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Abstract

We study the one-loop corrections to the Zbb̄ vertex in extensions of the Standard Model with arbitrary 
numbers of scalar doublets, neutral scalar singlets, and charged scalar singlets. Starting with a general 
parameterization of theories with neutral and singly-charged scalar particles, we derive the conditions that, 
in a renormalizable model, must be obeyed by the couplings in order for the divergent contributions to 
cancel. Then, we show that those conditions are indeed obeyed by the models that we are interested in, 
and we write down the full finite expression for the vertex in those models. We apply our results to some 
particular cases, highlighting the importance of the diagrams with neutral scalars.
© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The discovery of a scalar particle at the LHC [1,2] urges the questions of whether there are 
more neutral scalars and whether there are charged scalars. Multi-scalar models have long been 
studied—for reviews see, for example, Refs. [3–5]. Here, we concentrate on models with nd
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scalar doublets, nc charged-scalar singlets, and nn neutral-scalar singlets. The scalar-particle 
content is, thus, 2n ≡ 2 (nd + nc) charged scalars H±

a (a = 1, . . . , n) and m ≡ 2nd + nn neutral 
scalars S0

l (l = 1, . . . , m). (The S0
l are real fields.) In our notation, H±

1 = G± and S0
1 = G0 are, 

respectively, the charged and neutral would-be Goldstone bosons.
Light extra scalars may be detected directly through their production, while heavy scalars may 

be detected indirectly through their impact on the radiative corrections. We focus on the coupling 
Zbb̄1:

LZbb = − g

cW

Zλ b̄ γ λ (gLbPL + gRbPR)b, (1)

where PL,R are the projectors of chirality and, at the tree level,

g0
Lb = s2

W

3
− 1

2
, g0

Rb = s2
W

3
(2)

in models without extra gauge fields. As usual, sW and cW are the sine and the cosine, respec-
tively, of the Weinberg angle θW .

Haber and Logan [7] have considered the one-loop corrections to the vertex Zbb̄ in models 
with extra scalars in any representation of the gauge group SU(2)L. The one-loop corrected 
couplings can conveniently be written as

gℵb = gSMℵb + δgℵb (ℵ = L,R), (3)

where gSMℵb includes the SM contributions and the quantities δgℵb contain the New Physics con-
tributions. Experimentally these couplings are obtained from the measurable quantities

Rb = �
(
Z → bb̄

)
�(Z → hadrons)

, Ab = 4

3
AFB

LR (b) , (4)

where AFB
LR is the forward–backward asymmetry measured in the process e−e+ → bb. The 

present values for these quantities are within 1σ of the SM predictions [8]; therefore, study-
ing the one-loop corrections to the Zbb vertex can be used to constrain New Physics. The 
work of Ref. [7] has been used to constrain various two-Higgs-doublet models (2HDM) [9–14], 
the Georgi–Machacek model [15–19], scotogenic models [20], models with SU(2)L singlet 
scalars [21,22], and used in fitting programs [23,24].

In this paper, we extend the analysis of Ref. [7] by considering CP-violating scalar sectors 
and we write down the final results in models with singlets and doublets in a simple and usable 
form. This is possible due to a convenient parameterization that was introduced in Refs. [25–27], 
following earlier work [28]. We also discuss in detail the renormalization of the vertex for these 
generic models, which was assumed but not explicitly displayed in Ref. [7].

We present the Lagrangian and the relevant calculations in Section 2. In Section 3 we intro-
duce the parameterization relevant for doublets and singlets; we show that all the divergences 
cancel out and we simplify the final expressions. The connection with experiment is reviewed 
in Section 4, and then applied in Section 5 to some simple cases, looking in particular at the 
importance of diagrams with neutral scalars. We draw our conclusions in Section 6. An appendix 
summarizes the definitions of the Passarino–Veltman functions used in this paper.

1 We use the conventions of Ref. [6], taking all the η signs to be positive. In our convention, g = e
/
sW .
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2. The one-loop calculation

We use the approximation where the CKM matrix element Vtb = 1, requiring us to consider 
only the quarks bottom with mass mb and top with mass mt . We neglect mb in the propagators 
and loop functions, but we keep generic couplings.

2.1. Couplings

In addition to the couplings in Eqs. (1) and (2), we need

LZtt = − g

cW

t̄ γ λ (gLtPL + gRtPR) t Zλ, (5)

LWtb = − g√
2

(
t̄γ λPLbW+

λ + b̄γ λPLt W−
λ

)
. (6)

In Eq. (5), at the tree level

g0
Lt = 1

2
− 2s2

W

3
, g0

Rt = −2s2
W

3
. (7)

From Eqs. (2) and (7),

g0
Rb − g0

Lt = g0
Lb − g0

Rt = s2
W − c2

W

2
. (8)

The charged scalars H±
a and the neutral scalars S0

l interact with the quarks through

LHtb =
n∑

a=1

[
H+

a t̄
(
c∗
aPL − daPR

)
b + H−

a b̄
(
caPR − d∗

aPL

)
t
]
, (9)

LSbb =
m∑

l=1

S0
l b̄
(
rlPR + r∗

l PL

)
b, (10)

and with the Z gauge boson through

LZHH = − g

cW

Zλ

n∑
a,a′=1

Xaa′
(
H+

a i∂λH−
a′ − H−

a′ i∂λH+
a

)
, (11)

LZSS = ig

cW

Zλ

m∑
l,l′=1

Yll′
(
S0

l i∂λS0
l′ − S0

l′ i∂
λS0

l

)
, (12)

LZZS = gMZ

2cW

ZλZ
λ

m∑
l=1

ylS
0
l , (13)

where MZ is the mass of the Z. In general, the coefficients ca , da , and rl in Eqs. (9) and (10)
are complex, while the yl in Eq. (13) are real. The n × n matrix X in Eq. (11) is Hermitian. The 
m × m matrix Y in Eq. (12) is real and antisymmetric. We let ma denote the mass of H±

a and ml

denote the mass of S0.
l
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Fig. 1. Two diagrams with charged scalars contributing to the Zbb̄ vertex.

Fig. 2. Two diagrams with neutral scalars contributing to the Zbb̄ vertex.

Fig. 3. Diagrams referred as to “type d)” in Ref. [7].

2.2. One-loop diagrams

At one-loop level, the diagrams contributing to the Zbb̄ vertex are shown in Figs. 1 and 2, 
for charged and neutral scalars, respectively. This classification of the diagrams was proposed in 
Ref. [7], wherein the diagrams in Fig. 3 were also mentioned, but then neglected. The diagrams 
in Fig. 3 involving the charged scalars do not give new contributions beyond the Standard Model 
(SM) in models with only scalar singlets and doublets, because in these models there are no 
ZW±H∓

a couplings other than the ZW±G∓ already present in the SM. The diagrams in Fig. 3
involving neutral scalars are proportional to mb. This is because the coupling of the Z to the bot-
tom quarks in Eq. (1) conserves chirality, i.e. the ingoing and outgoing bottom quarks have the 
same chirality, while the analogous coupling of a neutral scalar does not contain the matrix γ λ
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Fig. 4. Contribution of the charged and neutral scalars to the self-energy of the bottom quark, leading to “type c)” 
contributions to the vertex.

and therefore it changes the chirality of the bottom quark. Hence, in the diagrams in Fig. 3c),d) 
there must be a mass insertion in the internal bottom-quark propagator in order to change the 
chirality of the bottom-quark line once again. Since the diagrams in Fig. 3 are convergent, one 
may neglect them by taking mb = 0, and this is what was done in Ref. [7]. Nevertheless, because 
mb could appear multiplied by a large coefficient (such as tanβ = v2/v1 in the Z2-symmetric 
2HDM, see for instance Table 2 in Ref. [4]) we will also present their calculation in order to 
check the validity of this approximation. The diagrams in Figs. 1 and 2 are divergent and must be 
renormalized. We follow the on-shell renormalization scheme of Hollik [29,30]. Applying mul-
tiplicative renormalization, the renormalized vertex acquires some terms leading to a correction 
to the Z propagator; these are part of the oblique parameters and were shown to be very small 
in Ref. [7]. Here we are looking for the terms that change the tree-level couplings, which after 
renormalization may be written as

i�̂Zff
μ =−iγμ

g

cW

[(
g0

Lb + �gL

)
PL+

(
g0

Rb + �gR

)
PR

]
, (14)

where �gℵ (ℵ = L, R) represent all the one-loop corrections after renormalization, including the 
ones involving G±, G0, and the already-observed neutral scalar with mass 125 GeV (more on this 
in Section 4). To perform the renormalization one needs to evaluate the renormalization constants 
that are obtained from the self-energies. We therefore need to evaluate the contributions of both 
the charged and neutral scalars to the self-energies, shown in Fig. 4. The self-energy i� (p)

receives contributions proportional to 	pPL, 	pPR , mbPL, and mbPR . In our approximation of 
neglecting mb, we write

�(p) =	p
[

L

(
p2
)

PL + 
R

(
p2
)

PR

]
. (15)

Following Hollik’s renormalization scheme [29,30], the self-energy produces contributions to 
�gLb and �gRb given by

�gLb (c) = −g0
Lb 
L

(
p2 = m2

b

)
, (16a)

�gRb (c) = −g0
Rb 
R

(
p2 = m2

b

)
. (16b)

Note that Ref. [7] follows an equivalent procedure, ignoring renormalization and calculating 
simply the reducible diagrams with self-energy corrections in the external bottom quarks, which 
they dub “type c) diagrams”. Although we do perform the renormalization, we will name the 
contributions arising from it as “type c)”, allowing for an easy comparison with Ref. [7].

Our calculations of the various diagrams have been performed by hand and then confirmed 
through the standard computer codes FeynRules [31], QGRAF [32], and FeynCalc [33,34]. 



6 D. Fontes et al. / Nuclear Physics B 958 (2020) 115131
Recently, two of us (DF and JCR) have developed the new software FeynMaster [35] that 
handles, in an automated way, all these steps. The results involve Passarino–Veltman loop 
functions [36]; our conventions for them coincide with those in FeynCalc and LoopTools
[37,38], and are summarized in Appendix A.

We next turn to the computation of each diagram.

2.3. Calculating the diagrams involving charged scalars

The diagrams in Fig. 1a) lead to

�gLb (a) = 1

8π2

n∑
a,a′=1

caXaa′c∗
a′ C00

(
M2

Z,0,0,m2
a′ ,m2

a,m
2
t

)
, (17a)

�gRb (a) = �gLb (a)
(
ca → d∗

a

)
, (17b)

where C00 is a Passarino–Veltman function defined through Eq. (111). We have set mb = 0 inside 
all the Passarino–Veltman functions; however, when evaluating them numerically it is sometimes 
better to keep mb 	= 0 in order to avoid numerical instabilities. We should note that the sums in 
Eqs. (17) start at a = 1, i.e. they include the charged Golsdtone bosons G±. However, one may 
show that X1a = Xa1 = 0, and therefore the sum in Eq. (17a) may start at a, a′ = 2, while the 
term with a = a′ = 1 is separately included in the SM contribution.

The diagrams in Fig. 1b) lead, after taking into account that

(d − 2)C00 (. . . ) = 2C00 (. . . ) − 1/2

(d is the dimension of space–time), to

�gLb (b) = 1

16π2

n∑
a=1

|ca|2
{

− m2
t g0

Lt C0

(
0,M2

Z,0,m2
a,m

2
t ,m

2
t

)

+g0
Rt

[
2C00

(
0,M2

Z,0,m2
a,m

2
t ,m

2
t

)
− 1

2

−M2
Z C12

(
0,M2

Z,0,m2
a,m

2
t ,m

2
t

)]}
, (18a)

�gRb (b) = �gLb (b)
(
ca → da, g0

Lt ↔ g0
Rt

)
. (18b)

The Passarino–Veltman function C0 is defined in Eq. (109), while C12 is defined through 
Eq. (111).

As for the type c) contributions, arising through renormalization from the diagram in Fig. 4a), 
we find

�gLb (c) = g0
Lb

16π2

n∑
a=1

|ca|2 B1

(
0,m2

t ,m
2
a

)
, (19a)

�gRb (c) = �gLb (c)
(
ca → da, g0

Lb → g0
Rb

)
. (19b)

The Passarino–Veltman function B1 is defined in Eq. (108).
In the CP-conserving limit, Eqs. (17)–(19) agree with Eqs. (4.1) of Ref. [7], and also with 

Ref. [39].
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The functions B1 and C00 are divergent; all the other Passarino–Veltman functions appearing 
in this paper are finite. In dimensional regularization, defining the divergent quantity

div = 2

4 − d
− γ + ln (4π), (20)

one has

B1

(
r2,m2

0,m
2
1

)
= −div

2
+ finite terms, (21a)

C00

[
r2

1 , (r1 − r2)
2 , r2

2 ,m2
0,m

2
1,m

2
2

]
= +div

4
+ finite terms. (21b)

Therefore, the divergent terms in Eqs. (17)–(19) are

�gLb (a) + �gLb (b) + �gLb (c)

= div

32π2

⎡
⎣ n∑

a,a′=1

caXaa′c∗
a′ +

(
g0

Rt − g0
Lb

) n∑
a=1

|ca|2
⎤
⎦+ · · · , (22a)

�gRb (a) + �gRb (b) + �gRb (c)

= div

32π2

⎡
⎣ n∑

a,a′=1

d∗
aXaa′da′ +

(
g0

Lt − g0
Rb

) n∑
a=1

|da|2
⎤
⎦+ · · · . (22b)

We thus conclude that in any sensible theory one must have

∑
a,a′

caXaa′c∗
a′ = s2

W − c2
W

2

∑
a

|ca|2 , (23a)

∑
a,a′

d∗
aXaa′da′ = s2

W − c2
W

2

∑
a

|da|2 , (23b)

where we have used Eq. (8).

2.4. Calculating the diagrams involving neutral scalars

The diagrams in Fig. 2a) lead to

�gLb (a) = i

4π2

m∑
l,l′=1

rlYll′r
∗
l′ C00

(
0,M2

Z,0,0,m2
l′ ,m

2
l

)
, (24a)

�gRb (a) = �gLb (a)
(
rl → r∗

l

)
. (24b)

The diagrams in Fig. 2b) lead to

�gLb (b) = g0
Rb

16π2

m∑
l=1

|rl |2
[

2C00

(
0,M2

Z,0,m2
l ,0,0

)
− 1

2

− M2
Z C12

(
0,M2

Z,0,m2
l ,0,0

)]
, (25a)

�gRb (b) =�gLb (b)
(
g0

Rb → g0
Lb

)
. (25b)
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As for the type c) contributions, arising through renormalization from Fig. 4b), we find

�gLb (c) = g0
Lb

16π2

m∑
l=1

|rl |2 B1

(
0,0,m2

l

)
, (26a)

�gRb (c) = �gLb (c)
(
g0

Lb → g0
Rb

)
. (26b)

In the CP-conserving limit, Eqs. (24)–(26) agree with Eqs. (5.1) of Ref. [7].
Collecting all the divergent terms in Eqs. (24a), (25a), and (26a) we find

�gLb (a) + �gLb (b) + �gLb (c)

= div

32π2

⎡
⎣2i

m∑
l,l′=1

rlYll′r
∗
l′ +

(
g0

Rb − g0
Lb

) m∑
l=1

|rl |2
⎤
⎦+ · · · . (27)

Since g0
Rb − g0

Lb = 1/2, a consistent theory requires

m∑
l,l′=1

rlYll′r
∗
l′ = i

4

∑
l

|rl |2. (28)

This condition can also be obtained by collecting all the divergent terms in Eqs. (24b), (25b), 
and (26b).

The diagrams in Fig. 3c),d) involve neutral scalars. They are not divergent and they are sup-
pressed by mb. However, we keep them because they might be enhanced when the coupling of 
neutral scalars to the bottom quark gets enhanced, as in the type-II 2HDM. From them we get

�gLb (d) = gmbMZ

8π2cW

m∑
l=1

yl Re rl

{
g0

Lb

[
C0

(
M2

Z,0,0,M2
Z,m2

l ,0
)

−C1

(
M2

Z,0,0,M2
Z,m2

l ,0
)]

+g0
Rb C1

(
M2

Z,0,0,m2
l ,M

2
Z,0
)}

, (29a)

�gRb (d) = �gLb (d)
(
g0

Lb ↔ g0
Rb

)
. (29b)

The function C1 is defined through Eq. (110).
At this juncture we want to make a clarification. The one-loop results for �gLb and �gRb

have imaginary parts. If there are no scalars with mass below MZ/2, then the imaginary parts 
only appear through cuts of the internal bottom-quark lines of Fig. 2b), thus affecting only the 
contributions with neutral scalars. Although those imaginary parts may be of the same order of 
magnitude as the real parts, they are unimportant because the observables will depend on, for 
example,

|gLb|2 =
∣∣∣g0

Lb + �gLb

∣∣∣2
=
∣∣∣g0

Lb

∣∣∣2 + 2 Re
(
g0

Lb �g∗
Lb

)
+ O

(
�g2

Lb

)
=
∣∣∣g0

Lb

∣∣∣2 + 2g0
Lb Re (�gLb) + O

(
�g2

Lb

)
, (30)
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where the last line follows from the fact that g0
Lb is real. As a result, the impact of an imaginary 

�gLb on the observables (see the next section) effectively appears only at higher order.

2.5. Summary

A generic theory with the couplings in Eqs. (1), (5), (6), and (9)–(13) gets radiative corrections 
to the Zbb̄ vertex, obtained at the one-loop level by summing our Eqs. (17a), (18a), (19a), (24a), 
(25a), and (26a)—and, if enhanced, (29a)—for �gLb , and by summing our Eqs. (17b), (18b), 
(19b), (24b), (25b), and (26b)—and, if enhanced, (29b)—for �gRb . The theory only makes sense 
if its couplings are related through Eqs. (23a), (23b), and (28), which are needed in order for the 
divergences to cancel.

3. Models with doublet and singlet scalars

We now focus on extensions of the SM with nd scalar doublets, nc singly-charged scalar 
SU(2)L singlets, and nn real scalar gauge-invariant fields. The particle content is then 2n ≡
2 (nd + nc) charged scalars H±

a and m ≡ 2nd + nn neutral scalars S0
l ; this counting includes the 

Goldstone bosons H±
1 = G± and S0

1 = G0. Without loss of generality, one may assume that the 
scalar with mass 125 GeV found at the LHC is S0

2 ; generality is lost if one makes the further 
assumption that the masses are ordered, since there might be massive scalar(s) below 125 GeV.

The scalar doublets are

�k =
(

ϕ+
k

ϕ0
k

)
, �̃k ≡ iσ2�

∗
k =

(
ϕ0

k

∗

−ϕ−
k

)
. (31)

The fields ϕ0
k have VEVs vk

/√
2 , where the vk may be complex.

Obviously, the charged and neutral SU(2)L singlets have no Yukawa couplings. The Yukawa 
Lagrangian is

LYukawa = − ( tL bL

) nd∑
k=1

[
fk

(
ϕ+

k

ϕ0
k

)
bR + ek

(
ϕ0

k

∗

−ϕ−
k

)
tR

]
+ H.c., (32)

where the ek and the fk (k = 1, . . . , nd ) are the Yukawa coupling constants.

3.1. Formalism

We use the formalism in Refs. [25–27]. We write ϕ+
k and ϕ0

k as superpositions of the physical 
(i.e. eigenstates of mass) fields as

ϕ+
k =

n∑
a=1

UkaH
+
a , (33)

ϕ0
k = 1√

2

(
vk +

m∑
l=1

VklS
0
l

)
. (34)

The matrix U is nd × n and the matrix V is nd × m.
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Since H±
1 and S0

1 are Goldstone bosons, the first columns of U and V are fixed and given by

Uk1 = vk

v
, Vk1 = ivk

v
, (35)

where v2 ≡∑nd

k=1 |vk|2 (v is real and positive by definition).
There is an n × n matrix

Ũ =
(
U
T

)
(36)

that is unitary, implying that

UU† = 1nd×nd
. (37)

The matrix T in Eq. (36) only exists when the number nc of charged scalar SU(2)L singlets is 
nonzero. There is an m × m matrix

Ṽ =
⎛
⎝ ReV

ImV
R

⎞
⎠ (38)

that is real and orthogonal. Therefore,

ReV ReVT = 1nd×nd
, (39a)

ImV ImVT = 1nd×nd
, (39b)

ReV ImVT = 0nd×nd
, (39c)

ImV ReVT = 0nd×nd
. (39d)

The matrix R in Eq. (38) only exists in models with nn 	= 0.
One can show [26] that in this class of models

Xaa′ = s2
Wδaa′ −

(
UT U∗)

aa′
2

, (40)

= s2
W − c2

W

2
δaa′ +

(
T T T ∗)

aa′
2

, (41)

Yll′ = −1

4
Im
(
V†V

)
ll′

. (42)

Moreover,

yl = −Im
(
V†V

)
1l

, (43)

leading to yl=1 = 0, because V†V is Hermitian and therefore Im
(
V†V

)
11 = 0. Thus, the sum in 

Eq. (13) really starts at l = 2, viz. there is no vertex ZZG0, just as there is no vertex ZZZ.

3.2. Cancellation of the divergences

It follows from Eqs. (9), (10), and (32)–(34) that

ca =
nd∑

U∗
kaek =

(
U†E

)
a
, (44)
k=1
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da =
nd∑

k=1

Ukafk =
(
UT F

)
a
, (45)

rl = − 1√
2

nd∑
k=1

Vklfk = − 1√
2

(
VT F

)
l
, (46)

where we have defined the nd × 1 vectors

E =

⎛
⎜⎜⎜⎝

e1
e2
...

end

⎞
⎟⎟⎟⎠ , F =

⎛
⎜⎜⎜⎝

f1
f2
...

fnd

⎞
⎟⎟⎟⎠ . (47)

From Eqs. (35) and (44)–(46),

|c1| =
∣∣∣∣∣

nd∑
k=1

v∗
k

v
ek

∣∣∣∣∣=
√

2mt

v
, (48a)

|d1| =
∣∣∣∣∣

nd∑
k=1

vk

v
fk

∣∣∣∣∣=
√

2mb

v
≡ 0, (48b)

|r1| =
∣∣∣∣ 1√

2

vk

v
fk

∣∣∣∣= mb

v
≡ 0. (48c)

We further define the m × 1 column vector

R =

⎛
⎜⎜⎜⎝

r1
r2
...

rm

⎞
⎟⎟⎟⎠ . (49)

It then follows from Eq. (46) that

m∑
l=1

|rl |2 = 1

2
FT VV†F ∗

= 1

2
FT (ReV + i ImV)

(
ReVT − i ImVT

)
F ∗

= 1

2
FT
(

ReV ReVT + ImV ImVT + i ImV ReVT − i ReV ImVT
)
F ∗.

(50)

We now use Eqs. (39) to obtain

m∑
l=1

|rl |2 = 1

2
FT
(
1nd×nd

+ 1nd×nd
+ i × 0nd×nd

− i × 0nd×nd

)
F ∗

= FT F ∗ =
nd∑

|fk|2 . (51)

k=1
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From Eqs. (44) and (37),

n∑
a=1

|ca|2 = E†UU†E = E†E =
nd∑

k=1

|ek|2. (52)

Notice that the two sums in Eq. (52) run over different spaces (up to n and nd , respectively). 
Similarly,

n∑
a=1

|da|2 =
nd∑

k=1

|fk|2. (53)

From Eqs. (40), (44), and (37),

n∑
a,a′=1

caXaa′c∗
a′ = s2

W ET U∗UT E∗ − ET U∗UT U∗UT E∗

2

= s2
W ET E∗ − ET E∗

2

= s2
W − c2

W

2

nd∑
k=1

|ek|2

= s2
W − c2

W

2

n∑
a=1

|ca|2 , (54)

where the last equality follows from Eq. (52). This proves that this class of models obeys the 
consistency Eq. (23a). Similarly, one can show that Eq. (23b) is also obeyed, confirming within 
this class of models the cancellation of the divergences of the contributions from charged scalars.

Next we compute

m∑
l,l′=1

rl Im
(
V†V

)
ll′

r∗
l′ = 1

2
FT V Im

[(
ReVT − i ImVT

)
(ReV + i ImV)

]
V†F ∗

= 1

2
FT (ReV + i ImV)

(
ReVT ImV − ImVT ReV

)
×
(

ReVT − i ImVT
)

F ∗. (55)

We use once again Eqs. (39) to obtain

m∑
l,l′=1

rl Im
(
V†V

)
ll′

r∗
l′ = 1

2
FT (ImV − i ReV) ×

(
ReVT − i ImVT

)
F ∗

= 1

2
FT
(−2i × 1nd×nd

)
F ∗

= −i F T F ∗

= −i

nd∑
k=1

|fk|2

= −i

m∑
|rl |2 , (56)
l=1
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where in the last step we have used Eq. (51). Taking into account Eq. (42), we conclude that in 
this class of models the consistency Eq. (28) also holds.

3.3. Simplification of the charged-scalars contribution

In this class of models, from Eqs. (41) and (8),

Xaa′ =
(
g0

Lb − g0
Rt

)
δaa′ +

(
T T T ∗)

aa′
2

=
(
g0

Rb − g0
Lt

)
δaa′ +

(
T T T ∗)

aa′
2

.

Therefore, one may write the charged-scalars contribution as

(
16π2

)
�gLb =

n∑
a=1

|ca|2
{

− g0
Ltm

2
t C0

(
0,M2

Z,0,m2
a,m

2
t ,m

2
t

)

+g0
Rt

[
2C00

(
0,M2

Z,0,m2
a,m

2
t ,m

2
t

)
− 1

2
− 2C00

(
0,M2

Z,0,m2
t ,m

2
a,m

2
a

)

−M2
Z C12

(
0,M2

Z,0,m2
a,m

2
t ,m

2
t

)]

+g0
Lb

[
B1

(
0,m2

t ,m
2
a

)
+ 2C00

(
0,M2

Z,0,m2
t ,m

2
a,m

2
a

)]}

+
n∑

a,a′=1

(
T T T ∗)

aa′ cac
∗
a′ C00

(
0,M2

Z,0,m2
t ,m

2
a′ ,m2

a

)
. (57)

The first column of the matrix T is zero, because 
∑

k |Uk1|2 = ∑
k |vk|2

/
v2 = 1. Thus, (

T T T ∗)
1a

= (T T T ∗)
a1 = 0 and the charged Goldstone boson does not contribute to the sum 

in the last line of Eq. (57). On the other hand, the Goldstone boson does contribute to the sum 
over a in the first five lines, but |c1| has the same value as in the SM, cf. Eq. (48a); therefore, the 
contribution of the charged Goldstone boson is the same as in the SM and should be subtracted 
out. The simplified expression for the charged-scalar contributions to �gRb is obtained from 
Eq. (57) through the changes ca → d∗

a and L ↔ R.
Suppose a model with no charged SU(2)L singlets. Then the matrix T does not exist. If one 

furthermore makes the approximation MZ = 0, then the contribution of the charged scalars in 
Eq. (57) becomes

(
16π2

)
�gLb =

n∑
a=1

|ca|2
{

− g0
Ltm

2
t C0

(
0,0,0,m2

a,m
2
t ,m

2
t

)

+2g0
Rt

[
C00

(
0,0,0,m2

a,m
2
t ,m

2
t

)
− C00

(
0,0,0,m2

t ,m
2
a,m

2
a

)
−1

4

]

+g0
Lb

[
B1

(
0,m2

t ,m
2
a

)
+ 2C00

(
0,0,0,m2

t ,m
2
a,m

2
a

)]}
, (58)

and similarly for �gRb, with ca → da and L ↔ R. One easily finds that



14 D. Fontes et al. / Nuclear Physics B 958 (2020) 115131
B1

(
0,m2

t ,m
2
a

)
+ 2C00

(
0,0,0,m2

t ,m
2
a,m

2
a

)
= 0, (59)

and that

C00

(
0,0,0,m2

a,m
2
t ,m

2
t

)
− C00

(
0,0,0,m2

t ,m
2
a,m

2
a

)
− 1

4

= m2
t

2
C0

(
0,0,0,m2

a,m
2
t ,m

2
t

)
. (60)

Hence,

(
16π2

)
�gLb =

n∑
a=1

|ca|2
(
g0

Rt − g0
Lt

)
m2

t C0

(
0,0,0,m2

a,m
2
t ,m

2
t

)

= −
n∑

a=1

|ca|2
2

m2
t C0

(
0,0,0,m2

a,m
2
t ,m

2
t

)
, (61a)

(
16π2

)
�gRb =

n∑
a=1

|da|2
(
g0

Lt − g0
Rt

)
m2

t C0

(
0,0,0,m2

a,m
2
t ,m

2
t

)

= +
n∑

a=1

|da|2
2

m2
t C0

(
0,0,0,m2

a,m
2
t ,m

2
t

)
. (61b)

The dependence on θW disappeared! This must indeed happen because, in the limit MZ = 0, the 
Z gauge boson is indistinguishable from the photon—since they are both massless—, and there-
fore the Weinberg angle loses its meaning and must disappear from any physically meaningful 
quantity. The function

m2
t C0

(
0,0,0,m2

a,m
2
t ,m

2
t

)
= x

1 − x

(
1 + lnx

1 − x

)
, with x = m2

t

m2
a

(62)

has been given in Eq. (4.5) of Ref. [7] and has been used in all the subsequent analyses, by 
many authors, of models with extra doublets (and possibly neutral singlets). In our more general 
result (57), though, we keep CP violation, we allow for charged singlets and we do not make 
MZ = 0.

As a consequence of Eqs. (61), in a 2HDM, where there is only one physical charged scalar,

�gLb

|c2|2
= −�gRb

|d2|2
. (63)

In general, as long as there are no charged singlets and the approximation MZ ≈ 0 is good, 
�gLb and �gRb have opposite signs when the contribution of the neutral scalars is not taken into 
account.

4. Connection with experiment

The couplings gLb and gRb in Eq. (1) may be determined experimentally from2:

2 See the discussion by Erler and Freitas in Ref. [8].
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1. The rate

Rb = �
(
Z → bb̄

)
�(Z → hadrons)

. (64)

2. Several asymmetries, including
(a) the Z-pole forward–backward asymmetry measured at LEP1

A
(0,f )
FB = σ

(
e− → bF

)− σ
(
e− → bB

)
σ
(
e− → bF

)+ σ
(
e− → bB

) = 3

4
AeAb, (65)

where bF (bB ) stands for final-state bottom quarks moving in the forward (backward) 
direction with respect to the direction of the initial-state electron;

(b) the left–right forward–backward asymmetry measured by the SLD Collaboration

AFB
LR (b) = σ

(
e−
L →bF

)− σ
(
e−
L →bB

)− σ
(
e−
R →bF

)+ σ
(
e−
R →bB

)
σ
(
e−
L →bF

)+ σ
(
e−
L →bB

)+ σ
(
e−
R →bF

)+ σ
(
e−
R →bB

)
= 3

4
Ab,

(66)

where e−
L (e−

R ) are initial-state left-handed (right-handed) electrons.

Introducing the vector- and axial-vector bottom-quark couplings

vb = gLb + gRb, ab = gLb − gRb, and rb = vb

ab

, (67)

one has [7,40]

Rb =
(

1 + �

sb ηQCD ηQED

)−1

, (68)

Ab = 2 rb
√

1 − 4μb

1 − 4μb + (1 + 2μb) r2
b

. (69)

In Eq. (68), ηQCD = 0.9953 and ηQED = 0.99975 are QCD and QED corrections, respectively. 
Moreover,

μb = mb (MZ)2

M2
Z

, (70)

sb = (1 − 6μb)a2
b + v2

b, (71)

� =
∑

q=u,d,s,c

(
a2
q + v2

q

)
. (72)

Neglecting μb ≈ 10−3 and setting the QCD and QED corrections to unity, one gets

Rb ≈ 2
(
g2

Lb + g2
Rb

)
2
(
g2

Lb + g2
Rb

)+ �
, (73)

Ab ≈ g2
Lb − g2

Rb

g2 + g2 . (74)

Lb Rb
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Equation (74) with b → e defines the Ae appearing in Eq. (65), which has also been determined 
experimentally.

The recent fit to the electroweak data by Erler and Freitas in Ref. [8] finds

Rfit
b = 0.21629 ± 0.00066, (75a)

Afit
b = 0.923 ± 0.020, (75b)

to be compared with the SM values RSM
b = 0.21582 ± 0.00002 and ASM

b = 0.9347. Thus, the 
experimental Rb is about 0.7σ above the SM value, while Ab is about 0.6σ below the SM value. 
However, this good agreement only applies to the overall fit of many observables producing 
Eqs. (75). The measured values of the bottom-quark asymmetries by themselves alone reveal a 
much larger discrepancy; as pointed out in Ref. [8], extracting Ab from A(0,b)

FB and using Ae =
0.1501 ± 0.0016 leads to a result which is 3.1σ below the SM (the precise value of Ab depends 
on which observables Ae is extracted from), while combining A(0,b)

FB with AFB
LR leads to Ab =

0.899 ± 0.013, which deviates from the SM value by 2.8σ .
There are, thus, two possible approaches. The first one consists in taking as good the val-

ues (75) obtained from the SM fit and using Rfit
b and Afit

b as constraints on New Physics (NP). 
The second one is seeking NP that might explain an Rb just slightly above the SM, together with 
an Ab that undershoots the SM by 2.8σ .

It is convenient to switch from the parameterization in Eq. (14), which splits the couplings 
gℵb as g0

ℵb + �gℵb, where g0
ℵb is the tree-level piece and �gℵb is the one-loop piece, to the 

alternative parameterization

gℵb = gSMℵb + δgℵb, (76)

which splits them into the SM piece gSMℵb (which includes the SM loop correction) and the NP 
piece δgℵb. A simple rule of thumb can be obtained by expanding to first order in the deviations; 
one finds [7]

δRb = −0.7785 δgLb + 0.1409 δgRb, (77a)

δAb = −0.2984 δgLb − 1.6234 δgRb. (77b)

This shows that, assuming (rather arbitrarily) δgRb ≈ −δgLb, δRb is pulled down (up) and δAb

is pulled up (down) by a positive (negative) δgLb. Inverting Eqs. (77) [7],

δgLb = −1.2433 δRb − 0.1079 δAb, (78a)

δgRb = 0.2286 δRb − 0.5962 δAb. (78b)

If one wishes to follow the second approach above, viz. using NP to keep Rb close to its SM value 
while reducing Ab significantly, then one needs to get a small δgLb together with a significant 
positive δgRb.

5. Simple particular cases

5.1. The 2HDM in an alignment limit

In the 2HDM, one may always employ the ‘Higgs basis’ for the scalar doublets �1,2; in that 
basis,
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�1 =
(

G+(
v + ρ1 + iG0

)/√
2

)
, �2 =

(
H+

(ρ2 + iη)
/√

2

)
, (79)

where G+ = H+
1 and G0 = S0

1 are the Goldstone bosons and H+ = H+
2 is a physical charged 

scalar. Then, the Yukawa couplings e1 and f1 are simply

e1 =
√

2mt

v
, f1 =

√
2mb

v
, (80)

which may be taken to be real and positive. In this section we shall assume that, for some unspec-
ified reason, the neutral fields ρ1,2 and η in Eq. (79) coincide with the physical neutral scalars, 
viz. S0

2 = ρ1, S0
3 = ρ2, and S0

4 = η. We moreover assume that S0
2 is the scalar particle discovered 

at the LHC, with mass m2 = 125 GeV. That means, we assume an ‘alignment limit’ [41] of the 
2HDM wherein S0

2 couples to the gauge bosons and to the top and bottom quarks with exactly 
the same strength as the Higgs boson of the SM. The matrix U defined by Eq. (33) and the matrix 
V defined by Eq. (34) are

U =
(

1 0
0 1

)
, V =

(
i 1 0 0
0 0 1 i

)
. (81)

Since U is, in this case, the 2 × 2 unit matrix, we have, from Eqs. (44) and (45), c1 = e1, c2 = e2, 
d1 = f1, and d2 = f2. The free parameters in our model are the mass MH+ of the charged scalar, 
the masses m3 and m4 of the two new neutral scalars S0

3 and S0
4 , respectively, and the Yukawa 

couplings c2 and d2.3 Since there are no charged singlets,

Xaa′ = s2
W − c2

W

2
δaa′ , (82)

while, from the matrix V in Eq. (81),

Im
(
V†V

)
=

⎛
⎜⎜⎝

0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0

⎞
⎟⎟⎠ , (83a)

R =

⎛
⎜⎜⎝

r1
r2
r3
r4

⎞
⎟⎟⎠= − 1√

2

⎛
⎜⎜⎝

i d1
d1
d2
i d2

⎞
⎟⎟⎠ . (83b)

5.1.1. Charged-scalar contribution
Let us denote by superscripts c and n the new-physics contributions to δgLb and δgRb com-

ing from the charged and neutral scalars, respectively. In the charged-scalar sector of a generic 
2HDM, the contribution of the charged Goldstone boson can be separated and included in the 
SM. The genuine new contribution is

3 The 2HDM in this subsection is not endowed with the usual Z2 symmetry that prevents the appearance of flavor-
changing neutral currents (FCNC). Therefore, a multi-generation version of this (toy) model will in general be plagued 
by FCNC and by the need for their suppression. This needs not concern us here, since we are considering a truncated 
version of the model only with the third generation.
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Fig. 5. Contribution of the charged scalar to δgLb (red curve) and to −δgRb (blue curve) in a general 2HDM. (For 
interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

δgc
Lb = |c2|2

16π2

{(
s2
W − c2

W

)
C00

(
0,M2

Z,0,m2
t ,M

2
H+ ,M2

H+
)

−g0
Lt m

2
t C0

(
0,M2

Z,0,M2
H+ ,m2

t ,m
2
t

)

+g0
Rt

[
2C00

(
0,M2

Z,0,M2
H+ ,m2

t ,m
2
t

)
− 1

2

−M2
Z C12

(
0,M2

Z,0,M2
H+ ,m2

t ,m
2
t

)]
+ g0

Lb B1

(
0,m2

t ,M
2
H+
)}

, (84a)

δgc
Rb = |d2|2

16π2

{(
s2
W − c2

W

)
C00

(
0,M2

Z,0,m2
t ,M

2
H+ ,M2

H+
)

−g0
Rt m

2
t C0

(
0,M2

Z,0,M2
H+,m2

t ,m
2
t

)

+g0
Lt

[
2C00

(
0,M2

Z,0,M2
H+,m2

t ,m
2
t

)
− 1

2

−M2
Z C12

(
0,M2

Z,0,M2
H+ ,m2

t ,m
2
t

)]
+ g0

Rb B1

(
0,m2

t ,M
2
H+
)}

. (84b)

If we plot δgc
Lb

/|c2|2 and δgc
Rb

/|d2|2 , we get general results for any 2HDM. We have used
LoopTools [37] to perform the numerical integrations contained in the Passarino–Veltman 
functions. The results are shown in Fig. 5. One sees that 0 < δgc

Lb � 0.002 |c2|2 and that Eq. (63)
holds to an excellent approximation; this indicates that the approximation MZ = 0 is in fact very 
good. This is vindicated by Fig. 6, which displays the asymmetries RgL,R

between the values of 
δgc

Lb

/|c2|2 and δgc
Rb

/|d2|2 computed with MZ 	= 0 and with MZ = 0:

Rc
gL

= δgc
Lb (MZ) − δgc

Lb (0)

δgc
Lb (MZ) + δgc

Lb (0)
, (85a)

Rc
gR

= Rc
gL

(L → R) . (85b)

One observes in Fig. 6 that both asymmetries are at most of order 1%.
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Fig. 6. In red: the asymmetry between δgc
Lb

computed using MZ = 91 GeV and the same quantity computed using 
MZ = 0. In blue: the asymmetry between δgc

Rb
computed with MZ = 91 GeV and the same quantity computed with 

MZ = 0.

5.1.2. Neutral-scalar contribution
Taking into account Eq. (42), in the class of models of Section 3, Eq. (24a) reads

�gLb (a) = −i

16π2

m∑
l,l′=1

rl Im
(
V†V

)
ll′

r∗
l′ C00

(
0,M2

Z,0,0,m2
l′ ,m

2
l

)
. (86)

Since C00
(
0,M2

Z,0,0,m2
l′ ,m

2
l

)= C00
(
0,M2

Z,0,0,m2
l , m2

l′
)
, Eq. (86) may be simplified to

�gLb (a) = 1

8π2

m−1∑
l=1

m∑
l′=l+1

Im
(
V†V

)
ll′

Im
(
rlr

∗
l′
)
C00

(
0,M2

Z,0,0,m2
l′ ,m

2
l

)
. (87)

In the 2HDM of this section, because of Eq. (83a), Eq. (87) reads

�gLb (a) = 1

16π2

[
|d1|2 C00

(
0,M2

Z,0,0,m2
2,m

2
1

)
−|d2|2 C00

(
0,M2

Z,0,0,m2
4,m

2
3

)]
. (88)

Since S0
1 = G0 is the neutral Goldstone boson and S0

2 is the Higgs particle of the SM, the first 
term in the right-hand side of Eq. (88) is an SM contribution that we are uninterested in; we just 
care about the NP contributions, which are

δgn
Lb = |d2|2

16π2

{
−C00

(
0,M2

Z,0,0,m2
3,m

2
4

)

+g0
Rb

2

[
2C00

(
0,M2

Z,0,m2
3,0,0

)
− 1

2
− M2

Z C12

(
0,M2

Z,0,m2
3,0,0

)

+2C00

(
0,M2

Z,0,m2
4,0,0

)
− 1 − M2

Z C12

(
0,M2

Z,0,m2
4,0,0

)]

2
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+g0
Lb

2

[
B1

(
0,0,m2

3

)
+ B1

(
0,0,m2

4

)]}
, (89a)

δgn
Rb = |d2|2

16π2

{
C00

(
0,M2

Z,0,0,m2
3,m

2
4

)

+g0
Lb

2

[
2C00

(
0,M2

Z,0,m2
3,0,0

)
− 1

2
− M2

Z C12

(
0,M2

Z,0,m2
3,0,0

)

+2C00

(
0,M2

Z,0,m2
4,0,0

)
− 1

2
− M2

Z C12

(
0,M2

Z,0,m2
4,0,0

)]

+g0
Rb

2

[
B1

(
0,0,m2

3

)
+ B1

(
0,0,m2

4

)]}
. (89b)

Let us compute the limit MZ = 0 of Eqs. (89). Using

C00 (0,0,0,0,A,B) = div − lnμ2

4
+ 3

8
+ B lnB − A lnA

4 (A − B)
, (90a)

C00 (0,0,0,A,0,0) − 1

4
= −B1 (0,0,A)

2
, (90b)

B1 (0,0,A) = −div

2
− 1

4
+ 1

2
ln

A

μ2 , (90c)

one obtains the approximation

δgn
Lb ≈ −δgn

Rb ≈ |d2|2
64π2

(
−1 + m2

3 + m2
4

m2
3 − m2

4

ln
m3

m4

)
, (91)

which vanishes when m3 = m4. One sees that

• in the limit MZ = 0, δgn
Lb = −δgn

Rb;
• in that limit, δgn

Lb and δgn
Rb are independent of θW —this is for the reason explained after 

Eqs. (61);
• in that limit, δgn

Lb = δgn
Rb = 0 when the two extra neutral scalars have equal masses.

We have evaluated the exact Eqs. (89) by using LoopTools [37].4 We have checked in 
the numerical simulation that the divergences indeed cancel, by verifying that the results are 
independent of the � parameter of LoopTools. Without loss of generality, we have required 
that m4 > m3. The results are shown in Fig. 7. It is seen that δgn

Lb > 0 but δgn
Rb < 0 (recall that 

a negative δgRb goes in the wrong direction if one wishes to explain Ab below the SM value); 
both are typically O 

(
10−4

) |d2|2 unless m3 ∼ 200 GeV and m4 ∼ 1 TeV, in which case they may 
reach O 

(
10−3

) |d2|2.
Comparing Figs. 5 and 7, one sees that, unless the masses of the two NP neutral scalars are 

close to each other, there is in general no rationale for neglecting the neutral-scalar contribution 
as compared to the charged-scalar one.

4 It is convenient to substitute the zeros in many arguments of the Passarino–Veltman functions by some small nonzero 
squared masses, lest LoopTools is driven to spurious numerical instabilities.
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Fig. 7. The contributions of the neutral scalars to δgn
Lb

and δgn
Rb

as functions of m3, for different values of m4 − m3.

Fig. 8. The asymmetries Rn
gLb

(left panel) and Rn
gRb

(right panel), defined in a fashion analogous to Eqs. (85), plotted as 
functions of m3 for various values of m4 − m3.

We have checked the validity of the approximation of neglecting MZ for the case of the neutral 
scalars. This is shown in Fig. 8. We see that the relative error of neglecting MZ is much larger in 
the case of the neutral scalars than in the case of the charged scalars (cf. Fig. 6), and it is larger 
for gR than for gL. (When m3 = m4 the asymmetries are 1, because the approximate expression 
of Eq. (91) vanishes for m3 = m4 while the exact results are nonzero. We have not displayed 
this case in Fig. 8, because it would correspond to the upper line in the axes box.) On the other 
hand, the relative error is large precisely when the absolute values of δgLb and δgRb are small, 
i.e. when the exact values are not very relevant anyway.

In the left panel of Fig. 9 we have displayed the impact of both the charged- and neutral-scalar 
contributions in the Ab–Rb plane. In making Fig. 9, we have taken into account the experimental 
limits, 0.04 < T < 0.20, on the electroweak parameter T . The contribution of the scalars to T is

T = 1

16πs2
WM2

W

[f (MH+ ,m3) + f (MH+,m4) − f (m3,m4)] , (92)

where f (x, y) is the function

f (x, y) = x2 + y2

− x2y2

2 2 ln
x2

2 . (93)

2 x − y y
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Fig. 9. In making the left panel, we have used scalar masses MH+ = 254 GeV, m3 = 250 GeV, and m4 = 850 GeV, and 
we have let the Yukawa couplings |c2| and |d2| vary in between 0 and 2.5. We have depicted the values of Rb and Ab

due to the charged-scalar contribution (in yellowish green), the neutral-scalar contribution (a straight line, because it is 
just a function of |d2|), and the sum of both (in dark and bright green). We have also marked the experimental central 
point (green star), the various nσ limits (blue lines), and the Standard Model prediction (violet star). In making the right 
panel, we have used the same scalar masses as for the left panel, and we have shown the impact of the Rb 2σ limits 
on |c2| and |d2|; the allowed ranges are depicted with only the charged-scalar contribution (yellowish and bright green), 
only the neutral-scalar contribution (horizontal band) and the sum of both (dark green).

The function f is zero when x = y. In order to keep T sufficiently small, we have set M+
H = 254

GeV rather close to m3 = 250 GeV; on the other hand, we have set m4 = 850 GeV much larger 
than m3, so that δgn

L,Rb are rather large, cf. Fig. 7. We see that the impact on Ab is always small, 
but the impact on Rb may be quite strong when the Yukawa couplings c2 and d2 become large. 
This of course puts bounds on |c2| and |d2|, and those bounds are displayed in the right panel 
of Fig. 9, using as input the 2σ experimental lower bound on Rb. We see that the impact of the 
neutral-scalar contributions can be quite drastic, cf. the large difference between the dark-green 
and light-green areas in the right panel of Fig. 9.

5.2. The complex 2HDM

The complex 2HDM (C2HDM) is a two-Higgs-doublet model with a softly broken Z2 sym-
metry. The scalar potential is

VH = m2
11 �

†
1�1 + m2

22 �
†
2�2 − m2

12 �
†
1�2 − m2

12
∗
�

†
2�1

+λ1

2
�

†
1�1 �

†
1�1 + λ2

2
�

†
2�2 �

†
2�2 + λ3 �

†
1�1 �

†
2�2

+λ4 �
†
1�2 �

†
2�1 + λ5

2

(
�

†
1�2

)2 + λ∗
5

2

(
�

†
2�1

)2
, (94)

where all the parameters, except m2
12 and λ5, are real. In general, Im

[(
m2

12

)2
λ∗

5

]
is allowed to 

be nonzero. By rephasing �1 and �2, we go to a basis where the VEVs are real and positive: 〈
0
∣∣ϕ0

k

∣∣0〉= vk

/√
2 for k = 1, 2. We write

v1 = v cβ, v2 = v sβ, (95)
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where v = 246 GeV and 0 < β < π/2. Thenceforth, cθ , sθ , and tθ represent the cosine, sine, and 
tangent, respectively, of whatever angle θ is in the subindex. We write the scalar doublets as

�k =
(

ϕ+
k

(vk + ηk + iχk)
/√

2

)
(k = 1,2). (96)

We transform the fields into the so-called Higgs basis through [42](
H1
H2

)
=
(

cβ sβ
−sβ cβ

)(
�1
�2

)
. (97)

Then H2 does not have a VEV:

H1 =
(

G+(
v + H 0 + iG0

)/√
2

)
, (98a)

H2 =
(

H+

(R2 + iI2)
/√

2

)
. (98b)

G+ and G0 are the Goldstone bosons. There is a charged-scalar pair H± with mass mH± .
In a standard C2HDM notation, η3 := I2 and the neutral mass eigenstates are obtained from 

the three neutral components as⎛
⎜⎝

S0
2

S0
3

S0
4

⎞
⎟⎠= R

⎛
⎝ η1

η2
η3

⎞
⎠ . (99)

The orthogonal matrix R diagonalizes the neutral mass matrix(
M2

)
ij

= ∂2VH

∂ηi ∂ηj

, (100)

through

RM2 RT = diag
(
m2

2,m
2
3,m

2
4

)
, (101)

where5 m2 = 125 GeV ≤ m3 ≤ m4 are the masses of the neutral scalars (m1 is the un-
physical mass of the Goldstone boson S0

1 = G0). In our numerical study we use m3,4 ∈
[125 GeV, 800 GeV] with m3 < m4. We parameterize the orthogonal matrix R as [43]

R =
⎛
⎝ cα1cα2 sα1cα2 sα2−sα1cα3 − cα1sα2sα3 cα1cα3 − sα1sα2sα3 cα2sα3

sα1sα3 − cα1sα2cα3 −cα1sα3 − sα1sα2cα3 cα2cα3

⎞
⎠ . (102)

Without loss of generality, the angles may be restricted to [43]

−π/2 < α1 ≤ π/2, −π/2 < α2 ≤ π/2, 0 ≤ α3 ≤ π/2. (103)

Taking the limit α2, α3 → 0 one recovers a 2HDM with softly broken Z2 symmetry and no CP 
violation; this is the ‘real 2HDM’, in which S0

4 = A is the massive CP-odd scalar.

5 In this subsection we assume that the observed particle with mass 125 GeV is the lightest neutral scalar.
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In practice, because of the experimental limit 1.1 × 10−29 e.cm on the electric dipole moment 
of the electron, both α1 and α2 are much more restricted than in inequalities (103): |α2| � 0.1
and α1 is always very close to β .

Comparing with Eqs. (33) and (34), we find

U =
(

cβ −sβ
sβ cβ

)
, (104a)

V =
(

icβ R11 − isβR13 R21 − isβR23 R31 − isβR33
isβ R12 + icβR13 R22 + icβR23 R32 + icβR33

)
. (104b)

Equation (82) still holds and

Im
(
V†V

)

=
⎛
⎜⎝

0 −cβR11 − sβR12 −cβR21 − sβR22 −cβR31 − sβR32
cβR11 + sβR12 0 cβR31 + sβR32 −cβR21 − sβR22
cβR21 + sβR22 −cβR31 − sβR32 0 cβR11 + sβR12
cβR31 + sβR32 cβR21 + sβR22 −cβR11 − sβR12 0

⎞
⎟⎠ .

(105)

Assuming the Yukawa couplings to follow the type-II 2HDM pattern, viz. e1 = f2 = 0 and

e2 =
√

2mt

v2
, f1 =

√
2mb

v1
, (106)

we have

c2 =
√

2mt

v
cotβ, d2 = −

√
2mb

v
tanβ. (107)

Note that, contrary to the assumptions in the previous subsection, here |c2| and |d2| may be 
of vastly different orders of magnitude—in particular, |d2| � |c2| for tanβ ∼ 1. However, when 
tanβ �

√
mt/mb ≈ 6, |d2| becomes larger than |c2|, and that is the regime that we will be mostly 

interested in.
This model was studied in detail in Ref. [44], which introduced the code C2HDM_HDECAY

implementing the C2HDM in HDECAY [45,46]. For illustrative purposes, we take points from 
that fit, where, invoking constraints from Flavour Physics on Rb [7], tanβ was taken above 0.8. 
In that scan the following ranges were considered:

• tanβ ∈ [0.8 : 35],
• m2 = 125 GeV, m3, m4 ∈ [125 : 800] GeV ,
• MH+ ∈ [580 : 800] GeV ,

where m4 > m3 and the constraint on the charged Higgs mass comes from B-physics [47–50]
All points passed both the theoretical constraints on unitarity [51,52], bounded from below, and 
the electroweak parameters S, T , U , as well the experimental constraints coming from the LHC. 
We combine these with the results from a new dedicated run tanβ ∈ [0 : 100]. Such extreme 
(very low and very high) values of tanβ may be in contradiction with certain Flavour Physics 
observables, notably (as we will now show) Z → bb̄.6 Nevertheless, we will consider those 

6 Moreover, both extremely high and extremely low values of tan β will also violate perturbativity.
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Fig. 10. Comparison of δgn
Lb

with δgc
Lb

(left plot) and of δgn
Rb

with δgc
Rb

(right plot).

extreme values since we wish to stress that the details of such a bound may require both the 
charged-scalar and the neutral-scalar contributions. As shown in Fig. 8 of Ref. [53], very large 
tanβ is only consistent with current measurements at LHC if α1 lies in a very restricted range 
α1 ≈ β , which we impose in this run ab initio. Moreover, in order to obtain agreement with the 
measured EDMs, α2 always turns out to be very small.

As in the alignment case discussed previously, the contribution due to the charged Goldstone 
bosons decouples, it is included in the SM and subtracted out, and the result from charged scalars 
is still given by Eqs. (84) and Fig. 5. Note that δgc

Lb is positive while δgc
Rb is negative. Recall 

that the positive δgLb tends to make Rb smaller and from there comes a bound in the mH±–tanβ

plane. The correction δgc
Rb is too small to have an impact on Rb (see Eq. (77a)) but it could have 

a substantial impact on Ab going in the wrong direction when compared with the experimental 
measurements (see Eq. (77b)). However, we will see below (see the right panel of Fig. 12) that 
this only happens for large values of tanβ not allowed by perturbativity.

We are particularly interested in the contributions to δgLb and δgRb arising from the neutral 
scalars, because in the literature they are frequently disconsidered. We would like to know under 
which circumstances those contributions can be large. We have separated the data of our scans 
in three different sets:

• Small tanβ ∈ [0, 10], blue in the plots.
• Intermediate tanβ ∈ [10, 30], green in the plots.
• Large tanβ ∈ [30, 100], red in the plots.

In the left panel of Fig. 10 we display δgn
Lb versus δgc

Lb for all three sets; in the right panel, −δgn
Rb

is displayed against −δgc
Rb (remember that both δgn

Rb and δgc
Rb are negative). We see that 

∣∣δgn
Rb

∣∣
generally is of order 

∣∣δgc
Rb

∣∣/10, but they may be comparable in the low-tanβ regime. On the 
other hand, δgn

Lb � δgc
Lb for low tanβ but δgn

Lb � δgc
Lb for high tanβ; they are comparable for 

tanβ ∼ 30. Thus, one cannot neglect the neutral-scalar contributions when tanβ � 10. For low 
tanβ ∼ 1, δgc

Lb is much larger than δgn
Lb, but δgn

Rb may not be much smaller than δgc
Rb.

The sums δgc
Lb + δgn

Lb and −δgc
Rb − δgn

Rb are displayed as functions of tanβ in Fig. 11. We 
see that a significant impact on Ab and Rb can only occur for either very low or very high values 
of tanβ; namely, for tanβ � 1, δgc + δgn ∼ 10−3, and for tanβ � 50, −δgc − δgn � 10−3.
Lb Lb Rb Rb



26 D. Fontes et al. / Nuclear Physics B 958 (2020) 115131
Fig. 11. Total contribution of the neutral and charged scalars to δgLb and δgRb .

Fig. 12. Left panel: comparison of the neutral-scalars contribution δgn
Lb

(in blue) and of the charged-scalar contribution 
δgc

Lb
(in green) with δgLb = δgn

Lb
+ δgc

Lb
(in pink). Right panel: comparison of the neutral-scalars contribution δgn

Rb
(in blue) and of the charged-scalar contribution δgc

Rb
(in green) with δgRb = δgn

Rb
+ δgc

Rb
(in pink). Also displayed (in 

red) are the contributions of the diagrams in Fig. 3c),d) to both δgn
Lb

(in the left panel) and δgn
Rb

(in the right panel).

Both Figs. 10 and 11 are depicted together in Fig. 12. In particular, in Fig. 12a) we see 
that the neutral-scalar contribution to δgLb becomes larger than the charged-scalar contribution, 
eventually by many orders of magnitude, as soon as tanβ > 30. Thus, one cannot neglect the 
contribution of the neutral scalars to δgLb. We expect this effect to be even more important in 
models with more than two Higgs doublets and/or extra singlets.

It is interesting to inquire about the importance of the type d) neutral-scalar contributions (red 
in Fig. 12). One sees that, when tanβ is low, they may constitute a substantial part of the δgn

ℵb

(ℵ = L, R), but that is precisely the range when the δgn
ℵb are anyway much too small to be of 

practical relevance. We conclude that, at least in this particular case, it is correct to neglect the 
diagrams in Fig. 3c),d), as was done in Ref. [7].

The impact on Ab and Rb is shown in Fig. 13 for all values of tanβ and including the various 
contributions. In the low tanβ regime, the charged-scalar contribution (shown in red) is domi-
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Fig. 13. Ab versus Rb in the C2HDM for all values of 0 < tanβ < 100. The charged-scalar contribution is shown in red 
for low tanβ and in orange for large tanβ . The contribution of the neutral-scalars is in blue and lies very close to the SM 
point. In green (in background) the sum of the contributions.

nant. The points in Fig. 13 only stray from the 2σ Rb bounds for tanβ < 0.8. This is the reason 
why only points with tanβ > 0.8 were taken in Ref. [44]. In orange is shown the contribution of 
the charged scalars for tanβ up to 100. The contribution of the neutral scalars is in blue, and is 
always very small. We have verified that for the neutral scalars to have meaningful impact, one 
would have to consider values of tanβ > 250, which would violate perturbativity of the Yukawa 
couplings.7

We conclude that, when studying the impact on Z → bb̄ of multi-scalar models with very 
large couplings (which means very large tanβ in our example of the C2HDM), the neutral scalar 
contributions should be taken into account. Of course, in studying any model one needs to include 
all the theoretical and experimental constraints, and this may curtail a large part of the phase 
space for such extreme couplings. This will have to be evaluated in a case by case basis.

6. Conclusions

We have studied the one-loop contributions to Z → bb̄ in models with extra scalars. We have 
started by deriving the conditions on generic couplings that must hold for the divergences to 
cancel. We have then concentrated on models with any number of extra SU(2)L doublets and 
singlets, either neutral, as in Ref. [7], or charged. The final expressions are greatly simplified 
(and very compact), due to the parameterization in Refs. [25–28]. We also extend the analysis 
in Ref. [7] to models with CP violation in the scalar sector. We have shown that, in these gen-
eral models, the conditions previously derived necessary for the cancellation of the divergences 
naturally hold. We have then highlighted the possible importance of the neutral-scalar contribu-
tions. In particular, in Fig. 7 and Fig. 12a) we show that, in a specific models, the contributions 
of the neutral scalars to δgLb may in some cases be much larger than the contributions of the 
charged scalars, and this has to be considered in evaluating the limits on Ab and Rb as shown, 
for instance, in Fig. 9.

7 Although in the C2HDM the enhancement of the neutral contributions is related to a ratio of vevs (v2/v1 = tanβ) 
which is limited by perturbativity, in more general models where such vev enhancements are less constrained, the neutral 
contributions will be important. This can be simulated in the C2HDM by taking tan β to forbiddingly high values.
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Appendix A. Passarino–Veltman functions

In this appendix we expose our definition of the Passarino–Veltman functions, which co-
incides with that of FeynCalc [33,34] and LoopTools [37,38] used in the algebraic and 
numerical calculations [35]. We use dimensional regularization; the Feynman integrals are per-
formed in a space–time of dimension d = 4 − ε. Then,

με

∫
ddk

(2π)d

1

k2 − m2
0

1

(k + r)2 − m2
1

kλ = i

16π2 rλ B1

(
r2,m2

0,m
2
1

)
. (108)

Moreover,

με

∫
ddk

(2π)d

1

k2 − m2
0

1

(k + r1)
2 − m2

1

1

(k + r2)
2 − m2

2

= i

16π2 C0

[
r2

1 , (r1 − r2)
2 , r2

2 ,m2
0,m

2
1,m

2
2

]
. (109)

Also,

με

∫
ddk

(2π)d

1

k2 − m2
0

1

(k + r1)
2 − m2

1

1

(k + r2)
2 − m2

2

kλ

= i

16π2

(
rλ

1 C1 + rλ
2 C2

) [
r2

1 , (r1 − r2)
2 , r2

2 ,m2
0,m

2
1,m

2
2

]
. (110)

Finally,

με

∫
ddk

(2π)d

1

k2 − m2
0

1

(k + r1)
2 − m2

1

1

(k + r2)
2 − m2

2

kλkν

= i

16π2

[
gλνC00 + rλ

1 rν
1 C11 + rλ

2 rν
2 C22

+ (rλ
1 rν

2 + rλ
2 rν

1

)
C12
] [

r2
1 , (r1 − r2)

2 , r2
2 ,m2
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2
2

]
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