an analysis of the
parameter space to look for regions where this decay can be
large. This lead us to identify examples of benchmark points
where the decay H+

2 → H+
1 Z can be large as well as the

decay H+
1 → t b̄, leading to a clear signature that should be

searched for at the LHC.
The paper is organized as follows. In Sect. 2, we review

the formalism for models with an arbitrary number of dou-
blets and singlets, and in Sect. 3 we apply it to the case of
the scalar and quark sectors of Zee-type models. In Sect. 4
we discuss the constraints on the model, both theoretical and
experimental. Our results are presented in Sect. 5 where we
discuss the impact on h → Zγ and in Sect. 6 where we
study the novel decay H+

2 → H+
1 Z . For this decay we pro-

pose benchmark points with noteworthy features in Sect. 7.
The possibility of having neutrino masses and mixings in
these type of models is briefly discussed in Sect. 8. After
the conclusions in Sect. 9, some appendices are included. In
Appendix A we list the relations of the parameters of the
potential with the masses and angles and in Appendix B,
we collect the relevant couplings of the charged Higgs. The
details of the calculation of the BR(B → Xsγ ) are given in
Appendix C, while the detailed formulas for the loop decays
are presented in Appendix D and for perturbative unitarity in
Appendix E. As far as we know, the latter are presented here
for the first time.

2 Models with an arbitrary number of doublets and
singlets

We consider the models studied in [18] and use a similar
notation to the one presented there. The scalar part of the
model consists of nd doublets of SU (2), nc singly charged
singlets and nn real neutral singlets. The fermionic and vector
fields are identical to the SM content.

The scalars are denoted by

φa =
(

ϕ+
a

ϕ0
a

)
, a = 1, 2, . . . , nd ,

χ+
i , i = 1, 2, . . . , nc ,

χ0
r , r = 1, 2, . . . , nn , (1)

and the neutral fields can be expanded around their vevs as

ϕ0
a = 1√

2
(va + ϕ0

a
′)

χ0
r = ur + χ0

r
′ , (2)

with complex va and real ur , where the former satisfy
v = (∑ |va |2

) � 246 GeV. With a total of n = nd + nc
complex singly charged scalar fields and m = 2nd + nn real

neutral scalar fields, we can define the change to the physical
basis S+

α (α = 1, 2, . . . , n) and S0
β (β = 1, 2, . . . ,m) with

masses m±α and m0β respectively, throughout the unitary
transformations

ϕ+
a = Uα

a S
+
α ,

χ+
i = T α

i S+
α ,

ϕ0
a
′ = V β

a S0
β ,

χ0
r

′ = Rβ
r S

0
β , (3)

where the last matrix is real and the others are complex. In
this text, every index appearing up and down in the same
expression is assumed to be summed over. The matrices

Ũα
α′ =

(
Uα
a

T α
i

)
,

Ṽ β

β ′ =
⎛
⎜⎝

Re V β
a

Im V β
a

Rβ
r

⎞
⎟⎠ , (4)

are, respectively, the unitary and orthogonal matrices that
diagonalize the charged and neutral mass matrices. The phys-
ical fields with indices α = 1 and β = 1 are assigned to
the unphysical Goldstone bosons, and the neutral S0

2 field
is assigned to the Higgs particle measured at the LHC with
mass mh � 125 GeV. We note that even though the matri-
ces defined in Eq. (4) are unitary, the matrices in Eq. (3) do
not need to be. In fact, only if there is no mixing between
the doublet fields and the charged singlets, can the matrices
be brought to a basis where they become composed of zeros
surrounding a unitary square matrix. This characteristic is of
significant importance as we will show later.

2.1 Scalar potential

For simplicity, we assume a discrete symmetry under which
all fields transform trivially, except the neutral singlet scalars,
for which χ0

r → −χ0
r . The scalar potential may then be

conveniently written as

V = μab
1 φ†

aφb + μ
i j
2 χ+

i χ−
j + μrs

3 χ0
r χ0

s

+ (μabi
4 φaiσ2φbχ

−
i + h.c.)

+ λabcd1 φ†
aφbφ

†
cφd + λ

i jkl
2 χ+

i χ−
j χ+

k χ−
l

+ λrstu3 χ0
r χ0

s χ0
t χ0

u + λ
abi j
4 φ†

aφbχ
+
i χ−

j

+ λabrs5 φ†
aφbχ

0
r χ0

s + λ
i jrs
6 χ+

i χ−
j χ0

r χ0
s , (5)

where σ2 is the second Pauli matrix, μ3 and λ3 are real and
the rest complex, while h.c. stands for hermitian conjugate.
The parameters are subject to the relations

μab
1 = μba∗

1 , μ
i j
2 = μ

j i∗
2 ,
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μrs
3 = μsr

3 , μabi
4 = −μbai

4 , (6)

and

λabcd1 = λcdab1 = λbadc∗1 , λ
i jkl
2 = λ

kli j
2 = λ

j ilk∗
2 ,

λrstu3 = λ
(rstu)
3 , λ

abi j
4 = λ

baji∗
4 ,

λabrs5 = λbars∗5 = λabsr5 , λ
i jrs
6 = λ

j irs∗
6 = λ

i jsr
6 , (7)

where (rstu) stands for any permutation of the indices rstu.
After expanding around the vevs with Eq. (2) and using
Eqs. (3) and (4) we are interested in the cubic terms

V ⊃ λabcd1 (ϕ0
a
′∗vb + v∗

aϕ
0
b
′)ϕ−

c ϕ+
d

+ 1

2
λ
abi j
4 (ϕ0

a
′∗vb + v∗

aϕ
0
b
′)χ+

i χ−
j

+ 2usλ
abrs
5 ϕ−

a ϕ+
b χ0

r
′ + 2usλ

i jrs
6 χ+

i χ−
j χ0

r
′

μabi
4√
2

(ϕ+
a ϕ0

b
′ − ϕ0

a
′ϕ+

b )χ−
i

+ μabi∗
4√

2
(ϕ−

a ϕ0
b
′∗ − ϕ0

a
′∗ϕ−

b )χ+
i (8)

=
[
λabcd1 (V β∗

a vb + v∗
aV

β
b )Uα1∗

c Uα2
d +

1

2
λ
abi j
4 (V β∗

a vb + v∗
aV

β
b )T α1

i T α2∗
j

+ 2usλ
abrs
5 Uα1∗

a Uα2
b Rβ

r + 2usλ
i jrs
6 T α1

i T α2∗
j Rβ

r

μabi
4√
2

(Uα1
a V β

b − V β
a U

α1
b )T α2∗

i

+ μabi∗
4√

2
(Uα2∗

a V β∗
b − V β∗

a Uα2∗
b )T α1

i

]
S+
α1
S−
α2
S0
β

≡ gβα1α2 v S+
α1
S−
α2
S0
β , (9)

and in the quadratic terms with charged scalars, given by

V ⊃ (μab
1 + λabcd1 vdv

∗
c + λabrs5 urus)ϕb

+ ϕ−
a + (μ

i j
2 + 1

2
λ
abi j
4 vbv

∗
a + λ

i jrs
6 urus)χ

+
i χ−

j

+ μabi
4√
2

(vaϕ
+
b − vbϕ

+
a )χ−

i

+ μabi∗
4√

2
(v∗

aϕ
−
b − v∗

bϕ
−
a )χ+

i (10)

=
[ (

μab
1 + λabcd1 vdv

∗
c + λabrs5 urus

)
Uα1
b Uα2∗

a

+
(

μ
i j
2 + 1

2
λ
abi j
4 vbv

∗
a + λ

i jrs
6 urus

)
T α1
i T α2∗

j

+ μabi
4√
2

(
vaU

α1
b − vbU

α1
a

)
T α2∗
i

+ μabi∗
4√

2

(
v∗
aU

α2∗
b − v∗

bU
α2∗
a

)
T α1
i

]
S+
α1
S−
α2

. (11)

We see from Eq. (10) that there is no mixing between the
charged fields originating from doublets with the charged
fields originating from singlets, unless μabi

4 �= 0 for some
combination of indices. Thus, the cubic terms in the potential
(5) are essential for the non-unitary behaviour of the matrix
Uα
a that will be shown to be mandatory for the appearance of

ZH+
1 H−

2 couplings that change the “flavour” of the charged
scalars. Also, Eq. (8) tells us that the coupling h0H+

1 H−
2

exists with μabi
4 = 0 only for H+

1 and H+
2 belonging both

to the doublet sector or both to the singlet sector, while only
μabi

4 �= 0 induces a mixing of the sectors. Since μabi
4 is anti-

symmetric in (a, b), the minimal scalar sector containing
such a coupling is a model with two doublets and one charged
singlet. This corresponds to the Zee-type models, which we
study in the next section.

2.2 Gauge-scalar couplings

The part of the Lagrangian regarding the covariant derivative
of the scalars, was derived in Eq. (29) of [18]. The relevant
terms for our purposes are

L ⊃ ieAμδαα′
(S+

α ∂μS−
α′ − S−

α′∂μS+
α )

+ e2AμA
μδαα′

S−
α′ S+

α

+ g

(
MWW+

μ W−μ + MZ

2cW
ZμZ

μ

)
Re(ω†V )β S0

β

− i
g

2cW
Zμ(2s2

W δαα′ − (U†U )α
′α)(S+

α ∂μS−
α′ − S−

α′∂μS+
α )

− eg

cW
AμZ

μ(2s2
W δαα′ − (U†U )α

′α)S−
α′ S+

α . (12)

where ωa = va/v. Here we finally observe the appearance of
the expression (U †U )α

′α that is diagonal if Uα
a is unitary. In

models without a μabi
4 coupling, this expression will then be

diagonal and there will be no “flavour” changing ZH+
1 H−

2
coupling. The exploration of this under-appreciated point is
one of the distinguishing features of this work.

2.3 Fermion-scalar couplings

The Yukawa Lagrangian is the same as for the NHDM for
N = nd , and the fermion-scalar couplings were calculated
for that model in [19]. The calculation for our model proceeds
in a similar fashion, leaving us with the relevant Lagrangian
term

L ⊃ −1

v
d̄L
(
Nα
d B

β
α S

0
β

)
dR − 1

v
ūL
(
Nα
u B

β∗
α S0

β

)
uR

− 1

v
ēL
(
Nα
e B

β
α S

0
β

)
eR

− ūLV
(
Nα
d S

+
α

)
dR + d̄LV

† (Nα
u S

−
α

)
uR + h.c. , (13)
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where

Bβ
α = U †a

α V β
a ,

Nα
d = v√

2
U †
dLΓ aUdRU

α
a ,

Nα
u = v√

2
U †
uLΔaUuRU

α∗
a ,

Nα
e = v√

2
U †
eLΓ a

e UeRU
α
a . (14)

V is the CKM matrix, Γ a , Δa and Γ a
e are the Yukawa cou-

pling matrices, and U f L/R are the rotation matrices to the
physical basis. We ignore neutrino masses for simplicity. To
calculate the Higgs decays, the relevant terms may be written
as

L ⊃ −
∑
f

(√
2Gμ

) 1
2
m f ψ̄ f (a

β
f + iγ5b

β
f )ψ f S

0
β , (15)

where m f are the fermion masses, Gμ is the Fermi constant,

satisfying
(√

2Gμ

)− 1
2 = v, and

aβ
f = v

2m f
(R fβ + L fβ) ,

bβ
f = −i

v

2m f
(R fβ + L fβ) ,

R fβ = 1

v
Nα

f B
β
α ,

L fβ = 1

v
N †α

f Bβ∗
α , f = d, e ,

Ruβ = 1

v
Nα
u B

β∗
α ,

Luβ = 1

v
N †α
u Bβ

α . (16)

3 The scalar sector of Zee-type models

As an example, we look at a particular case of Zee-type mod-
els [8] consisting of a type 2 2HDM with a complex singly
charged singlet scalar. In a type 2 2HDM, the fields satisfy
a Z2 symmetry where φ2 and uR transform as ψ → −ψ ,
while the other fields do not transform under the symmetry.
This means that φ2 will only couple to the up type quarks
while φ1 will only couple to the rest of the fermions.

Our purpose is not to make a global fit to the quark, scalar
and also the lepton sectors of any specific Zee model, but
rather to highlight those features of such types of model that
could be probed at LHC. As a result, we do not explore the
bounds coming from the lepton sector, including neutrino
oscillations; an analysis which can be found, for example,
in Refs. [14,15]. These references simplify the analysis by

effectively using the Z2 symmetry in the quark sector, which
is helpful to fix the production and some branching ratios at
LHC. Those simulations also assume some scalar couplings
to vanish, effectively bringing the result close to that in the
Z2 scalar sector used here. For simplicity, we take couplings
consistent with Z2 in the quark-scalar sectors, reducing the
number of parameters to scan, and simplifying the analysis
of some theoretical constraints, such as bounded from below
(BFB) and absence of charge breaking (CB) vacua. Our main
result, the importance of searching for the decay H+

2 →
H+

1 Z , is not affected by this simplification.

3.1 The Higgs potential and rotation matrices

The Higgs potential can in general be written as a particular
case of Eq. (5),

V = m2
Cχ+χ− + λC (χ+χ−)2 + [μ4 φ1iσ2φ2χ

− + h.c.
]

+ m2
1φ

†
1φ1 + m2

2φ
†
2φ2 − m2

12

(
φ

†
1φ2 + φ

†
2φ1

)

+
[
k1φ

†
1φ1 + k2φ

†
2φ2 − k12

(
φ

†
1φ2 + φ

†
2φ1

)]
χ+χ−

+ λ1

2

(
φ

†
1φ1

)2 + λ2

2

(
φ

†
2φ2

)2 + λ3φ
†
1φ1φ

†
2φ2

+ λ4φ
†
1φ2φ

†
2φ1 + λ5

2

[(
φ

†
1φ2

)2 +
(
φ

†
2φ1

)2
]

, (17)

where we generalized the 2HDM potential with a Z2 sym-
metry in [20]. For simplicity, we consider all parameters and
vevs real, corresponding to CP conservation.1

Allowing the doublets to develop vevs, the minimum con-
ditions read

m2
1 = 2m2

12v2 − v3
1λ1 − v1v

2
2(λ3 + λ4 + λ5)

2v1
,

m2
2 = 2m2

12v1 − v3
2λ1 − v2v

2
1(λ3 + λ4 + λ5)

2v2
. (18)

The analytic expressions for the mass matrices have no
inherent interest, so we will just state some of their properties,
while defining the rotation to the physical basis. First, we
note that CP-odd fields do not mix with the CP-even fields.
The mass matrix for the CP-odd fields has the eigenvectors
(v1, v2) and (v2,−v1), with the first corresponding to a null

1 The parameters m2
12, μ4, k12 and λ5 (as well as the vevs) are in

general complex, in such a way that there is no basis where they can
all be rendered real. These quantities could be set real by imposing
the symmetry CP on the theory; however, this symmetry is violated by
quark interactions. In other words, if CP is enforced in the potential
while allowing it to be violated elsewhere, the model will very likely
suffer from the same inconsistency as described in Ref. [21]. We focus
on the particular region of the parameter space of the (CP-violating)
model where the parameters of the potential take real values only.
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eigenvalue, which is the Goldstone boson. We can transform
the fields into the physical mass basis through2

(
S0

1 ≡ G0

S0
4 ≡ A

)
=
(

cos β sin β

− sin β cos β

)(
Imϕ0

1
′

Imϕ0
2
′
)

≡ Oβ

(
Imϕ0

1
′

Imϕ0
2
′
)

, (19)

where

cos β = v1/v, sin β = v2/v, v =
√

v2
1 + v2

2 . (20)

By applying the same rotation to the doublets’ charged
scalars
(
S+

1 ≡ G+
H+

)
=
(

cos β sin β

− sin β cos β

)(
ϕ+

1
ϕ+

2

)
, (21)

we find the charged Goldstone boson G+, and the intermedi-
ate field H+, not yet a mass eigenstate. Finally, the remaining
charged and neutral scalars do not follow such simple rela-
tions. So we need to diagonalize, in the general case, with
two new independent angles

(
S0

2
S0

3

)
=
(

cos α sin α

− sin α cos α

)(
Reϕ0

1
′

Reϕ0
2
′
)

≡ Oα

(
Reϕ0

1
′

Reϕ0
2
′
)

, (22)

(
S+

2
S+

3

)
=
(

cos γ sin γ

− sin γ cos γ

)(
H+
χ+
)

≡ Oγ

(
H+
χ+
)

. (23)

Note that, if we had applied the rotation by β initially to the
doublets themselves, we would get to the so-called Higgs
basis [22].

Inverting all transformations and joining the two charged
transformations above, we find that the matrices defined in
Eqs. (3) and (4) are

V =
(
i cos β cos α − sin α −i sin β

i sin β sin α cos α i cos β

)
, (24)

U =
(

cos β − sin β cos γ sin β sin γ

sin β cos β cos γ − cos β sin γ

)
, (25)

T = (0 sin γ cos γ
)

. (26)

Some of the relevant combinations of these matrices that
appear in the Lagrangian terms calculated in the previous
section are

U†U =
⎛
⎝1 0 0

0 cos2 γ − sin γ cos γ

0 − sin γ cos γ sin2 γ

⎞
⎠ , (27)

2 For convenience, we place the pseudoscalar as the last of the neutral
scalars. So S0

4 is the CP odd scalar and S0
2 , S0

3 are the two CP even
eigenstates. Notice that this choice affects the order of the columns in
the matrix V in Eq. (24).

B = U†V (28)

=
⎛
⎝i cos(β − α) sin(β − α) 0

0 − cos γ sin(β − α) cos γ cos(β − α) i cos γ

0 sin γ sin(β − α) − sin γ cos(β − α) −i sin γ

⎞
⎠ ,

Reω†V = (0 cos(β − α) sin(β − α) 0
)

. (29)

Note that, if we had started by bringing the doublets to the
Higgs basis, and then defined α as the rotation of the neutral
CP-even fields from that basis to the physical one, then α

would transform as α → α + β, and these matrices would
become independent of β.

The non diagonal nature of U †U is what gives rise to the
flavour changing coupling of the charged scalars with the Z
boson, adding a new type of diagrams to the process h → Zγ

when compared to the general NHDM. In that same sense,
the non mixture of the first component of that matrix with the
rest ensures that the charged would-be Goldstone bosons do
not take part in those flavour changing couplings, so that the
diagrams involving the W bosons remain safely of the same
nature.

3.2 The choice of independent parameters

The Higgs potential of Eq. (17), after using the minimization
Eqs. (18) has twelve real independent parameters,

m2
C , λC , μ4,m

2
12, k1, k2, k12, λ1, λ2, λ3, λ4, λ5 . (30)

For phenomenological studies it is convenient to trade some
of these parameters for the physical masses of the neutral
and charged scalars: mH0

1
,mH0

2
,mA0 ,mH+

1
, and mH+

2
. This

follows a standard procedure. We just give the example of
the mass matrix for the pseudoscalars. We have

L ⊃ −1

2

[
Imϕ0

1
′, Imϕ0

2
′]M2

P

[
Imϕ0

1
′

Imϕ0
2
′
]

+ · · · , (31)

where

M2
P =

⎡
⎢⎣

v2

v1

(
m2

12 − λ5v1v2

)
−m2

12 + λ5v1v2

−m2
12 + λ5v1v2

v1

v2

(
m2

12 − λ5v1v2

)
⎤
⎥⎦ . (32)

Now using[
Imϕ0

1
′

Imϕ0
2
′
]

= OT
β

[
G0

A0

]
, (33)

we obtain

OβM
2
PO

T
β =

[
0 0
0 m2

A0

]
. (34)

From here we can get λ5 as a function of the mass mA0 and
other independent parameters,

λ5 = 1

v2

(
−m2

A0 + m2
12

sin β cos β

)
. (35)
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Following this procedure for the other mass matrices we can
solve for the otherλ’s as well as forμ4,m2

C . For completeness
we give their expressions in Appendix A. This choice is, of
course, not unique but it is a convenient one. In the end, our
set of twelve independent parameters is,

mH0
1
,mH0

2
,mA0 ,mH+

1
,mH+

2
,m2

12, α, γ, λC , k1, k2, k12 .(36)

We emphasize that the crucial parameter of the potential, μ4,
is traded for the mixing angle between the charged Higgs, γ ,
through the relation,

μ4 = −
√

2

v
(m2

H+
1

− m2
H+

2
) cos γ sin γ . (37)

3.3 Fermion couplings to scalars

The Yukawa couplings to the quarks can be written as

− LY = Q̄L φ̃2YuuR + Q̄L φ1YddR + h.c. (38)

Going to the charged physical basis, we find the couplings

− LY ⊃
√

2Vud
v

ū (muξ
u
APL + mdξ

d
APR) d×

× (cos γ S+
1 − sin γ S+

2 ) + h.c. , (39)

where, with these definitions,

ξuA = cot β, ξdA = tan β . (40)

These are exactly the 2HDM couplings of fermions to the
only charged scalar existent in that case: H+

2HDM [20]. We re-
obtain them with the substitution (cos γ S+

1 − sin γ S+
2 ) →

H+
2HDM. Said otherwise, the vertices udS+

1 and udS+
2 are the

same as the 2HDM vertex udH+
2HDM, but with the factors

cos γ and− sin γ , respectively. This is not surprising. Indeed,
the combination of scalars appearing above corresponds to
the H+ field. This field is the one we find in the doublets when
in the Higgs basis and so the result is the same as treating
the model as we would treat the 2HDM, and then replace the
charged scalar by this combination.

4 Constraints on the model

4.1 Theoretical constraints

4.1.1 Bounded from below

The necessary and sufficient conditions for the potential to be
bounded from below (BFB) are know [23,24] for the neutral
part of the potential, that coincides with the 2HDM. They are

λ1 ≥ 0, λ2 ≥ 0, λ3 +√λ1λ2 ≥ 0,

λ3 + λ4 − |λ5| +√λ1λ2 ≥ 0 . (41)

For the Zee model they were studied in Ref. [25]. They
extended the conditions in Eq. (41) but were not able to find
necessary and sufficient conditions, only necessary condi-
tions. To explain these conditions it is better to use their
notation and indicate the correspondence with ours. They
write the quartic part of the potential as

VQ = b00x
2
0 + b11x

2
1 + b22x

2
2 + b33x

2
3 + b44x

2
4

+ b01x0x1 + b02x0x2 + b03x0x3

+ b12x1x2 + b13x1x3 + b23x2x3 , (42)

where

x0 = |χ+|2, x1 = |φ1|2, x2 = |φ2|2,
x3 = Re(φ†

1φ2), x4 = Im(φ
†
1φ2) . (43)

Comparing with the potential in Eq. (17) we obtain

b00 = λC , b11 = 1

2
λ1, b22 = 1

2
λ2,

b33 = λ4 + λ5, b44 = λ4 − λ5,

b01 = k1, b02 = k2, b03 = −2k12,

b12 = λ3, b13 = 0, b23 = 0 . (44)

They found the following necessary conditions for the poten-
tial to be BFB,

b11 ≥ 0, b22 ≥ 0, b12 ≥ −2
√
b11b22, (45a)

b12 + b44 ≥ −2
√
b11b22, b12 + b33 ≥ −2

√
b11b22, (45b)

b01 ≥ −2
√
b00b11, b02 ≥ −2

√
b00b22, (45c)

f (α, θ) ≥ 0, ∀α,θ . (45d)

where

f (α, θ) = 1

8
b03 sin 2θ sin2 2α

+ 1

4

(
b01 cos2 θ + b02 sin2 θ

)
sin2 2α

+
[
b11 cos4 θ + b22 sin4 θ

+ 1

4
(b12 + b33) sin2 2θ

]
sin4 α . (46)

It is easy to verify that the conditions in Eq. (45b) correspond
to the usual conditions for the 2HDM in Eq. (41). The others
are new for Zee-type models. The condition in Eq. (46) can-
not be solved analytically for the bi j . Therefore we took a
large random sample of θ and α and excluded points that have
f (α, θ) < 0. As explained in Ref. [25], even after applying
these constraints there are a few points that are still not BFB.
We have verified this fact when considering the analysis of
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the charged breaking minima in the following section, and
we have also discarded those points.

4.1.2 Charged breaking minima

The analysis of the charged breaking (CB) minima is much
more complicated that in the 2HDM [24], because of the
cubic term in the potential. Indeed, contrary to the 2HDM,
the condition

VCB > VN (47)

is not guaranteed to be verified even when we are at the
normal neutral minimum, VN . As it is very complicated (if
not impossible) to solve a set of nonlinear equations for the
stationary points of VCB , we took a different approach, based
on Ref. [25]. We parameterize the possible charge breaking
minima as

φ1 =
[
y1

y2

]
, φ2 =

[
y3

y4

]
, χ+ = y5 . (48)

Then, for the parameters for which we have a normal min-
imum VN ,

Setmin = {m2
1,m

2
2,m

2
C , λC , μ4,m

2
12, (49)

k1, k2, k12, λ1, λ2, λ3, λ4, λ5} , (50)

we consider the functionVother(Setmin, yi ). We start by taking
a large set of random values for yi

yi ∈ [−1000, 1000] GeV , (51)

and then for each of these initial values we apply the method
of gradient descent to obtain the lowest possible value for
Vother(yi ) and compare it with VN . If VN < Vother we keep
the point. In doing this we also verified the claim [25] that the
BFB conditions are not sufficient, as we found a small amount
of points corresponding to potentials unbounded from below.

There is a final point deserving a comment. When doing
the procedure described above, in many cases we got to a
point where y5 = 0 (of course numerically there is no such
thing as zero and we have considered |y5| < 10−6). As y1

and y3 are non-zero, the question is if this is really a charged
breaking minimum or not. We can make an SU(2) rotation
to bring to zero the upper component of the first doublet[

cos θ sin θ

− sin θ cos θ

] [
y1

y2

]
=
[

0
y′

2

]
, tan θ = − y1

y2
. (52)

Now, if the same rotation on the second doublet also gives[
cos θ sin θ

− sin θ cos θ

] [
y3

y4

]
=
[

0
y′

4

]
, (53)

and√
y′

2
2 + y′

4
2 = v√

2
, (54)

then this is just a normal minimum. In all occasions we found,
this was precisely the same normal minimum VN in a differ-
ent guise.3 We have looked at these situations and kept the
points if these conditions were verified.

4.1.3 Perturbative unitarity

To ensure perturbative unitarity of the quartic couplings we
implemented the general algorithm presented in Ref. [26].
As we are interested in the high energy limit, one just needs
to evaluate the scattering S-matrix for the two body scalar
bosons, and these arise exclusively from the quartic part of the
potential. Since the electric charge and the hypercharge are
conserved in this high energy scattering, we can separate the
states according to these quantum numbers. In the notation
of Ref. [26],

φi =
[
w+
i
ni

]
, φ

†
i =

[
w−
i

n∗
i

]T
, χ = χ+, χ∗ = χ− . (55)

This corresponds to the following possibilities,

Q = 2,Y = 1 S++
α ={w+

1 w+
1 , w+

1 w+
2 , w+

1 χ+,

w+
2 w+

2 , w+
2 χ+, χ+χ+}, (56a)

Q = 1,Y = 1 S+
α ={w+

1 n1, w
+
1 n2, w

+
2 n1,

w+
2 n2, χ

+n1, χ
+n2}, (56b)

Q = 1,Y = 0 T+
α ={w+

1 n
∗
1, w

+
1 n∗

2, w
+
2 n∗

1,

w+
2 n

∗
2, χ

+n∗
1, χ

+n∗
2}, (56c)

Q = 0,Y = 1 S0
α ={n1n1, n1n2, n2n2}, (56d)

Q = 0,Y = 0 T 0
α ={w−

1 w+
1 , w−

1 w+
2 , w−

1 χ+,

w−
2 w+

1 , w−
2 w+

2 , w−
2 χ+,

χ−w+
1 , χ−χ+, χ−χ+,

n1n
∗
1, n1n

∗
2, n2n

∗
1, n2n

∗
2}. (56e)

With this setup we have to find the scattering matrices for
each (Q,Y ) combination and their eigenvalues. Let us call
this set Λi . Then the perturbative unitarity constraints are

max(Λi ) < 8π, i = 1, . . . , 19. (57)

In Appendix E we write explicitly the various scattering
matrices and their eigenvalues. In total we have 19 differ-
ent eigenvalues, as we already anticipated in Eq. (57).

4.1.4 The oblique parameters S, T,U

All the points in parameter space have to satisfy the elec-
troweak precision measurements, using the oblique param-
eters S, T and U. We demand that S, T and U are within

3 This explains why we used Vother above, and not VCB .
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Table 1 Values for μi j taken from [29]

Decay mode Production processes

ggF VBF VH ttH

H → γ γ 0.96+0.14
−0.14 1.39+0.40

−0.35 1.09+0.58
−0.54 1.10+0.41

−0.35

H → Z Z 1.04+0.16
−0.15 2.68+0.98

−0.83 0.68+1.20
−0.78 1.50+0.59

−0.57

H → WW 1.08+0.19
−0.19 0.59+0.36

−0.35 − 1.50+0.59
−0.57

H → ττ 0.96+0.59
−0.52 1.16+0.58

−0.53 − 1.38+1.13
−0.96

H → bb − 3.01+1.67
−1.61 1.19+0.27

−0.25 0.79+0.60
−0.59

2σ of the fit given in [27]. For general models with an arbi-
trary number of doublets and singlets the expressions for the
oblique parameters were given in Refs. [18,28]. They depend
on combinations of the matrices V andU defined in Eqs. (24)
and (25). The needed matrices are U †U in Eq. (27) , U †V in
Eq. (28), and

ImV †V =

=

⎛
⎜⎜⎝

0 − cos(β − α) − sin(β − α) 0
cos(β − α) 0 0 − sin(β − α)

sin(β − α) 0 0 cos(β − α)

0 sin(β − α) − cos(β − α) 0

⎞
⎟⎟⎠ .

(58)

4.2 Constraints from the LHC

From the LHC data we have two types of constraints. First
we consider the constraints on the h125 Higgs boson. These
are normally enforced through the signals strengths for each
production mode i = ggF,VBF,VH,ttH and final state
j = H → γ γ, H → Z Z , H → Z Z , H → ττ, H → bb,
and are defined by

μi j = σi (pp → H)

σ SM
i (pp → H)

BR(H → j)

BRSM(H → j)
(59)

The values for the signals strengths are given in Table 1 and
were taken from Fig. 5 of Ref. [29]. The other type of con-
straints from the LHC data are the bounds on other neutral
and charged scalars. This we implemented using the most
recent version of HiggBounds5 [30].

4.3 Constraints from BR(B → Xsγ )

In models with charged scalar bosons it is well known [16,17,
31–33] that the experimental limits on the BR(B → Xsγ )
can put important constraints in the parameter space of these
models. For instance, in Ref. [17] the bound

mH+ > 580 GeV , (60)

is derived for the type 2 2HDM at 95% CL (2σ ). In fact
the exact number depends on the errors both in the theoret-

ical calculation [34] as well in the experimental errors. For
instance, the result for the SM at NNLO is [33,35]

BRSM(B → Xsγ ) = (3.40 ± 0.17) × 10−4 , (61)

which shows an error of 5%, to be compared with the world
average [36]

BRexp(B → Xsγ ) = (3.32 ± 0.15) × 10−4 . (62)

Here we take the approach of considering for the theoretical
error a band around the central value of the calculation with
an error of 2.5%, and following [33], for the experimental
error, we consider 99% CL (3σ ), that is,

2.78 × 10−4 < BR(B → Xsγ ) < 3.77 × 10−4 . (63)

In Appendix C we give the details of the calculation of the
BR(B → Xsγ ) for models with two charged Higgs, and
study the implications of the results in the following sections.

4.3.1 The result for the 2HDM type 2

First we considered the particular case of the 2HDM with type
2 couplings to fermions. In our model this is accomplished by
setting γ = 0. Then the second Higgs decouples completely
(X2 = Y2 = 0) and we have an effective 2HDM. The results
are shown in Fig. 1. On the upper panel we considered a band
corresponding to 2.5% in the calculation and a 3σ band for
the experimental result. On the lower panel we considered a
band corresponding to 5% in the calculation and a 2σ band
for the experimental result. We see that the limit for the mass
of the charged scalar that we get is similar in both cases and
also similar to what was obtained in Ref. [17]

As we are not doing a NNLO calculation, our goal here is
not to improve the limit for the 2HDM with type 2 couplings.
We just want to show that in models with more charged
scalars, as was addressed in Ref. [33], the limit in Eq. (60)
can be relaxed for one of them and this will have implica-
tions for Zee-type models. We discuss this in the next section
for the case of Zee-type models. For definiteness we take the
choice on the upper panel of Fig. 1.
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Fig. 1 BR(B → Xsγ ) as a function of the charged scalar mass. Upper
panel: The lines in blue represent the 3σ experimental limits, and those
in red to 2.5% error in the calculation. Lower panel: The lines in blue
represent the 2σ experimental limits, and those in red to 5% error in the
calculation

4.3.2 Implications for the Zee model

We have just seen that in the case of having just one charged
scalar boson we have a limit for its mass coming from the
BR(B → Xsγ ) for the case of 2HDM with type 2 fermion
couplings. Now we consider the case of Zee-type models also
with type 2 fermion couplings. We start by just considering
the variation of the masses and of the mixing angle γ without
imposing all the theoretical and experimental constraints on
the model. That will be done below when we consider the dis-
cussion of benchmark points. Our purpose here is just to show
how the constraints from BR(B → Xsγ ) can be satisfied in
the model. Although we can always choose mH+

1
< mH+

2
,

we start by not imposing that constraint. All points satisfying
Eq. (63) are shown on the upper panel of Fig. 2. We see that
we have an exclusion for both masses to be below the value
found (in the 2HDM) with one single charged scalar, but it
is possible that one of the masses is lower than 580 GeV if

Fig. 2 Upper panel: points satisfying Eq. (63) for Zee-type models.
Lower panel: mass of the lightest charged scalar boson as a function of
the mixing angle γ

the other is above. This is a function of the mixing angle γ

as shown on the lower panel of Fig. 2. We see that mH+
1

can
be as low as 50 GeV if the mixing angle is close to ±π/2.
Notice that for γ = 0 we recover the previous result. As can
be seen from Fig. 2, when mH+

1
is low, the other mass has

always to be above the 580 GeV limit.
This result means that for each point in parameter space

we have to evaluate the BR(B → Xsγ ) to see if it passes the
bounds in Eq. (63), instead of using just one fixed limit for
all points, like in the 2HDM.

There is a final comment. The charged Higgs contribute
to ΔMBs,d , coming from the B meson oscillations. We have
not considered this contribution from flavour data because,
as shown in [37], they are important only for very low tan β,
below what we already exclude from the other constraints;
see Fig. 3 below.
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Fig. 3 Upper panel: correlation between α and β; Lower panel: corre-
lation between α and tan β

4.4 Scanning strategy

We made our scans varying the parameters in the following
ranges,

mh1 = 125 GeV, mH+
2

∈ [500, 1000]GeV, (64)

mh2 ,mh3,mH+
1

∈ [100, 1000]GeV, (65)

α ∈
[
−π

2
,
π

2

]
, tan β ∈ [0, 60], γ ∈

[
−π

2
,
π

2

]
, (66)

m2
12 ∈ [10−1, 106]GeV2, λc ∈ [10−3, 102], (67)

k1 ∈ [10−3, 102], k2 ∈ [10−3, 102], k12 ∈ [10−3, 102],
(68)

and take randomly m2
12, k12 with both signs. Despite this flat

scan, there are large correlations in the points that satisfy all
the constraints. For instance, we show in Fig. 3 the corre-

H+
1

H+
1

H0
1

γ

γ

1
H+

2

H+
2

H0
1

γ

γ

2

H+
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H+
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1H0
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γ

γ

3

H+
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H0
1

γ

γ
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H+
2

H+
2

H+
2H0

1

γ

γ

5

H+
2

H+
2

H+
2

H0
1

γ

γ

6

Fig. 4 Charged scalars contributions to h → γ γ

lation between α and β. We see that all the points satisfy
| cos(β − α)| � 1, that is they are close to the alignment
limit, where the 125 GeV neutral scalar has couplings equal
to their SM values. The points with negative α correspond
to the wrong sign of the fermion couplings [38,39]. We also
see that despite having varied tan β in a larger interval, the
good points have tan β ∈ [1, 10].

5 Impact of the charged scalars on the decays h → γ γ

and h → Zγ

5.1 The diagrams of the charged scalars

As we discussed before, the distinctive feature of our imple-
mentation of Zee-type models is the appearance of the off-
diagonal coupling ZH±

1 H∓
2 . This contributes to the loop

decay h → Zγ and, in principle, could lead to some new
feature. For the decay h → γ γ , on the contrary, because of
the photon coupling being always diagonal, the contribution
of the charged scalars will not depend on the off-diagonal
ZH±

1 H∓
2 coupling. In fact, the diagrams coming from the

charged scalars and contributing in this model for h → γ γ

are shown in Fig. 4 while for the case of the decay h → Zγ ,
besides those equivalent to Fig. 4 (with one γ exchanged
with a Z ) we also have those with the off-diagonal cou-
pling, as shown in Fig. 5. The formulas for these loop decays
in the absence of couplings of the type ZH+

1 H+
2 are well

known. They were explicitly written for the C2HDM in Ref.
[40] and, for h → γ γ , they can be easily adapted for the
case of Zee-type models. We generalize the formulas for
h → Zγ to include the new couplings, and write the full
expressions in Appendix D. The new couplings needed are
given in Appendix B and were obtained with the help of
the software FeynMaster [41,42], that uses QGRAF [43],
FeynRules [44,45] and FeynCalc [46,47] in an inte-
grated way.

123



Eur. Phys. J. C          (2021) 81:1148 Page 11 of 24  1148 

H+
1

H+
2

H0
1

Z

γ

7
H+

2

H+
1

H0
1

Z

γ

8

H+
2

H+
1

H+
2H0

1

Z

γ

9

H+
1

H+
2

H+
2

H0
1

Z

γ

10

H+
1

H+
2
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Fig. 5 Extra charged scalars contributions to h → Zγ

5.2 Discussion of the impact of the charged scalars on the
loop decays

5.2.1 Couplings h1H
+
j H−

k

The couplings h1H
+
1 H−

1 and h1H
+
2 H−

2 do not have a strong
dependence on γ . On the contrary the couplings h1H

+
1 H−

2
and h1H

+
2 H−

1 are proportional to sin γ .

5.2.2 Couplings ZH+
j H−

k

The couplings ZH+
1 H−

2 and ZH+
2 H−

1 are given in Eqs. (B.3b)
and (B.3c). They are proportional to sin(2γ ) and vanish for
γ = 0,±π/2, while the couplings ZH+

1 H−
1 and ZH+

2 H−
2

vary with γ like

gZH+
i H−

i
∝ (−1 + 4s2

W + cos 2γ ) . (69)

It is interesting to note that because −1 + 4s2
W � 0 they

behave approximately like cos 2γ that vanishes at ±π/4.

5.2.3 Results and conclusions

Because of the dependence of the couplings on the mixing
angle γ , we looked at the contributions of the charged scalars
as a function of this angle. If the loop integral did not vary
much with the masses, the results would be proportional to
the products of the h1H

+
j H−

k and ZH+
j H−

k couplings, as
the photon coupling is universal. In the following figures
all points passed all the constraints, including HiggsBounds
5.9.1 and those coming from BR(B → Xsγ ), as discussed
in Sect. 4.3.

In Fig. 6 we show on the upper panel the result of the
product of the couplings (we divide by v because the coupling
h1H

+
j H−

k has dimensions of mass), first for the case of H+
1

running in the loops of Fig. 4 in red, and then for the case of

Fig. 6 Results for the charged scalars amplitudes contribution to h →
Zγ as a function of the mixing angle γ . On the upper panel the coupling
products and on the lower panel the actual amplitudes. The red dots
correspond to the case of H+

1 running in the loop, while blue dots
corresponds to the case of H+

2

H+
2 in blue. From the above discussion we expect the result to

vary like cos 2γ , and that is indeed the case. Our assumptions
that the loop integrals do not depend much on the masses can
be verified in the lower panel of Fig. 6, where we show the
actual plot for the loop amplitudes. The behaviour as cos 2γ

is clear in both cases.
Now we can study the case where there are two differ-

ent charged scalars, H+
1 and H+

2 , running in the loops of
Fig. 5. This is shown in Fig. 7. Again on the upper panel we
plot the product of the couplings, and on the lower panel the
loop amplitudes. In this case Amp(H+

1 , H+
2 ), corresponding

to diagrams 7, 10 and 11 of Fig. 5 in red, coincides with
Amp(H+

2 , H+
1 ) corresponding to diagrams 8, 9 and 12. As
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Fig. 7 Results (blue dots) for the charged scalars amplitudes contri-
bution to h → Zγ in the case of having both H±

1 and H±
2 running in

the loop, as a function of the mixing angle γ . On the upper panel the
coupling products and on the lower panel the actual amplitudes

expected we see clearly a dependence on sin 2γ , confirming
our expectations.

However this nice result will not help us in using the decay
rate h → Zγ to identify the novel coupling ZH+

1 H−
2 appear-

ing in Zee-type models. The problem is that once we sum all
contributions we loose the dependence on γ . This can be
seen on Fig. 8, both for the products of the couplings in the
left panel, and for the final result for the charged scalar con-
tribution to h → Zγ .

In conclusion, although the contribution of the charged
scalars can have both signs and also be zero, the dependence
on γ and therefore on the mixing parameters μ4 is hidden.
In fact we can have the same behaviour of the charged scalar
amplitudes in other models like the 3HDM [48].

Fig. 8 Results (red dots) for the sum of all charged scalar amplitudes
contributing to h → Zγ , as a function of the mixing angle γ . On the
upper panel the sum of the product of couplings and on the lower panel
the complete result

6 Decays of the charged Higgs

6.1 The decay H+
2 → H+

1 + Z

If we want to have a unique signal for this model it would
be the decay of one charged Higgs in another one plus a Z
boson. This is only possible if γ �= 0. We have checked that
this can indeed occur, as shown in Fig. 9. All points shown
satisfy all the constraints discussed in Sect. 4. We see clearly
that, as expected, one has to be away from γ = 0 to have a
sizable decay width.

6.1.1 Decays of the heavier H±
2

Depending on the masses the following decays are among
the most important,
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Fig. 9 Decay with H+
2 → H+

1 + Z . On the upper panel the depen-
dence on the mass of the decaying charged Higgs and on the lower panel
the dependence on the mixing angle γ

H±
2 → H±

1 + Z , H+
2 → t + b , H±

2 → H±
1 + hi ,

(70)

H±
2 → W± + hi , H+

2 → ντ + τ+ . (71)

The first decay is unique to this type of models and not present
in NHDM. It requires a mixing between the charged Higgs
from the doublets with the charged Higgs from the singlets.
The expression for the width is

Γ (H±
2 → H±

1 + Z) =

= g2

64πm3
H+

j
M2

W

gHpjHmkZ[2, 1]2 λ(m2
H+

2
,m2

H+
1

, M2
Z )3,

(72)

where the Källen function is given by

λ(x2, y2, z2)=
√
x4 + y4 + z4−2x2y2−2x2z2−2y2z2.

(73)

For the other decays we have

Γ (H+
2 → t + b) = 3g2

32πM2
W

mH+
2
λ(mH+

2
,m2

t ,m
2
b)

×
[
(1 − xt − xb)(Y

2
2 xt + X2

2xb) − 4xt xbX2Y2

]
, (74)

where

xt = m2
t

mH+
2

, xb = m2
b

mH+
2

, (75)

and Xk,Yk are given in Eq. (B.9a). For the decay into the
other charged Higgs and one neutral Higgs boson we have,

Γ (H±
2 → H±

1 + hi )

= ghjHpiHmk[i, 2, 1]2

16πm3
H+

2

λ(mH+
2
,mH+

1
,m2

hi ). (76)

The decay into one W and one neutral Higgs boson is similar
to the decay into the charged Higgs and Z. We obtain

Γ (H±
2 → W± + hi )

= g2

64πm3
H+

2
M2

W

ghjHpkWm[i, 2]2 λ(m2
H+

2
, M2

W ,m2
hi )

3.

(77)

Finally the decay in the third family leptons (the others are
negligible) is given by

Γ (H+
2 → ντ + τ+)

= g2

32πM2
W

Z2
2 m

2
τ mH+

2

⎡
⎣1 − m2

τ

m2
H+

2

⎤
⎦

2

. (78)

6.1.2 Decays of the lighter H±
1

Except for the decays into another charged Higgs, that are not
allowed because we assume that mH+

1
< mH+

2
, the decays

are similar to those of the heavier charged scalar. If kinemat-
ically available, the expressions for the decays can be easily
obtained from the above with index 2 → 1. All the couplings
needed are given in Appendix B and were obtained with the
help of the software FeynMaster [41,42].
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Table 2 Model parameters of the four benchmark points. We also took β � α within a variation of 1%

BP1 BP2 BP3 BP4

mh1 (GeV) 125 125 125 125

mh2 (GeV) 715.0 580.7 728.3 314.9

mh3 (GeV) 767.4 633.7 720.5 651.3

mH±
1

(GeV) 550–700 250–360 260–470 250–525

mH±
2

(GeV) 750–900 635–800 710–900 660–680

m2
12 (GeV2) 8.3 × 104 5.8 × 104 9.5 × 104 1.9 × 104

α 1.391 1.398 1.401 −1.402

γ 0.894 1.089 −1.145 −1.421

λc × 102 43.63 447.3 2.67 2.00

k1 0.4633 1.082 7.15 1.4 × 10−2

k2 × 102 46.33 0.398 1.425 43.2

k12 × 102 5.43 1.267 1.29 −0.96

7 Benchmark points for Zee-type models

7.1 Looking for a distinctive signature

As we have discussed before, Zee-type models provide an
example of the non-vanishing coupling between two different
charged Higgs and the Z boson. For instance, this cannot
happen in any NHDM, even with a large N. So we want to
see if there is a signal of this coupling.

As we explained in Sect. 5, the first idea was to look at
the impact on the BR(h125 → Zγ ). But it turns out that
the effect of the extra diagrams is not quantitatively different
from the effect of a second charged scalar coupling only diag-
onally to the Z boson, as occurs for instance in the 3HDM,
where there are two charged Higgs bosons, but no ZH+

1 H−
2

coupling [48]. So, although there is an effect, for instance
the contribution of summing over all the charged Higgs dia-
grams can vanish, this is not an effect specific to the ZH+

1 H−
2

coupling. So we turn to a distinctive decay:

H+
2 → H+

1 + Z , and H+
1 → t + b (79)

This decay has a very clear signature and should be searched
for at the LHC.

As the model has many independent parameters, if we try
to plot the various branching ratios of the H+

1 or H+
2 instead

of obtaining something similar to the famous plot [49] of
the SM Higgs boson BR’s as a function of its mass (when
this mass was yet not known), we would get a figure with
all the points superimposed and no lines. So, to have a better
visualization we fix most of the parameters and show that
indeed the branching ratios for the processes in Eq. (79) can
be important, or even dominant. This leads us to the choice
of benchmark points. In choosing these benchmark points
for Zee-type models we take into account all the theoretical

and experimental constraints on the model. The parameters
of the model for the four benchmarks points are shown in
Table 2. In choosing these points we considered a variety of
situations. First both charged Higgs masses high, for P1, then
the lightest the smallest possible, for P2 and P3, and in all
these cases maximizing the benchmark decay H±

2 → H±
1 Z .

Finally the benchmark point P4 was chosen due to the recent
interest in the decays H±

i → h jW± [50]. We turned each
of these four benchmark points into benchmark regions in
the following way. Once a point (say P1) is found passing
all constraints in Eq. and having the characteristics we are
looking for, we fix all parameters except mH±

1
,mH±

2
and

tan β. The masses mH±
1

,mH±
2

are valid within the intervals
shown in Table 2, while β varies in the interval α(1 ± 0.01).
Thus each benchmark point originates a benchmark region
of points with similar characteristics. It is such collections of
points in benchmark regions that we show in Figs. 10, 11, 12
and 13 below. They permit us to simulate a broad range of
situations, which should be searched for experimentally.

7.2 Benchmark Point P1

For the first benchmark point, P1, we choose a situation when
both masses are above4 the limit of Eq. (60). The parameters
are given in Table 2. The corresponding benchmark region is
shown in Fig. 10. We see that our signal decay has the largest
branching ratio, while H+

1 decays almost 100% into t + b.
This should provide clear signatures at the LHC. A detailed
analysis, with background studies, should of course be done.
The width of the bands comes from the variation of tan β and

4 The starting point satisfied Eq. (60), but as we vary the masses some
points are slightly below that limit.
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Fig. 10 Dominant BR’s for H+
2 (upper panel) and H+

1 (lower panel)
for benchmark point P1 versus the charged Higgs masses

mH+
1

,mH+
2

which were varied independently. All the points
pass all the constraints, including that of Eq. (63).

7.3 Benchmark point P2

One could argue that P1 will lead to a situation where the
constraint of Eq. (63) was verified, as we took the masses
to satisfy the bound of Eq. (60). Therefore we want to show
another benchmark point that would be excluded by Eq. (60).
That is, we do not exclude points a priori, but for each point
we evaluate the BR(B → Xsγ ) to see if it passes the bounds
in Eq. (63).

For the second benchmark point P2 we therefore choose a
situation where the lowest charged Higgs mass is below that
limit, as shown in Table 2. The situation is shown in Fig. 11.
We see that our signal decay has the largest branching ratio,
while H+

1 decays almost 100% into t+b. This should be clear
signatures at the LHC, although background studies should

Fig. 11 Dominant BR’s for H+
2 (upper panel) and H+

1 (lower panel)
for benchmark point P2 versus the charged Higgs masses

be done. Recall that the width of the bands comes from the
variation of tan β and mH+

1
,mH+

2
which were varied inde-

pendently. All the points pass all the constraints, including
that of Eq. (63).

7.4 Benchmark point P3

We have a large set of benchmark points that illustrate our
signal, the decay H+

2 → H+
1 + Z . We just give another

example, our benchmark point P3. It is similar to P2, and the
parameters are given in Table 2. The situation is shown in
Fig. 12. Again we see that our signal decay has the largest
branching ratio, while H+

1 decays almost 100% into t + b.
The width of the bands comes from the variation of tan β and
mH+

1
,mH+

2
which were varied independently. All the points

pass all the constraints, including that of Eq. (63).
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Fig. 12 Dominant BR’s for H+
2 (upper panel) and H+

1 (lower panel)
for benchmark point P3 versus the charged Higgs masses

7.5 Benchmark point P4

It has been pointed out recently [50], that there are some
decay channels for the charged Higgs that have not been
investigated at LHC. One of them is the decay H+

1 →
W+ + h1. We looked in our data sample for points where
the BR(H+

1 → W+ + h1) could be large. For our model,
after passing through the HiggsBounds 5.9.1, there are not
many points of the general scan that have a large BR(H+

1 →
W++h1). We took one of these which is our benchmark point
P4 with parameters given in Table 2. The situation is shown in
Fig. 13. We see that, in our model, both BR(H+

1 → W++h1)

and BR(H+
1 → W+ + h2) can be sizable. In this case, the

BR(H+
2 → H+

1 + Z) is very small, around 2%. However the
BR(H+

2 → W+ + h1) and BR(H+
2 → W+ + h2) can also

be large, making this an interesting benchmark point. The
width of the bands comes from the variation of tan β, mH+

1
,

Fig. 13 Dominant BR’s for H+
1 (upper panel) and H+

2 (lower panel)
for benchmark point P4 versus the charged Higgs masses

and mH+
2

, which were varied independently. All the points
pass all the constraints, including that of Eq. (63).

7.6 Production cross-sections and experimental bounds

One can ask if a charged Higgs boson with a large BR(H+ →
tb) is not in contradiction with experimental bounds from the
LHC. Although we have checked all the points with Higgs-
Bounds 5.9.1 [30], it is perhaps helpful to show it explicitly
for our benchmark points. The result for benchmark points
P1 and P2 is shown in the upper panel of Fig. 14, while in
the lower panel we have the case of benchmark points P3

and P4. We used the values for the production cross-section
σ(pp → tbH+) from Refs. [51,52]. To see if the points
are allowed we considered the worst case scenario where
BR(H+ → tb)=1 (although for our benchmark points this is
only true for the lightest charged Higgs boson); see Figs. 7
and 8. The green line is the current experimental bound from
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Fig. 14 σ(pp → tbH+) × BR(H+
i → tb) versus the charged Higgs

mass for benchmark points P1 and P2 (upper panel) and P3 and P4
(lower panel). In magenta we have H+

1 and in dark green we consider
H+

2 . We took BR(H+
i → tb)= 1. The light green line is the current

LHC limit

ATLAS [53] as discussed in Ref. [50]. So we conclude that
all our benchmark points are consistent with the latest LHC
data.

7.7 Summary of the benchmark points

To highlight the off-diagonal coupling ZH±
1 H∓

2 we chose a
set of benchmark points where the decay, H±

2 → H±
1 Z ,

could be dominant. We have found that branching ratios
above 70% could be easily obtained while the lighter charged
Higgs decays predominantly as H+

1 → t b̄. Both are clean
signatures, and therefore a study of these decays at the LHC,
including the possible backgrounds, should be done. While
the first benchmark, P1, has high mass for both charged Higgs
bosons, we have shown with benchmarks P2 and P3, that we
can have a situation where the lighter charged Higgs in well

below the limit of Eq. (60). Finally we also consider one
benchmark point, P4 that highlights a decay that has not yet
been much searched for at the LHC [50].

8 Perspectives for future work

As mentioned in the introduction, in this article we wish
to point out that models with scalar doublets and charged
singlets allow for couplings of the type ZH±

1 H∓
2 , which

imply very interesting signals that should be searched for at
LHC. We highlighted this feature and its consequences in the
simplest such model; one with two scalar doublets and one
charged scalar singlet. This coincides with the scalar sector
of the popular Zee model for neutrino masses [8].

For simplicity, we imposed in the scalar and quark sectors
a Z2 symmetry. Among other advantages, it precludes quark
flavour changing neutral scalar interactions [54,55], which
are strongly restricted by experiment. Any study which does
not apply this symmetry must then perform a fit to all the
bounds affecting quark flavour changing neutral scalar inter-
actions, which is a large task in itself. It turns out that the
Wolfenstein [11] suggestion of imposing a Z2 symmetry in
the lepton sector (the so-called Zee–Wolfenstein model) is
precluded by current neutrino oscillation data [12,13].

As a result, one must remove the Z2 symmetry from the
leptonic sector, and go back to the original Zee proposal [8].
But then, one must perform a fit to all the bounds affecting
lepton flavour changing neutral scalar interactions, which is
another large task in itself. Indeed, it can be shown that one
can conform to all leptonic data in the Zee model; this has
been done, for example, in refs. [14,15]. However, for sim-
plicity, such references assume couplings for the quark sec-
tor which are those one would have if Z2 were applied there.
Strictly speaking, this is not consistent. What one would have
to do is to remove Z2 everywhere and thus, perform a simul-
taneous fit to all bounds affecting quark flavour changing
neutral scalar interactions and all bounds affecting lepton
flavour changing neutral scalar interactions. This is a whole
research program in itself, and lies outside the scope of the
current paper.

But it will be interesting to pursue such a program. The rea-
son is that the same μ4 coupling whose presence is at the root
of the ZH±

1 H∓
2 vertex, is responsible for neutrino masses.

Indeed, in the Zee model the neutrino masses appear at one-
loop due precisely to the μ4 φ1iσ2φ2χ

− term in Eq. (17).
Within approximations discussed in detail in [14], the neu-
trino mass matrix may be written as

η μ4

⎡
⎢⎢⎣

2 f eτY τe
2 f eτY τμ

2 + f μτY τe
2 − m2

μ
rmτ

f eμ f eτY ττ
2 − mτ

r f eτ

· · · 2 f μτY τμ
2 f μτY ττ

2 − mτ
r f μτ

· · · · · · 2
mμ
mτ

f μτY τμ
2

⎤
⎥⎥⎦ ,

(80)
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where

η = − A r mτ

r = v√
2sβ

,

A = tβ
8π2

1

m2
H+

2
− m2

H+
1

ln
m2

H+
2

m1
H+

2

, (81)

and three entries have not been written since the matrix is
symmetric. The couplings f and Y2 link the leptons with
the charged singlet and the φ2 doublet, respectively – precise
definitions can be found in [14]. In the exact Z2 limit, Y2 = 0
and we obtain a matrix proportional to

μ4

⎡
⎣ 0 m2

μ f eμ m2
τ f eτ

· · · 0 m2
τ f μτ

· · · · · · 0

⎤
⎦ , (82)

which is the Zee–Wolfenstein neutrino mass matrix. That it
does not conform to neutrino data is beautifully explained
already (for example) in [13].

For our purposes, the most important feature of Eq. (80)
is that the neutrino mass matrix is proportional to μ4. This
shows that, in a Zee model of neutrino masses consis-
tent with all experimental constraints (most notably with
those affecting flavour changing fermion–scalar interac-
tions), there is a relation between the neutrino mass scale and
the ZH±

1 H∓
2 coupling. Of course, with more scalar doublets

and/or charged singlets, one can construct situations where
these two phenomena are not related. Still, such theories will
have ZH±

a H∓
b (a �= b) couplings, and these should be sought

at LHC.

9 Conclusions

A singular feature of models with multiple scalar doublets
and charged singlets is the presence of off-diagonal ZH±

1 H∓
2

couplings. We have studied this feature in detail, using the
scalar sector of Zee-type models as an example.

Some formulae are presented in a form useful for generic
models with any number of doublet and singlet scalars. We
use in our scans all known theoretical constraints, including
a careful analysis of the BFB conditions, the exclusion of
lower-lying CB vacua, and the unitarity conditions derived
here for this model.

We show that ZH±
1 H∓

2 couplings appear in h → Zγ

and B → Xsγ , but that there they do not impose features
beyond those already present in generic 3HDM (where such
off-diagonal couplings are not present).

We stress the importance of looking experimentally for
H+

2 → H+
1 Z decays and propose interesting benchmark

points. We also found in our model interesting values for

the decays recently proposed in [50]. We found that there
are regions of parameter space consistent with large branch-
ing ratios for H+

1 → W+h1,2 or H+
2 → W+h1,2. But,

in those cases, we found no example where simultaneously
BR(H+

2 → H+
1 Z ) was large. We strongly urge a search for

H+
2 → H+

1 Z decays. The relation between these decays
at the LHC and the masses and mixings of the neutrinos in
these Zee type models needs a dedicated future work that
includes also the constraints from flavour changing fermion-
scalar interactions.

Acknowledgements We are very grateful to C. Greub for detailed
explanations on his Refs. [16,31]. JPS is grateful to Z. Ligeti for
discussions. This work is supported in part by the Portuguese Fun-
dação para a Ciência e Tecnologia (FCT) under Contracts CERN/FIS-
PAR/0008/2019, PTDC/FIS-PAR/29436/2017, UIDB/00777/2020, and
UIDP/00777/2020; these projects are partially funded through POCTI
(FEDER), COMPETE, QREN, and the EU.

Data Availability Statement This manuscript has no associated data
or the data will not be deposited. [Authors’ comment: No data required
beyond that contained in the manuscript.]

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indi-
cated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permit-
ted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.
Funded by SCOAP3.

Appendix A: Solving for parameters of the potential

Following the procedure outlined in Sect. 3.2, we can solve
for the other λ’s as well as for μ4,m2

C . We find,

λ1 = 1

v2 cos2 β

(
m2

H0
1

cos2 α + m2
H0

2
sin2 α − m2

12 tan β
)

,

(A.1a)

λ2 = 1

v2 sin2 β

(
m2

H0
2

cos2 α2 − m2
12 cot β + m2

H0
1

sin2 α
)

,

(A.1b)

λ3 = 1

v2

(
2m2

H+
1

cos2 γ + 2m2
H+

2
sin2 γ (A.1c)

−
m2

12 + (m2
H0

2
− m2

H0
1
) cos α sin α

sin β cos β

)
, (A.1d)

λ4 = − 1

v2

(
λ5v

2 + 2m2
H+

1
cos2 γ (A.1e)
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− 2m2
12

sin β cos β
+ 2m2

H+
2

sin2 γ

)
, (A.1f)

μ4 = −
√

2

v
(m2

H+
1

− m2
H+

2
) cos γ sin γ, (A.1g)

m2
C = −1

2
k1v

2 cos2 β + k12v
2 cos β sin β − 1

2
k2v

2 sin2 β

+ m2
H+

1
sin2 γ + m2

H+
2

cos2 γ . (A.1h)

Appendix B: Couplings of the charged Higgs

Appendix B.1: Couplings to the Z boson

We define the coupling as

[H+
j , H−

k , Z ]
:= −i

g

2cW
(pH+

j
− pH−

k
)μgHpjHmkZ[ j, k], (B.2)

where all particles are entering the vertex and

gHpjHmkZ[1, 1] =1

2

(
c2
W − 3s2

W + cos(2γ )
)

, (B.3a)

gHpjHmkZ[1, 2] = − 1

2
sin(2γ ), (B.3b)

gHpjHmkZ[2, 1] = − 1

2
sin(2γ ), (B.3c)

gHpjHmkZ[2, 2] =1

2

(
c2
W − 3s2

W − cos(2γ )
)

, (B.3d)

Notice that when the mixing angle γ vanishes the singlet
decouples from the doublet and there is no [H+

j , H−
k , Z ]

vertex for j �= k.

Appendix B.2: Couplings to the W boson

For CP even neutral Higgs bosons ( j = 1, 2) we define the
coupling as

[h j , H
+
k ,W−] : −i

g

2
(pH+

k
− ph j )

μghjHpkWm[ j, k], (B.4)

where all particles are entering the vertex. For CP odd neutral
Higgs boson ( j = 3) we define

[h3, H
+
k ,W−] := g

2
(ph3 − pH+

k
)μghjHpkWm[3, k], (B.5)

where

ghjHpkWM[1, 1] = cos(γ ) sin(α − β)), (B.6a)

ghjHpkWM[1, 2] = − sin(α − β) sin(γ ), (B.6b)

ghjHpkWM[2, 1] = cos(α − β) cos(γ ), (B.6c)

ghjHpkWM[2, 2] = − cos(α − β) sin(γ ), (B.6d)

ghjHpkWM[3, 1] = cos(γ ), (B.6e)

ghjHpkWM[3, 2] = − sin(γ ), (B.6f)

Appendix B.3: Couplings to quarks and leptons

The interactions of charged Higgs bosons with quarks are
given by the following Lagrangian

L = g√
2

[
mdj

MW
Xkui Vi j PRd j + mui

MW
Xkui Vi j Yk PLd j

(B.7)

+ ml

MW
Zkνl PRel

]
H+
k + h.c. (B.8)

where k = 1, 2 and we have used the conventions of Borzu-
mati and Greub [16], extended in Ref. [33], which is conve-
nient for the BR(B → Xsγ ) calculation. We get

X1 = tan β cos γ, X2 = − tan β sin γ, (B.9a)

Y1 = cot β cos γ, Y2 = − cot β sin γ, (B.9b)

Z1 = tan β cos γ, Z2 = − tan β sin γ, (B.9c)

Appendix B.4: Couplings to neutral Higgs

Finally the couplings to the neutral Higgs are given by the
Lagrangian

L = H+
i H−

k h j ghjHpiHmk[ j, i, k], (B.10)

where ghjHpiHmk are long expressions that we do not repro-
duce here. Note however that ghjHpiHmk(3, i, k) = 0.

Appendix C: The calculation of the BR(B → Xsγ )

Our calculation follows closely the original calculation of
Ref. [16]. The central point in that calculation is that the new
contributions from the charged scalar bosons are encoded in
the Wilson coefficients,

C0,eff
7 (μW ) = C0,eff

7,SM(μW ) + |Y |2C0,eff
7,YY(μW )

+ (XY ∗)C0,eff
7,XY(μW ) , (C.11a)

C0,eff
8 (μW ) = C0,eff

8,SM(μW ) + |Y |2C0,eff
8,YY(μW )

+ (XY ∗)C0,eff
8,XY(μW ) , (C.11b)

C1,eff
4 (μW ) = E0(x) + 2

3
log

(
μ2
W

M2
W

)
+ |Y |2EH (y) ,

(C.11c)

C1,eff
7 (μW ) = C1,eff

7,SM(μW ) + |Y |2C1,eff
7,YY(μW )

+ (XY ∗)C1,eff
7,XY(μW ) , (C.11d)

C1,eff
8 (μW ) = C1,eff

8,SM(μW ) + |Y |2C1,eff
8,YY(μW )

+ (XY ∗)C1,eff
8,XY(μW ) . (C.11e)

123



 1148 Page 20 of 24 Eur. Phys. J. C          (2021) 81:1148 

All the expressions needed are given in Ref. [16]. Also
there one finds the way to evolve these coefficients to the
scale μb = mb. The dependence on the charged scalar mass
appears because the functions, C0,eff

i,YY,C0,eff
i,XY,C1,eff

i,YY,C1,eff
i,XY,

depend on y = m2
t /m

2
H+ while the SM coefficients depend

on x = m2
t /M

2
W .

The generalization for models with more charged scalars
is straightforward. The case of two charged scalar bosons
was considered in Ref. [33]. We just give the example of
C1,eff

7 (μW ), all the other having similar expressions.

C1,eff
7 (μW ) = C1,eff

7,SM(μW ) + |Y1|2C1,eff
7,YY(μW , y1)

+ |Y2|2C1,eff
7,YY(μW , y2)

+ (X1Y
∗
1 )C1,eff

7,XY(μW , y1)

+ (X2Y
∗
2 )C1,eff

7,XY(μW , y2) , (C.12)

where Xi ,Yi are defined in Eq. (B.7), taking the values in
Eq. (B.9a) for Zee-type models, and we wrote explicitly the
dependence on the charged scalar masses,

y1 = m2
t

m2
H+

1

, y2 = m2
t

m2
H+

2

. (C.13)

An important point in the calculation is the value of the
input parameters. We took those of Ref. [16] except for
αs(MZ ),mt , MZ , MW that were updated to the values of the
PDG [56]. The values are

αs(MZ ) = 0.1179 ± 0.0010 , (C.14a)

mt = 172.76 ± 0.3 GeV , (C.14b)

mc/mb = 0.29 ± 0.02 , (C.14c)

mb − mc = 3.39 ± 0.04 GeV , (C.14d)

α−1
em = 137.036± , (C.14e)

|V ∗
tsVtb/Vcb|2 = 0.95 ± 0.03 , (C.14f)

BRSL = 0.1049 ± 0.0046 . (C.14g)

We should emphasize that, using the input values of Ref.
[16], we were able to reproduce their results5 for the SM.

Appendix D: The decays h → γ γ and h → Zγ

These decays were calculated for the 2HDM to one loop
approximation in [40]. Since most terms in the Lagrangian of
our model only differ by multiplicative constants, our results
will only change by some factors. We adapt from [40] for

5 We are indebted to C. Greub for discussions and for having shared
with us the original code for cross checking our independent calculation.
One important point was that the parameter λ1 = 0.12 GeV2 defined
in Ref. [16] should be positive.

the next results. The major difference occurs in h → Zγ ,
where the presence of the ZH±

1 H∓
2 coupling allows for the

new diagrams in Fig. 5.

Appendix D.1: Fermion loops

The fermion loops are easily obtained plugging the couplings
of Eq. (15) in the results of [40]:

Xγ γ

F = −
∑
f

N f
c 2a2

f Q
2
f τ f [1 + (1 − τ f ) f (τ f )] ,

Y γ γ

F = −
∑
f

N f
c 2b2

f Q
2
f τ f f (τ f ) ,

X Zγ

F = −
∑
f

N f
c

4a2
f g

f
V Q f m2

f

sW cW

×
[

2M2
Z

(m2
h − M2

Z )2

[
B0(m

2
h,m

2
f ,m

2
f )

− B0(M
2
Z ,m2

f ,m
2
f )

]

+ 1

m2
h − M2

Z

[
(4m2

f − m2
h + M2

Z )C0

× (M2
Z , 0,m2

h,m
2
f ,m

2
f ,m

2
f ) + 2

]]
,

Y Zγ

F = −
∑
f

N f
c

4b2
f g

f
V Q f m2

f

sW cW
C0

× (M2
Z , 0,m2

h,m
2
f ,m

2
f ,m

2
f ) , (D.15)

where N f
c is 3 for quarks and 1 for leptons, Q f is the fermion

charge, g f
V is the fermion’s vector coupling to the Z boson

and the sums run over all fermions f . The function appearing
is defined as

f (τ ) = −2m2
f

τ f
C0(0, 0,m2

h,m
2
f ,m

2
f ,m

2
f )

=

⎧⎪⎪⎨
⎪⎪⎩

[
sin−1

(√
1/τ
)]2

, if τ ≥ 1

− 1
4

[
ln

(
1 + √

1 − τ

1 − √
1 − τ

)
− iπ

]2

, if τ < 1
,

(D.16)

while B0 and C0 are the Passarino–Veltman functions.

Appendix D.2: Charged gauge boson loops

The only change in these loops comes from the hV V vertex,
which is multiplied by a factor Re(ω†V )β , and so is the loop.
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Using the notation of [40], we have

Xγ γ

W = Re(ω†V )β [2 + 3τW + 3τW (2 − τW ) f (τW )] ,

X Zγ

W = Re(ω†V )β

tan θW
IW , (D.17)

where,

ωa = va/v, τW = 4M2
W

m2
h

,

IW = 1

(m2
h − M2

Z )2

[
m2

h(1 − tan2 θW )

− 2M2
W (−5 + tan2 θW )

]
M2

ZΔB0

+ 1

m2
h − M2

Z

[
m2

h(1 − tan2 θW )

− 2M2
W (−5 + tan2 θW )

+ 2M2
W [(−5 + tan2 θW )(m2

h − 2M2
W )

− 2M2
Z (−3 + tan2 θW )]C0

]
M2

ZΔB0 ,

ΔB0 = B0(m
2
h, M

2
W , M2

W ) − B0(M
2
Z , M2

W , M2
W ) ,

C0 = C0(M
2
Z , 0,m2

h, M
2
W , M2

W , M2
W ) . (D.18)

Appendix D.3: Charged Scalar Loops

For the decay to γ γ , the loops are the same as the one pre-
sented in [40] with the cubic scalar vertex replaced by the
ones we defined in Eq. (8). Besides this replacement, we
only need to sum over the charged scalars, obtaining

Xγ γ

H = −
∑
α

g2αα v2

2m2±α

τ±α[1 − τ±α f (τ±α)] , (D.19)

where τ±α = 4m2
h/m±α . Regarding the decay to Zγ , we can

allow two different scalars to run within the same loop, as
seen in Fig. 5. This generalizes the result in [40]. We obtain

X Zγ

H = −
∑
α1α2

(2s2
W δα1α2 − (U †U )α2α1)

sin θW cos θW

g2α1α2 v2

m2
h − M2

Z

×
[

M2
Z

m2
h − M2

Z

(
B0(m

2
h,m

2±α1
,m2±α2

)

−B0(M
2
Z ,m2±α1

,m2±α2
)
)

+ 1

+ m2±α1
C0(M

2
Z , 0,m2

h,m
2±α1

,m2±α1
,m2±α2

)

+ m2±α2
C0(M

2
Z , 0,m2

h,m
2±α2

,m2±α2
,m2±α1

)

]
.

(D.20)

If there were no cubic terms in Eq. (5) (μabi
4 = 0), then

(U †U )α2α1 = δα2α1 and there would be no diagrams involv-
ing simultaneously two different charged scalars.

Appendix D.4: Final widths for loop decays

The final widths are given by

Γ (h → γ γ ) = GFα2m2
h

128
√

2π3

(
|Xγ γ

F + Xγ γ
W + Xγ γ

H |2 + |Y γ γ
F |2

)
,

Γ (h → Zγ ) = GFα2m2
h

64
√

2π3

(
1 − M2

Z

m2
h

)3

×
(
|X Zγ

F + X Zγ
W + X Zγ

H |2 + |Y Zγ
F |2

)
. (D.21)

Appendix E: Perturbative unitarity

We write here the scattering matrices for the various (Q, Y )

combinations and list all the eigenvalues at the end. This is
presented here for the first time. We follow the notation of
[26]

Appendix E.1: Q = 2,Y = 1

For the combination of states S++
α in Eq. (56a) we have

M++
2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

λ1 0 0 λ5 0 0
0 λ3 + λ4 0 0 0 0
0 0 k1 0 −k12 0
λ5 0 0 λ2 0 0
0 0 −k12 0 k2 0
0 0 0 0 0 2λc

⎤
⎥⎥⎥⎥⎥⎥⎦

. (E.22)

Appendix E.2: Q = 1,Y = 1

For the combination of states S+
α in Eq. (56b) we have

M+
2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

λ1 0 0 λ5 0 0
0 λ3 λ4 0 0 0
0 λ4 λ3 0 0 0
λ5 0 0 λ2 0 0
0 0 0 0 k1 −k12

0 0 0 0 −k12 k2

⎤
⎥⎥⎥⎥⎥⎥⎦

. (E.23)

Appendix E.3: Q = 1,Y = 0

For the combination of states T+
α in Eq. (56c) we have

M+
0 =

⎡
⎢⎢⎢⎢⎢⎢⎣

λ1 0 0 λ4 0 0
0 λ3 λ5 0 0 0
0 λ5 λ3 0 0 0
λ4 0 0 λ2 0 0
0 0 0 0 k1 −k12

0 0 0 0 −k12 k2

⎤
⎥⎥⎥⎥⎥⎥⎦

. (E.24)
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Appendix E.4: Q = 0,Y = 1

For the combination of states S0
α in Eq. (56d) we have

M0
2 =

⎡
⎣0 0 0

0 0 0
0 0 0

⎤
⎦ . (E.25)

Appendix E.5: Q = 0,Y = 0

For the combination of states T 0
α in Eq. (56e) we have

M0
0 =

[
A B
BT C

]
(E.26)

with

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

2λ1 0 0 0 λ34 0 0
0 2λ5 0 λ34 0 0 0
0 0 0 0 0 0 k1

0 λ34 0 2λ5 0 0 0
λ34 0 0 0 2λ2 0 0
0 0 0 0 0 0 −k12

0 0 k1 0 0 −k12 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(E.27)

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 k1 λ1 0 0 λ3

0 −k12 0 λ5 λ4 0
−k12 0 0 0 0 0

0 −k12 0 λ4 λ5 0
0 k2 λ3 0 0 λ2

k2 0 0 0 0 0
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(E.28)

C =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
0 4λc k1 −k12 −k12 k2

0 k1 2λ1 0 0 λ34

0 −k12 0 2λ5 λ34 0
0 −k12 0 λ34 2λ5 0
0 k2 λ34 0 0 2λ2

⎤
⎥⎥⎥⎥⎥⎥⎦

(E.29)

and where for simplicity we have defined

λ34 ≡ λ3 + λ4 . (E.30)

Appendix E.6: The independent eigenvalues

We can obtain easily the eigenvalues for all the matrices
except for M0

0 in Eq. (E.25) for which we have to solve
numerically a fourth order polynomial. The list of indepen-
dent eigenvalues is,

Λ1 = 1

2

(
−
√

(k1)2 − 2k1k2+4(k12)2+(k2)2+k1+k2

)
,

Λ2 = 1

2

(√
(k1)2 − 2k1k2 + 4(k12)2 + (k2)2 + k1 + k2

)
,

Λ3 = λ3 + λ4

Λ4 = 1

2

(
−
√

λ2
1 − 2λ1λ2 + λ2

2 + 4λ2
5 + λ1 + λ2

)
,

Λ5 = 1

2

(√
λ2

1 − 2λ1λ2 + λ2
2 + 4λ2

5 + λ1 + λ2

)
,

Λ6 = 2λc ,

Λ7 = λ3 − λ4 ,

Λ8 = 1

2

(
−
√

λ2
1 − 2λ1λ2 + λ2

2 + 4λ2
4 + λ1 + λ2

)
,

Λ9 = 1

2

(√
λ2

1 − 2λ1λ2 + λ2
2 + 4λ2

4 + λ1 + λ2

)
,

Λ10 = λ3 − λ5 ,

Λ11 = λ3 + λ5 ,

Λ12 = 1

2

(
−
√

(k1)2−2k1k2+4(k12)2+(k2)2−k1−k2

)
,

Λ13 = 1

2

(√
(k1)2 − 2k1k2 + 4(k12)2 + (k2)2 − k1 − k2

)
,

Λ14 = λ5 − λ3 ,

Λ15 = −λ3 − 2λ4 + 3λ5 .

The remaining eigenvalues, Λ16 − Λ19, are the roots of the
polynomial of fourth degree

c0 + c1 η + c2 η2 + c3 η2 + c4 η4 = 0 , (E.32)

where

c0 = 6(k1)
2λ2λ3 + 12(k1)

2λ2λ4+18(k1)
2λ2λ5−8k1k2λ

2
3

− 20k1k2λ3λ4 − 24k1k2λ3λ5−8k1k2λ
2
4−12k1k2λ4λ5

+ 36(k12)
2λ1λ2 − 16(k12)

2λ2
3 − 16(k12)

2λ3λ4

− 4(k12)
2λ2

4 + 6(k2)
2λ1λ3 + 12(k2)

2λ1λ4

+ 18(k2)
2λ1λ5 − 36λ1λ2λ3λc − 72λ1λ2λ4λc

− 108λ1λ2λ5λc + 48λ2
3λ4λc + 48λ2

3λ5λc + 16λ3
3λc

+ 36λ3λ
2
4λc + 48λ3λ4λ5λc + 12λ2

4λ5λc + 8λ3
4λc ,

c1 = −6(k1)
2λ2 − 2(k1)

2λ3 − 4(k1)
2λ4 − 6(k1)

2λ5

+ 8k1k2λ3 + 4k1k2λ4 − 12(k12)
2λ1 − 12(k12)

2λ2

− 6(k2)
2λ1 − 2(k2)

2λ3 − 4(k2)
2λ4 − 6(k2)

2λ5

+ 9λ1λ2λ3 + 18λ1λ2λ4 + 27λ1λ2λ5 + 36λ1λ2λc

+ 12λ1λ3λc + 24λ1λ4λc + 36λ1λ5λc + 12λ2λ3λc

+ 24λ2λ4λc + 36λ2λ5λc − 12λ2
3λ4 − 12λ2

3λ5

− 16λ2
3λc − 4λ3

3 − 9λ3λ
2
4 − 12λ3λ4λ5

− 16λ3λ4λc − 3λ2
4λ5 − 4λ2

4λc − 2λ3
4 ,

c2 = 2(k1)
2+4(k12)

2+2(k2)
2 − 9λ1λ2 − 3λ1λ3 − 6λ1λ4

− 9λ1λ5 − 12λ1λc − 3λ2λ3 − 6λ2λ4 − 9λ2λ5

− 12λ2λc + 4λ2
3 + 4λ3λ4 − 4λ3λc + λ2

4

− 8λ4λc − 12λ5λc ,
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c3 = 3λ1 + 3λ2 + λ3 + 2λ4 + 3λ5 + 4λc ,

c4 = −1 .
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