
Computer Physics Communications 256 (2020) 107311

Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

FeynMaster: A plethora of Feynman tools✩,✩✩

Duarte Fontes ∗, Jorge C. Romão
Departamento de Física and CFTP, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal

a r t i c l e i n f o

Article history:
Received 25 September 2019
Received in revised form 10 February 2020
Accepted 26 March 2020
Available online 10 April 2020

Keywords:
FeynCalc
QGRAF
FeynRules
Feynman rules
Feynman diagrams
Loop calculations
Renormalization

a b s t r a c t

FeynMaster is a multi-tasking software for particle physics studies. By making use of already
existing programs (FeynRules, QGRAF, FeynCalc), FeynMaster automatically generates Feynman rules,
generates and draws Feynman diagrams, generates amplitudes, performs both loop and algebraic
calculations, and fully renormalizes models. In parallel with this automatic character, FeynMaster
allows the user to manipulate the generated results in Mathematica notebooks in a flexible and
consistent way. It can be downloaded in https://porthos.tecnico.ulisboa.pt/FeynMaster/.
Program summary
Program Title: FeynMaster
Program Files doi: http://dx.doi.org/10.17632/f6yrbk4cm3.1
Licensing provisions: CC0 1.0
Programming language: Python, Wolfram Mathematica
Nature of problem: Although different softwares exist that separately handle Feynman rules, Feynman
diagrams, loop calculations and renormalization, there seems to be missing a single software to address
all those topics in a flexible and consistent way. Indeed, despite the undisputed quality of some of
the existing softwares, they usually do not combine an automatic character with the possibility of
manipulating the final analytical expressions in a practical way. And although interfaces between
different softwares exist, they tend not to be free of constraints, since the notation changes between
softwares and a conversion is not totally automatic.
Solution method: Using both Python and Wolfram Mathematica to combine FeynRules [1, 2], QGRAF [3]
and FeynCalc [4, 5], FeynMaster performs all the above listed tasks, and at the same time allows the
user to handle the final results in Mathematica notebooks.
Additional comments including restrictions and unusual features: Besides computing the results auto-
matically, FeynMaster generates notebooks that allow the user to act upon them. It also includes a
thorough interaction with numerical calculations, as it converts the expressions to LoopTools [6].
Algebraic computations only guaranteed up to 2 particles in both the initial and final states. Complex
problems may require much computational time. The drawing of Feynman diagrams is only guaranteed
to properly work with the diagrams up to 1-loop; moreover, diagrams with more than two particles
in the initial or final states, as well as some reducible diagrams, are also not warranted. Due to some
problems in LATEX breqn package, some lines in PDF outputs may go out of the screen.

References

[1] N. D. Christensen and C. Duhr, Comput. Phys. Commun. 180 (2009) 1614
doi:10.1016/j.cpc.2009.02.018 [arXiv:0806.4194 [hep-ph]].

[2] A. Alloul, N. D. Christensen, C. Degrande, C. Duhr and B. Fuks, Comput. Phys. Commun. 185 (2014)
2250 doi:10.1016/j.cpc.2014.04.012 [arXiv:1310.1921 [hep-ph]].

✩ The review of this paper was arranged by Prof. Z. Was.
✩✩ This paper and its associated computer program are available via the Computer Physics Communication homepage on ScienceDirect (http://www.sciencedirect.
com/science/journal/00104655).

∗ Corresponding author.
E-mail addresses: duartefontes@tecnico.ulisboa.pt (D. Fontes), jorge.romao@tecnico.ulisboa.pt (J.C. Romão).

https://doi.org/10.1016/j.cpc.2020.107311
0010-4655/© 2020 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.cpc.2020.107311
http://www.elsevier.com/locate/cpc
http://www.elsevier.com/locate/cpc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2020.107311&domain=pdf
https://porthos.tecnico.ulisboa.pt/FeynMaster/
http://dx.doi.org/10.17632/f6yrbk4cm3.1
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
mailto:duartefontes@tecnico.ulisboa.pt
mailto:jorge.romao@tecnico.ulisboa.pt
https://doi.org/10.1016/j.cpc.2020.107311

2 D. Fontes and J.C. Romão / Computer Physics Communications 256 (2020) 107311

[3] P. Nogueira, J. Comput. Phys. 105 (1993) 279. doi:10.1006/jcph.1993.1074

[4] R. Mertig, M. Bohm and A. Denner, Comput. Phys. Commun. 64 (1991) 345. doi:10.1016/0010-
4655(91)90130-D

[5] V. Shtabovenko, R. Mertig and F. Orellana, Comput. Phys. Commun. 207 (2016) 432
doi:10.1016/j.cpc.2016.06.008 [arXiv:1601.01167 [hep-ph]].

[6] T. Hahn and M. Perez-Victoria, Comput. Phys. Commun. 118 (1999) 153 doi:10.1016/S0010-
4655(98)00173-8 [hep-ph/9807565].

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

The Large Hadron Collider (LHC) has completed its second run, and no physics beyond the Standard Model (BSM) has been found.
In face of such absence of experimental guidance, a great diversity of BSM models are intensively studied today. As they must explain
recent data from the LHC, they are required to make precise predictions. This inevitably forces model builders to consider next-to-
leading-order (NLO) corrections, which in turn demand a sound renormalization program to treat ultraviolet (UV) divergences. Given
the complexity of NLO and renormalization calculations, the use of computational tools is today virtually indispensable. In the specific
context of model building and NLO calculations, there is currently a myriad of softwares addressing one or several of the following
tasks (e.g. Refs. [1–19]):

(a) generation of Feynman rules; (b) generation and drawing of Feynman diagrams;
(c) generation of amplitudes; (d) loop calculations; (e) algebraic calculations; (f) renormalization.

However, despite the undisputed quality of some of the referred softwares — which perform almost all tasks of the above list —, they
usually do not combine an automatic character with the possibility of manipulating the final analytical expressions in a practical way.
And although interfaces between different softwares exist, they tend not to be free of constraints, since the notation changes between
softwares and a conversion is not totally automatic. It would thus be desirable to have a single software that could perform all the
above listed tasks, and at the same time allowing the user to handle the final results.

In this paper, a new such software is introduced. FeynMaster is a single program, written in both Python and Mathematica, that
combines FeynRules [8,9], QGRAF [14] and FeynCalc [6,7] to perform all the referred tasks in a flexible and consistent way. We highlight
four of its major advantages. First, FeynMaster has a hybrid character concerning automatization: not only does it automatically
generate the results, but it also allows the user to act upon them. This feature is extremely useful, since very often in research one is
not interested in obtaining a rigid list of final expressions, but in handling them at will. This is made possible in FeynMaster due to the
creation of notebooks for both FeynRules and FeynCalc, in which a multiplicity of different tools enables the user to manipulate the
results. Second, the complete set of analytical expressions for the counterterms in the modified minimal subtraction (MS) scheme can be
automatically calculated. Third, FeynMaster includes a thorough interaction with numerical calculations, as it converts the expressions
to LoopTools [10] form and writes a complete Fortran program to use them. Finally, all the printable outputs of FeynMaster — the
complete set of Feynman rules (both for non-renormalizable interactions and counterterms interactions), the Feynman diagrams, as
well as a list containing both the expressions and computed counterterms – are written in LATEX files, which makes their inclusion in a
paper remarkably simple.

The general usage of FeynMaster can be summarized in a few lines: after the user has defined the model, the FeynMaster run is
controlled from a single file (Control.py). Here, the sequence of processes to study can be chosen, as well as many different options.
Once Control.py is edited, FeynMaster is ready to run. The run automatically generates and opens several PDF files — according to
the options chosen in Control.py — and creates the above-mentioned notebooks.

This paper is organized as follows. In Section 2, we explain how to download and install FeynMaster. Section 3 is devoted to the
creation of models, and Section 4 to the detailed usage of FeynMaster. Then, in Section 5, we give some examples, and in Section 6
we briefly compare FeynMaster with other softwares. Finally, we present a brief summary of the paper in Section 7, as well as a quick
first usage of FeynMaster.

2. Installation

2.1. Download

FeynMaster can be downloaded in:

https://porthos.tecnico.ulisboa.pt/FeynMaster/.

FeynRules, QGRAF and FeynCalc, essential to run FeynMaster, can be downloaded in https://feynrules.irmp.ucl.ac.be/, http://cfif.ist.
utl.pt/~paulo/qgraf.html and https://feyncalc.github.io/, respectively. 1 After downloading FeynMaster, the downloaded file should be
extracted, and the resulting folder (named ‘FeynMaster’) can be placed in any directory of the user’s choice.

1 The user of FeynMaster is required to be familiar with both FeynRules (in order to define new models) and FeynCalc (in order to manipulate the final results). In
a first approach, there is really no need to learn QGRAF, since the most non-trivial part of this program — the definition of the model — is automatically carried through
by FeynMaster. To run FeynMaster, it is also necessary to have Python, Mathematica and LATEX installed; links to download are https://www.python.org/downloads/
http://www.wolfram.com/mathematica/ and https://www.latex-project.org/get/, respectively. We tested FeynMaster using version 3.6 of Python and version 12.0

https://porthos.tecnico.ulisboa.pt/FeynMaster/
https://feynrules.irmp.ucl.ac.be/
http://cfif.ist.utl.pt/~paulo/qgraf.html
http://cfif.ist.utl.pt/~paulo/qgraf.html
http://cfif.ist.utl.pt/~paulo/qgraf.html
https://feyncalc.github.io/
https://www.python.org/downloads/
http://www.wolfram.com/mathematica/
https://www.latex-project.org/get/

D. Fontes and J.C. Romão / Computer Physics Communications 256 (2020) 107311 3

Table 1
Directories to be specified in the end of Control.py. See text for details.
Variable Meaning

dirFM Directory corresponding to FeynMaster
dirFR Directory corresponding to FeynRules
dirFRmod Directory where the FeynRules model is
dirQ Directory corresponding to QGRAF
dirQmod Directory where the QGRAF model is to be found
dirMain Directory corresponding to FeynMaster output
dirPro Directory corresponding to the one where processes are to be stored
dirFey Directory corresponding to the one where the non-renormalized Feynman rules are to be stored
dirCT Directory corresponding to the one where the counterterms are to be stored

2.2. Defining the directories

Once the ‘FeynMaster’ folder is set in a specific directory, further directories should be specified. This must be done by editing
two files inside that folder: the RUN-FeynMaster batch2 and Control.py. For the former, the user should edit the file simply by
completing the (...) in the second line with the directory where the FeynMaster folder is. For the latter, Control.py must be
opened; then, in the last section (Directories section), and for each one of the variables defined there (dirFM, dirFR, . . . , dirCT), the
user should specify a path.3 The meaning of the different variables is explained in Table 1.4

Some additional remarks are in order. First, the tilde (˜) symbol should not be used to simplify directories. Second, the folder
‘FeynRulesModels’ inside the ‘FeynMaster’ folder should be cut and pasted inside the directory corresponding to FeynRules. Third,
the user must create an empty folder named ‘ModelsFeynMaster’ inside dirQ (such folder corresponds to dirQmod, and is the place
where the generated QGRAF model files will be placed). Fourth, the directories may depend on the specific model being used at the
time; in those cases, the user can use Python features to write the string as depending on other variables.5 Finally, the last four
directories — dirMain, dirPro, dirFey, dirCT — do not need to exist before the user defines them in the Control.py file, for they
are automatically created.

To test FeynMaster, jump to Section 7, where instructions for a quick first usage are given.

3. Creating a new model

FeynMaster is a model dependent program: it cannot run without the specification of a model. For each model, such specification
corresponds to the definition of two files: the FeynRules model file and the FeynMaster model file. In this section, we explain in detail
how to create both; a concrete example is given in Section 5.1. Note that FeynMaster already comes with three models (and hence six
files): QED, Scalar QED (SQED) and the Standard Model.6 These serve as prototypes, and we highly recommend them as guiding tools
in the creation of a new model.

Since there are already models available, this section can be skipped in a first utilization of FeynMaster.

3.1. Defining the FeynRules model

The FeynRules model is an usual model for FeynRules.7 In order for FeynMaster to be able to work with it, the final Lagrangean
should be included in the FeynRules model. Moreover, this Lagrangean must be separated in different parts — each of them
corresponding to a different type of interaction —, in such a way that each of those parts should have a specific name: see Table 2.8

of Mathematica. (Note that FeynMaster will not run if a Python version prior to 3 is used, and it is only guaranteed to properly work if a version of
Mathematica not older than 10.3 is used.) As for LATEX , the user is required to update the package database; note also that, in the first run of FeynMaster,
some packages (like feynmp-auto and breqn) may require authorization to be installed. We verified that FeynMaster runs properly with the latest public versions
of FeynRules, QGRAF and FeynCalc — namely, versions 2.3.34, 3.4.2 and 9.3.0, respectively. More instructions on how to download and install QGRAF can be found
in https://porthos.tecnico.ulisboa.pt/CTQFT/node9.html and in https://porthos.tecnico.ulisboa.pt/CTQFT/node33.html. Finally, note that, when using Linux or Mac, the
executable QGRAF file should be named qgraf.
2 This file will have different formats according to the operative system: .bat in Windows and .sh in Linux/Mac.
3 Note that, while in Linux/Mac a (single) forward slash should be used to separate the different levels of the directory, Windows requires a double backslash.
4 We should clarify the difference between the directory corresponding to x and the directory where x is: while in the former x itself is included in the directory

path, in the latter it is not. For example, suppose that the folder x lies inside the directory ‘documents’; then, the directory corresponding to x means ‘/documents/x/’,
while the directory where x is means ‘/documents/’.
5 By default, Control.py already uses all these features, so that the user only needs to fill in the (...) parts. In any event, let us illustrate what is being said

with an example. The directory where the FeynRules model is should be specified as a function of the variable intname (defined in the FeynMaster model, see
below); for instance, in Linux,

dirFRmod = ‘home/programs/FeynRules/Models/’ + intname + ‘/’.

Note also that this feature — writing strings as depending on other variables — can be used to simplify a directory which lies inside a previously defined directory.
For example, if the directory where the FeynRules model is lies inside the directory corresponding to FeynRules, then we can write, for example,

dirFRmod = dirFR + ‘Models/’ + intname + ‘/’.

6 The Standard Model FeynRules model file is written in an arbitrary Rξ gauge and with the η parameters of Ref. [20], while the FeynMaster model file closely
follows Ref. [21] to define the renormalization.
7 It is assumed here that the user is familiar with FeynRules, and knows how to create a FeynRules model. If this is not the case, we refer to the FeynRules

website https://feynrules.irmp.ucl.ac.be/.
8 To be clear, it is not mandatory to define all the 6 Lagrangean parts present in Table 2 (for example, if the model does not have a ghost sector, there is no

need to define LGhost); only, no other name besides the 6 ones specified in the right column of Table 2 will be recognized by FeynMaster.

https://porthos.tecnico.ulisboa.pt/CTQFT/node9.html
https://porthos.tecnico.ulisboa.pt/CTQFT/node33.html
https://feynrules.irmp.ucl.ac.be/

4 D. Fontes and J.C. Romão / Computer Physics Communications 256 (2020) 107311

Table 2
Name of the different Lagrangean parts according to the type of
interaction.
Type of interactions FeynRules name

Pure gauge LGauge
Fermion-gauge LFermions
Yukawa LYukawa
Scalar-scalar and gauge-scalar LHiggs
Ghosts LGhost
Gauge fixing LGF

Some additional notes on the FeynRules model are in order. First, the Lagrangean parts involving fermions (LFermions and LYukawa)
can be written either in terms of Dirac fermions or Weyl fermions; in both cases, the Feynman rules will be presented for Dirac
fermions.9 Second, every propagating particle should have a mass assignment, either to a variable or to 0 (e.g., Mass -> MH or
Mass -> 0). Finally, every parameter present in the model (non-zero masses included) should be defined in the parameters sections
(M$Parameters) with a LATEX name, so that it can be properly printed in the outputs (e.g., TeX -> Subscript[m, h]). A value can also
be associated to each parameter (e.g., Value -> 125)10; this is useful only in case the user wants to exploit the numerical interface of
FeynMaster — to be explained in Section 4.4.2.

3.2. Defining the FeynMaster model

As we saw, besides the FeynRules model file, FeynMaster requires a second file: the FeynMaster model. This is a Python file,
where further informations about the model should be specified. The different elements of the file are explained in Table 3; yet, we
strongly suggest the user to check some examples of FeynMaster model files, which might be the simplest way to get acquainted with
a model.

4. Usage

Once the initial specifications are concluded (i.e., once the directories, the FeynRules model and the FeynMaster model are defined),
FeynMaster is ready to be used. In this section, we explain in detail how the usage works. We start by showing how to edit the file
that controls the FeynMaster run. Then, after describing how to actually run FeynMaster, we comment on its outputs, and explain
how to use the two notebooks we alluded to in the Introduction.

4.1. Control.py

The FeynMaster run is uniquely controlled from Control.py. In this section, we explain the different components of that file.11
Initially, three variables should be specified, according to Table 4. While two of those variables — osswitch and folder — will in
principle be edited once and for all in the first use of FeynMaster, the remaining one — model — must be edited each time the model
at stake changes.

After that, the user should specify the desired process (or processes). One process is specified through the definition of the set of
variables shown in Table 5. Note that it is possible to define a sequence of processes — that is, a series of processes to be run in a
single FeynMaster run; this is perhaps more clear in the Control.py file itself, where the comments in the Processes section show the
line where the first process begins (process 1) and the line where it ends (end of process 1). To define a sequence of processes, the user
must copy the lines of the first process, paste them after it, and edit them to define the second process, and repeat the same procedure
for more processes. An example of a sequence of processes will be given in Section 5.1. For now, we must clarify the meaning of the
variables of Table 5.

InParticles and OutParticles, corresponding to the incoming and outgoing particles of the process, should contain only
particles defined in QGRAF style in the FeynMaster model. Each particle should be written between primes, and different particles
should be separated by commas (see example in Table 5). Whenever both a particle and an antiparticle are defined in InParticles
or OutParticles, the particle should always be written first, and the antiparticle after it. Tadpoles are obtained by selecting a single
incoming particle and no outgoing particles (i.e., OutParticles = []).

The loops variable should be set to a non-negative integer. Whatever the number of loops, FeynMaster will always correctly
generate the amplitudes for every diagram involved, although it is only prepared to properly draw and compute diagrams with number
of loops inferior to 2.

Parsel allows the specification of intermediate particles contributing to the process.12 It applies not only to particles in loops,
but to all intermediate particles. Inside the outer squared brackets, specific selections (themselves defined by squared brackets) can
be placed, in such a way that different selections should be separated by commas (see example in Table 5, where we defined two

9 This means that, if the user has written Lagrangean parts in terms of Weyl fermions, a relation should be specified in the particle classes between the Weyl
fermions and their associated Dirac spinors (see, for example, the Standard Model FeynRules model file; for more information, cf. the FeynRules manual).
10 In the case of matricial parameters, the variable name is Values instead of Value, and the set of values should be written as a Mathematica list. For example,
for a parameter with dimensions 2 × 2, we can set Values -> {0.5, 1, 1.5, 2}, for the matrix entries 11, 12, 21, 22, respectively. The Standard Model file
includes values according to [22].
11 Except the ones concerning the directories, which were addressed before. Note that a summary of the different explanations given in this section is present in
the Control.py file itself as comments.
12 It is similar to (and actually based on) the iprop option in QGRAF.

D. Fontes and J.C. Romão / Computer Physics Communications 256 (2020) 107311 5

Table 3
Variables of the FeynMaster model.
Variable Meaning

intname Name that shall be given to (a) the QGRAF model, which will be automatically created from the FeynRules model, (b) the folder
where the FeynRules model is to be found and (c) the folder with the FeynMaster outputs for the model at stake

extname Name that shall be printed in the FeynMaster final documents as the model name

(in the elements that follow, the user should specify the particles of the model, in QGRAF style)a

nscl Neutral scalars, in QGRAF style
cscl Charged scalars, in QGRAF style
ancscl Anticharged scalars, in QGRAF style (in respective order)
fel Fermions, in QGRAF style
anfel Antifermions, in QGRAF style
ngal Neutral gauge bosons, in QGRAF style
cgal Charged gauge bosons, in QGRAF style
ancgal Anticharged gauge bosons, in QGRAF style (in respective order)
ngol Neutral Goldstone bosons, in QGRAF style
cgol Charged Goldstone bosons, in QGRAF style
ancgol Anticharged Goldstone bosons, in QGRAF style (in respective order)
ghl Ghosts, in QGRAF style
anghl Antighosts, in QGRAF style (in respective order)
glul Gluons, in QGRAF style

(in the elements that follow, the same, but in LATEX style, and in respective order)

LAnscl Neutral scalars, in LATEX style
LAcscl Charged scalars, in LATEX style
LAancscl Anticharged scalars, in LATEX style (in respective order)
LAfel Fermions, in LATEX style
LAanfel Antifermions, in LATEX style
LAngal Neutral gauge bosons, in LATEX style
LAcgal Charged gauge bosons, in LATEX style
LAancgal Anticharged gauge bosons, in LATEX style (in respective order)
LAngol Neutral Goldstone bosons, in LATEX style
LAcgol Charged Goldstone bosons, in LATEX style
LAancgol Anticharged Goldstone bosons, in LATEX style (in respective order)
LAghl Ghosts, in LATEX style
LAanghl Antighosts, in LATEX style (in respective order)
LAglul Gluons, in LATEX style

(the elements that follow concern conventions or constraints)

FRtoQ Set of replacement rules from the particles defined in the FeynRules model to the particles defined in QGRAF styleb
FRrestr Restrictions file for the FeynRules modelc
FCsimp Simplifications for FeynCalc (in the form of replacement rules)
FCeqs Conventions the user wants FeynCalc to obey to (in the form of equalities)
PrMassFL Logical variable that controls the way through which propagators are definedd

(the remaining elements concern the renormalization of the model)

rensimp Simplifications to be made immediately before renormalizatione

renconsnum Renormalization constants which are numbers, in Mathematica style
LArenconsnum Renormalization constants which are numbers, in LATEX style (in respective order)
renconsmat Renormalization constants which are squared matrices, in Mathematica style
LArenconsmat Renormalization constants which are squared matrices, in Mathematica style, in respective order
renconsmatdim Dimension of the squared matrices just defined, in respective order
GFreno Logical variable; when set to True, the renormalization rules are applied to the Gauge Fixing Lagrangean
renorrules Renormalization rules

aThere is really no need to learn QGRAF for this: just check some examples of FeynMaster model files. Note also that the QGRAF name of an antifermion should
always be the capitalized version of the QGRAF name of the its respective fermion; the same applies for ghosts and antighosts. Some examples: for a fermion f, the
antifermion should be F; for a fermion e1, the antifermion should be E1; for a ghost cZ, the antighost should be CZ.
bThere is no need to include neither the trivial replacement rules (that is, when the FeynRules name is the same as the QGRAF one), nor the antiparticles replacement
rules.
cThe user is supposed to include all the desired simplifications for FeynRules in the restrictions file (cf. the FeynRules manual for more informations on restrictions
files).
dIf PrMassFL is set to True, the poles of the propagators are extracted from the Lagrangean — i.e., they are defined as the bilinear terms of the field at stake in
the Lagrangean —, and the propagator is written in the most general form. If PrMassFL is set to False, the poles will match the variable corresponding to the mass
of the propagator, and the propagator will be written in the Feynman gauge. While setting PrMassFL to True is certainly the most faithful way to describe the
propagator, this option may bring certain difficulties: on the one hand, it requires a Gauge Fixing Lagrangean to define the gauge boson propagators; on the other
hand, the bilinear terms can be very complicated expressions.
eThis may be relevant in some cases; cf. the Standard Model FeynMaster model file.

specific selections). Each specific selection contains four arguments: the first should either be ‘avoid’ or ‘keep’, the second should
correspond to a particle of the model,13 and the last two should be non-negative integer numbers such that the second is not smaller
than the first. We illustrate how it works by considering the example in Table 5: [‘avoid’,‘WP’,‘1’,‘3’] discards all the diagrams

13 Care should be taken not to select antiparticles, but only particles. This is because the propagator in FeynMaster is defined through the particle, and not the
antiparticle.

6 D. Fontes and J.C. Romão / Computer Physics Communications 256 (2020) 107311

Table 4
Initial variables to be defined in Control.py.
Variable Meaning

osswitch The operative system at stake; should be set to ‘Windows’, ‘Linux’ or ‘Mac’
model The desired model; should be set to the variable intname (defined in the FeynMaster model) of the

desired model
folder Should only be filled when the FeynMaster model is not in the directory of Control.py, but in a

sub-directory inside it; should that be the case, folder must be set to the name of such sub-directory

Table 5
Variables that specify one process. See text for details.
Variable Meaning Example

InParticles Incoming particles [‘H’]
OutParticles Outgoing particles [‘u’, ‘C’]
loops Number of loops 1
Parsel Selection of intermediate particles [[‘avoid’,‘WP’,‘1’,‘3’],[‘keep’, ‘b’,‘1’,‘1’]]
LoopTec Loop technique in FeynCalc 3
factor Quantity to factor out in the end ‘4 Pi’
options QGRAF options ‘onepi’

Table 6
Logical variables of the Selection section of Control.py. See text for details.
Variable Effect (when chosen as True)

FRinterLogic Establish an interface with FeynRules
RenoLogic Perform renormalization
Draw Draw and print the Feynman diagrams
Comp Compute and print the final expressions

FinLogic Print the final result of each diagram
DivLogic Print the UV divergent part of each diagram

SumLogic Compute and print the sum of the expressions
MoCoLogic Apply momentum conservation
LoSpinors Include spinors

with number of ‘WP’ propagators between 1 and 3, while [‘keep’,‘b’,‘1’,‘1’] keeps only diagrams with number of ‘b’ propagators
between 1 and 1 (i.e., exactly equal to 1).

LoopTec enables the user to choose between different loop techniques in FeynCalc. There are four possibilities: 1 for OneLoop,
2 for MyOneLoop, 3 for MyOneLoopMod, 4 for OneLoopTID. The first possibility is the standard OneLoop included in FeynCalc. This
function has two problems. First, it is limited to the third power of the loop momenta in the numerator. We have implemented the case
of four momenta for diagrams with four denominators using the conventions of LoopTools; this corresponds to the second possibility,
MyOneLoop, which we have tested with the light-by-light scattering in QED. The second problem with the standard OneLoop function
is that, sometimes (e.g. for long lines with exterior fermions at the end), it conflicts with the DiracSimplify function.14 One way to
avoid such problem is to use the TID function included in FeynCalc; this corresponds to the fourth possibility, OneLoopTID, which
calls the same arguments as OneLoop. However, we have developed another algorithm for the decomposition of the numerator that
is normally faster than the TID decomposition. This corresponds to the third possibility, MyOneLoopMod, which also includes the case
of four momenta in the numerator.

factor is a number, written in Mathematica style and between primes, that is to be factored out in the final calculations. Finally,
options refers to QGRAF options.15

Once the process (or sequence of processes) is specified, the last thing to edit before running FeynMaster is the Selection section of
Control.py. It contains 9 logical variables (i.e., variables that can only be set either to True or to False), described in Table 6.

Some remarks are in order, concerning the effect of these variables when set to True.
FRinterLogic, by establishing an interface with FeynRules, performs several tasks. First, it runs FeynRules (for the model selected

in the initial variable model), prints the complete non-renormalized Feynman rules of the model in a PDF file and opens this file.16
Second, it generates a QGRAF model, a crucial element in the generation of Feynman diagrams. Third, it generates the complete non-
renormalized Feynman rules in FeynCalc style, which will play a decisive role in all the calculations. Finally, it generates a Mathematica
notebook specifically designed to run FeynRules — hereafter the FeynRules notebook. This notebook is very useful in case the user
wants to have control over the generation of Feynman rules, and is the subject of Section 4.4.1.

Note that, even if all logical variables are set to False, FeynMaster generates a Mathematica notebook specifically designed to run
FeynCalc — hereafter the FeynCalc notebook. This notebook is very useful should the user want to have control over calculations, and
is the subject of Section 4.4.2. Moreover, once there is a QGRAF model, FeynMaster always runs QGRAF, which writes in a symbolic
form the total diagrams that contribute to the process at stake — the same process which was specified through the variables in Table 5.

14 Hence, whenever there are external fermions, it is safer not to use the loop techniques 1 and 2.
15 See QGRAF manual. Other examples besides ‘onepi’ (for one particle irreducible diagrams only) are ‘’ (no options) and ‘notadpole’ (no tadpoles).
16 Note that the results are automatically written; this is especially challenging when it comes to (automatically) breaking the lines in a long equation. This
challenge is in general surpassed with the LATEX breqn package, which is employed by FeynMaster. However, breqn is not able to break a line whenever the point
where the line is to be broken is surrounded by three or more parentheses; in those cases, unfortunately, the lines in the FeynMaster PDF outputs simply go out
of the screen. For documentation on the breqn package, cf.https://www.ctan.org/pkg/breqn.

https://www.ctan.org/pkg/breqn

D. Fontes and J.C. Romão / Computer Physics Communications 256 (2020) 107311 7

Then, FeynMaster takes the QGRAF output and writes the series of amplitudes for each diagram in a file that the FeynCalc notebook
shall have access to.

RenoLogic concerns the renormalization of the model. If FRinterLogic is set to True, RenoLogic prints the complete set of
Feynman rules for the counterterms interactions in a PDF file and opens this file; moreover, it stores those interactions in a file which
the Mathematica notebook shall have access to. A second important feature of RenoLogic is described below, in the context of the
Comp variable.

Draw takes the QGRAF output, draws the Feynman diagrams in a LATEX file, prints them in a PDF file and opens this file. This operation
is achieved with the help of feynmf [23], a LATEXpackage to draw Feynman diagrams. Since the diagrams are written in a LATEX file, they
can not only be edited by the user, but also directly copied to the LATEX file of the user’s paper.17

Comp computes the final expressions using FeynCalc, prints them in a PDF file and opens this file.18 Comp is intrinsically related to
the three logical variables that follow, which we now turn to. The first two of them — FinLogic and DivLogic — are, in fact, nothing
but options for Comp, so that they only make sense if Comp is set to True19: FinLogic includes the (total) final analytical expression
for each diagram in the PDF file printed by Comp; DivLogic, on the other hand, includes (only) the analytical expression for the UV
divergent part of each diagram in the same PDF file.

At this point, we should clarify the difference between UV divergences and infrared (IR) divergences. It is well known that, while the
former are in general present in loop integrals, the latter can only show up when there is a massless particle running inside the loop
(in which case the IR divergence comes from the integration region near k2 = 0, with k the loop momentum). In the present version
of FeynMaster, we restrict the treatment of divergences to the UV ones. Indeed, we assume that the IR divergences can be regulated
by giving the massless particle a fake mass — which one shall eventually be able to set to zero in physical processes, after considering
real emission graphs. With that assumption, IR divergences will never show up explicitly (only implicitly through the fake mass). In
the following, unless in potentially dubious statements, we will stop writing UV explicitly: it is assumed that, whenever we mention
divergences, we shall be referring to UV divergences.

SumLogic is an option for both Comp and the FeynCalc notebook: it computes the sum of the analytical expressions; if Comp is set
to True, this sum is included in the generated PDF20; whatever the logical value of Comp, setting SumLogic to True implies that, when
the FeynCalc notebook is run, the sum of the analytical expressions is calculated.

We now explain the effect of RenoLogic when Comp is set to True.21 In case the user defined a single process in the Processes
section, RenoLogic causes FeynMaster to look for counterterms that might absorb the divergences of the process at stake, and to
calculate those counterterms in MS.22 Such counterterms are then printed in the PDF file produced by Comp, and stored in yet another
file (CTfin.m, to be described below). In the case of a sequence of processes, the subsequently computed counterterms are added
to CTfin.m; however, what is particularly special about the sequence is that, for a certain process of the sequence, FeynMaster will
compute the counterterms by making use of the counterterms already computed in the previous processes.23 In the end of the run,
CTfin.m contains all the counterterms that were computed (in MS) to absorb the divergences of the processes of the sequence. In this
way, and by choosing an appropriate sequence of processes, it is possible to automatically renormalize the whole model in MS with a
single FeynMaster run.

The last two logical variables of Table 6 are MoCoLogic and LoSpinors. The former applies momentum conservation to the final
expressions, while the latter includes fermion spinors in those expressions. These variables are relevant even when Comp is set to False,
as shall be explained in Section 4.4.2.

4.2. Run

If both the FeynRules model and the FeynMaster model are defined, and if the Control.py file is edited, everything is set. To run
FeynMaster, just run the RUN-FeynMaster batch file inside directory dirFM.24

4.3. Outputs

Depending on the logical value of the variables in the Selection section of Control.py, FeynMaster can have different outputs. We
now list the total set of outputs, assuming that all those variables are set to True.25 First, in the directory where the FeynRules model

17 As already suggested, Draw is at present only guaranteed to properly draw the diagrams up to 1-loop. Moreover, diagrams with more than two particles in the
initial or final states, as well as some reducible diagrams, are also not warranted.
18 By ‘final expressions’ we mean the simplified analytical expressions for the diagrams written in terms of Passarino–Veltman integrals; more details on
Section 4.4.2. We inform that it is normal that the warning ‘front end is not available’ shows up when Comp is set to True. Finally, the limitation we alluded
to in note 16 applies here too.
19 In case Comp is set to False, the logical value of such variables is irrelevant: they can either be set to True or to False.
20 More specifically: if FinLogic is True, SumLogic includes the sum of the total final expressions; if DivLogic is True, it includes the sum of the expressions
for the divergent parts; if both are True, it includes both the sum of the total expressions and the sum of the expressions for the divergent parts.
21 In this case, momentum conservation should be enforced; that is to say, the variable MoCoLogic should be set to True. Note, moreover, that there is only a
non trivial effect if there are counterterms interactions stored; given what we saw above, this means that FeynMaster had to be run with both RenoLogic and
FRinterLogic set to True for the model at stake.
22 That is, calculates them in such a way that the counterterms are precisely equal to the divergent part they absorb (except for the ln(4π) and the Euler–Mascheroni
constant γ , which are also absorbed in the MS scheme). By ‘calculating’ we mean here writing the analytical expression.
23 This is, in fact, the major advantage of writing a series of processes in a single FeynMaster run (as opposed to one process per run).
24 Care should be taken not to run FeynMaster when the relevant notebooks are open. More specifically, if FRinterLogic is set to True, and if the FeynRules
notebook created for the process at stake already exists, this notebook cannot be open during the run; in the same way, if Comp is set to True, and if the FeynCalc
notebook designed for the process at stake already exists, such notebook cannot be open during the run.
25 Actually, when Comp and RenoLogic are both True, LoSpinors should be False. This is irrelevant for what follows, since LoSpinors has no influence on the
outputs as a whole.

8 D. Fontes and J.C. Romão / Computer Physics Communications 256 (2020) 107311

Table 7
Names of the different vertices according to the Lagrangean part
(compare with Table 2).
Lagrangean part Vertices

LGauge vertsGauge
LFermions vertsFermionsFlavor
LYukawa vertsYukawa
LHiggs vertsHiggs
LGhost vertsGhosts

is, two files are generated: the FeynRules notebook, Notebook.nb, and an input file for it, PreControl.m. Second, the QGRAF model
with the name corresponding to the variable intname is created in the directory dirQmod; besides, a file named last-output (with
the last output from QGRAF) is created inside dirQ. Then, if it does not exist yet, a directory with the name corresponding to intname
is created in the directory dirMain. Inside it, and if they do not exist yet, three directories are created, Counterterms, FeynmanRules
and Processes, which we now describe.

Counterterms contains one folder, TeXs-drawing, and two files, CTini.m and CTfin.m. TeXs-drawing is where the PDF file
with the complete set of Feynman rules for the counterterms interactions is stored, as well as the LATEX file that creates it. CTini.m is the
file which the FeynCalc notebook has access to and where the Feynman rules for the counterterms interactions are stored. CTfin.m,
in turn, is the aforementioned file containing the counterterms that were computed (in MS) to absorb the divergences of the processes
of the sequence at stake.26

FeynmanRules, besides several files with the Feynman rules to be used in the FeynCalc notebook, contains yet another TeXs-
drawing folder, where the PDF file with the complete set of Feynman rules for the non-renormalized interactions is stored, as well as
the LATEX file that creates it.

Processes contains a folder for each of the different processes studied. These folders are named with the index (in the sequence
of processes) corresponding to the process at stake, as well as with a string containing the QGRAF names of the incoming and the
outgoing particles joined together. Inside each folder, there are two other folders, TeXs-drawing and TeXs-expressions, as well
as three files, Amplitudes.m, Helper.m and the FeynCalc notebook, Notebook.nb. In order: TeXs-drawing contains the PDF file
with the printed Feynman diagrams, as well as the LATEX file that creates it; TeXs-expressions contains the PDF file with the printed
expressions, as well as the LATEX file that creates it; Amplitudes.m contains the amplitudes for the diagrams (written in FeynCalc style);
Helper.m is an auxiliary file for the FeynCalc notebook.

Finally, recall that, in case there is already a QGRAF model, FeynMaster will run even if all variables of Table 6 are set to False. This
is relevant since it generates not only the QGRAF output (last-output), but also the folder (or folders) for the specific process (or
processes) selected, containing the files described above.27

4.4. The notebooks

As previously mentioned, a major advantage of FeynMaster is its hybrid character concerning automatization. Indeed, not only does
it generate automatically the results, but it also allows the user to handle them. This is realized due to the automatic creation of the
FeynRules notebook and the FeynCalc notebook. We now describe them in detail.

4.4.1. The FeynRules notebook
We mentioned in Section 4.1 that, when FeynMaster is run with the logical variable FRinterLogic set to True, the FeynRules

notebook Notebook.nb is automatically created in the directory dirFRmod. By running it,28 the user can access the vertices for
the different Lagrangean parts, according to Table 7. Besides the usual FeynRules instructions, two useful functions — GetCT and
MyTeXForm — are available. GetCT is a function that, for a certain Lagrangean piece given as argument, yields the respective
counterterms Lagrangean. MyTeXForm is FeynMaster’s version of Mathematica’s TeXForm; it is a function that uses Python (as well
as inner FeynMaster information concerning the LATEX form of the parameters of the model) to write expressions in a proper LATEX form.29

4.4.2. The FeynCalc notebook
Whenever FeynMaster is run, and independently of the logical values of the variables of Table 6, the FeynCalc notebook is

automatically created. This notebook, as already the FeynRules one just described, is totally ready-to-use: the user does not have
to define directories, nor import files, nor change conventions. Just by running the notebook, there is immediate access to a whole
set of results: not only the totality of the results obtained should the Comp logical variable had been turned on (the expressions, the
divergent parts, the counterterms, etc.), but also to more basic elements, such as the total Feynman rules for the model and amplitudes
for the diagrams. Besides, since all these results are written in a Mathematica notebook, the user has great control over them, as he
or she can operate algebraically on them, or select part of them, or print them into files, etc. Moreover, since the FeynCalc package is
loaded, and since all the results are written in a FeynCalc-readable style, the control at stake is even greater, for the user can apply all
the useful tools of that package: operate on the Dirac algebra, perform contractions, solve loop integrals, etc.30

26 Everytime FeynMaster is run, this file CTfin.m is generated anew, thus erasing any counterterms that might be contained in it.
27 While the QGRAF output is not overwritten when QGRAF is run on its own, it is overwritten when QGRAF is run inside FeynMaster.
28 The run will generate several FeynMaster internal files, among which is built-model, the QGRAF model file.
29 MyTeXForm prints the LATEX form of the expression at stake not only on the screen, but also in an external file named MyTeXForm-last-output.tex in the
directory where the notebook lies.
30 In the following, we assume the user to be familiar with FeynCalc. For more informations, consult the FeynCalc website: https://feyncalc.github.io/.

https://feyncalc.github.io/

D. Fontes and J.C. Romão / Computer Physics Communications 256 (2020) 107311 9

Table 8
Useful variables concerning expressions for the diagrams. See text for details.
Variable Meaning

amp List with all the amplitudes
ampi Amplitude for diagram i
ans List with all the modified amplitudes
ansi Modified amplitude for diagram i
res List with all the final expressions
resi Final expression for diagram i
resD List with all the expressions for the divergent parts
resDi Expression for the divergent part of diagram i
restot Sum of all the final expressions
resDtot Sum of all the expressions for the divergent parts

Table 9
Useful functions. See text for details.
Function Action

MyTeXForm Write expressions in a proper LATEX form
MyPaVeReduce Apply FeynCalc’s PaVeReduce and convert to 4 dimensions
DecayWidth Calculate the decay widtha

DiffXS Calculate the differential cross sectionb

FCtoLT Convert expressions to LoopTools
TrG5 Calculate the trace for expressions with γ5
ChangeTo4 Change to 4 dimensions
GetDiv Get the divergent part of an expression
GetFinite Get the finite part of an expression in dimensional regularizationc

MyOneLoop Extends OneLoop to four powers of momenta in numeratord

MyOneLoopMod Alternative to MyOneLoopd

aOnly applicable to processes with 1 incoming and 2 outgoing particles.
bOnly applicable to processes with 2 incoming and 2 outgoing particles.
cCf. note 31.
dCf. Section 4.1.

We now present some useful features introduced by FeynMaster in the FeynCalc notebook. We start with the variables related to the
analytical expressions for the Feynman diagrams: see Table 8. Here, the differences between amp, ans and res should be highlighted.
First, amp is a list that, for each element, contains the mere conjunction of the Feynman rules involved in the diagram at stake; ans is the
result of the application of the loop technique in dimensional regularization to amp (in case amp is at 1-loop), or a mere simplification
of amp (in case amp is at tree-level); moreover, ans multiplies amp by 1/i; res takes ans and writes it in 4 dimensions — including
possible finite parts coming from this conversion31 — and factorizes the previously selected factor. We should stress that, since ans
includes a factor 1/i, the final results (res) correspond to M, and not to iM. Finally, the divergent parts are written in terms of the
variable div, defined as:

div =
1
2

(
2
ϵ

− γ + ln 4π
)
.

(Note that, in the PDF file with the printed expressions, we change the name div to ωϵ .)
Next, we consider useful functions to manipulate the results: see Table 9. Some clarifications are in order here. MyTeXForm is the

same function as the one described in Section 4.4.1. MyPaVeReduce is FeynMaster’s version of FeynCalc’s PaVeReduce; it applies
PaVeReduce and writes the result in 4 dimensions — again, not without including possible finite parts coming from this conversion.
Concerning DecayWidth and DiffXS, note that while the former is written solely in terms of masses, the latter is written also in
terms of the center of momentum energy S as well of the scattering angle Theta. FCtoLT is the function that allows the numerical
interface of FeynMaster; when applied to an expression, it generates three Fortran files in the directory where the notebook lies:
MainLT.F, FunctionLT.F and MyParameters.h; the first one, MainLT.F, is the beginning of a main Fortran program, which must
be completed according to the user’s will; MainLT.F calls the function MyFunction, which is the LoopTools version of the expression
FCtoLT was applied to, and which is written in the second Fortran file, FunctionLT.F; in turn, MyParameters.h contains the
numerical values associated to the different parameters in the FeynRules model file. Last of all (we postpone the discussion about
TrG5 to the next paragraph), GetDiv yields the UV divergent part of an expression; care should be taken if IR divergences are not
regulated via a fake mass, for in that case, although they can show up as poles of the Passarino–Veltman functions, they will not be
detected by GetDiv. Moreover, GetDiv only yields the UV divergent part of the Passarino–Veltman functions [24,25] that FeynCalc
and FeynMaster can handle — namely, integrals whose power of the loop momenta in the numerator is at most 3 (except for the D
functions, where we extended FeynCalc up to the fourth power of the loop momenta).

Let us now consider TrG5. Since FeynMaster is prepared to compute divergent integrals — and, more specifically, to compute
them via dimensional regularization —, it defines Dirac and Lorentz structures (like gµν or γ µ) in dimension d, not in dimension 4.

31 As is well known, in the dimensional regularization scheme, the infinities are tamed by changing the dimensions of the integrals from 4 to d, in such a way
that the divergences are regulated by the parameter ϵ = 4− d. When solving the integrals in terms of Passarino–Veltman integrals, the result will in general depend
explicitly on the dimension d, as well as on the Passarino–Veltman integrals themselves — which usually diverge, with divergence proportional to 1/ϵ. But since
d = 4 − ϵ, there will in general be finite terms (order ϵ0) coming from the product between d and the divergent parts in the Passarino–Veltman integrals. Hence,
when converting the result back to 4 dimensions (since the final result is written in 4 dimensions), one cannot forget to include such terms. Finally, recall that IR
divergences will never show up explicitly if the potentially IR divergent integrals are tamed by giving the massless particle a fake mass.

10 D. Fontes and J.C. Romão / Computer Physics Communications 256 (2020) 107311

Table 10
Useful variables concerning renormalization. See text for details.
Function Meaning

CTprocess Expression containing all the counterterms involved in the process at stake
PreResReno Sum of the total divergent part and CTprocess
CTfinlist List with all the counterterms computed so far in MS
ResReno The same as PreResReno, but using counterterms previously stored in CTfinlist
PosResReno The same as ResReno, but using also the counterterms calculated for the process at stake

Table 11
Particle indices for the FeynCalc notebook.

QGRAF index Lorentz index
in FeynCalc

Lorentz index
in LATEX

Color index in
LATEX

Momentum index
in FeynCalc

Momentum
index in LATEX

Incoming −1 -J1 µ a p1 p1
Particles −3 -J3 ρ c p2 p2
Outgoing −2 -J2 ν b q1 q1
Particles −4 -J4 σ d q2 q2

However, the definition of γ5 in dimension d is not trivial, as chiral fermions are a property of four dimensions. In fact, the treatment
of γ5 in dimensional regularization is still an open problem (see e.g. Refs. [26–32]). By default, FeynMaster assumes the so-called naive
dimensional regularization scheme [30], which takes the relation {γ5, γ

µ
} = 0 to be valid in dimension d. This naive approach is applied

both when the loop diagram has external fermions, and when it has only inner fermions (forming a closed loop). In the second case,
in order to calculate the corresponding trace, FeynMaster uses TrG5. This function starts by separating the expression it applies to in
two terms: one with γ5, another without γ5. It then computes the trace of the former in 4 dimensions, while keeping the dimension
of the latter in its default value d.32

Finally, we present in Table 10 some useful variables concerning renormalization. Two notes should be added. First, in the CTprocess
variable, process corresponds to the QGRAF names of the incoming and the outgoing particles joined together (e.g., in the Standard
Model, for the process h → Zγ , CTprocess is CTHZA). Second, PosResReno should always be zero, since in the MS scheme the divergents
parts are exactly absorbed by the counterterms.

Some final comments on the FeynCalc notebook. First, the indices of the particles are described in Table 11, and momentum
conservation can be applied through the replacement rule MomCons.33 Second, the Helper.m file contains, among other definitions,
both the factor (defined in the Selection section of Control.py) as well as the FeynCalc conventions (defined as FCeqs in the
FeynMaster model). Third, even if Comp is set to False in Control.py, setting MoCoLogic and LoSpinors to True has consequences
for the FeynCalc notebook. Indeed, the former implies that, when the notebook is run, momentum conservation will be applied; as for
the latter, it makes the amplitudes be written with fermion spinors. Finally, the replacement rule FCsimp contains the simplifications
for FeynCalc (defined with the same name in the FeynMaster model).

5. Examples

5.1. Creation and complete automatic renormalization of a toy model

Here we exemplify how to create a model, on the one hand, and how to completely renormalize it, on the other. The model will be
very simple: QED with an extra fermion. We first show how to create such a toy model.

Probably the simplest way to create any model whatsoever is to copy and modify an already existing model. Recall that, in order
to define a model in FeynMaster, we need to create two files: a FeynRules model file and a FeynMaster model file. We start with
the former; given the similarity between our toy model and QED, we duplicate the directory dirFRmod corresponding to the QED
FeynRules model, and name the duplicate QED2. We get inside QED2, and change the name of the FeynRules model file from QED.fr
to QED2.fr. We then open QED2.fr, and edit the model in three steps34: first, we modify the parameter list to

(***** Parameter list ******)
M$Parameters = {
mf1 == {TeX -> Subscript[m,1]},
mf2 == {TeX -> Subscript[m,2]},
ee == {TeX -> e},
xiA == {TeX -> Subscript[\[Xi],A]} }

Then, in the Particle classes list, we slightly modify what we had, and we add a second fermion35:

32 It is a matter of course that the calculation of the term with γ5 in dimension 4 can only be an issue when the integral multiplying it is divergent. This is simply
because one does not need to regularize an integral that is not divergent. In particular, there is no need to use dimensional regularization for a finite integral, so that
all the calculations can be made in dimension 4. Note also that FeynCalc already includes different schemes to handle γ5 , and is expected to improve the treatment
of γ5 in dimensional regularization in future versions.
33 Whenever there is one incoming particle and two outgoing particles, MomCons replaces p1 by the remaining momenta; in all the other cases, MomCons replaces
q1 by the remaining momenta.
34 We neglect here minor details like the internal FeynRules name, which can be edited in the variable M$ModelName.
35 The fermions are defined both in terms of Weyl spinors (the W variables) and Dirac spinors (the F variables). It is certainly true that, in models with no parity
violation (like the present one), there is no need to define the fermions in terms of Weyl spinors. Nevertheless, we consider them for illustrative purposes.

D. Fontes and J.C. Romão / Computer Physics Communications 256 (2020) 107311 11

(***** Particle classes list ******)
M$ClassesDescription = {
W[1] == {
ClassName -> psi1L,
SelfConjugate -> False,
QuantumNumbers -> {Q-> Q},
Chirality -> Left},

W[2] == {
ClassName -> chi1R,
SelfConjugate -> False,
QuantumNumbers -> {Q-> Q},
Chirality -> Right},

F[1] == {
ClassName -> f1,
SelfConjugate -> False,
QuantumNumbers -> {Q-> Q},
Mass -> mf1,
WeylComponents -> {psi1L, chi1R}},

W[3] == {
ClassName -> psi2L,
SelfConjugate -> False,
QuantumNumbers -> {Q-> Q},
Chirality -> Left},

W[4] == {
ClassName -> chi2R,
SelfConjugate -> False,
QuantumNumbers -> {Q-> Q},
Chirality -> Right},

F[2] == {
ClassName -> f2,
SelfConjugate -> False,
QuantumNumbers -> {Q-> Q},
Mass -> mf2,
WeylComponents -> {psi2L, chi2R}},

V[1] == {
ClassName -> A,
Mass -> 0,
SelfConjugate -> True} }

Finally, we modify the Lagrangean to include a second fermion:

LGauge := -1/4 FS[A, \[Mu], \[Nu]] FS[A, \[Mu], \[Nu]]
LFermions := I psi1Lbar.sibar[mu].del[psi1L, mu] + I chi1Rbar.si[mu].del[chi1R, mu] \

- mf1 (psi1Lbar.chi1R + chi1Rbar.psi1L) \
+ ee psi1Lbar.sibar[mu].psi1L A[mu] + ee chi1Rbar.si[mu].chi1R A[mu] \
+ I psi2Lbar.sibar[mu].del[psi2L, mu] + I chi2Rbar.si[mu].del[chi2R, mu] \
- mf2 (psi2Lbar.chi2R + chi2Rbar.psi2L) \
+ ee psi2Lbar.sibar[mu].psi2L A[mu] + ee chi2Rbar.si[mu].chi2R A[mu]

LGF := -1/2/xiA del[A[mu], mu] del[A[nu], nu]

This completes the FeynRules model. We now move to the directory where the FeynMaster models are; we duplicate the file QED.py,
and we name the duplicate QED2.py. We open QED2.py, and start by changing intname to ‘QED2’ and extname to ‘QED with two
fermions’. We then edit the following variables according to36:

(...)
‘fel’ : [‘f1’, ‘f2’], # - - - fermions
‘anfel’ : [‘F1’,‘F2’], # - - - antifermions
(...)
‘LAfel’ : [‘f_1’,‘f_2’],
‘LAanfel’ : [‘\\bar{f}_1’,‘\\bar{f}_2’],
(...)
‘FRtoQ’ : ‘{}’,

36 Recall that the QGRAF name of an antifermion should always be the capitalized version of the QGRAF name of the respective fermion. Moreover, in order to
avoid internal conflicts in FeynMaster, the FeynRules particles names should never be equal to any QGRAF antiparticles names; so, for example, if we had defined
the FeynRules particles with names F1 and F2, we should never define the QGRAF antiparticles names as [‘F1’,‘F2’]. Finally, since there is no need to include
in FRtoQ neither the trivial replacement rules nor the antiparticles replacement rules, FRtoQ is empty in this case.

12 D. Fontes and J.C. Romão / Computer Physics Communications 256 (2020) 107311

Finally, we consider the variables concerning renormalization. In QED, we renormalize the theory using the replacements

Aµ → Aµ +
1
2
δZ3 Aµ, (1a)

ψL → ψL +
1
2
δZ f

L ψL, (1b)

χR → χR +
1
2
δZ f

R χR, (1c)

e → e + δe e, (1d)

mf → mf + δmf , (1e)

where ψL and χR are the left and right components of the fermion, respectively. In QED2, we shall have exactly the same replacement
rules, but with an extra fermion. Therefore, we write in QED2.py:

(...)
‘renconsnum’ : [‘\\[Delta]ee’, ‘\\[Delta]Z3’, ‘\\[Delta]ZfL1’, ‘\\[Delta]ZfR1’,

‘\\[Delta]mf1’,‘\\[Delta]ZfL2’, ‘\\[Delta]ZfR2’, ‘\\[Delta]mf2’],
‘LArenconsnum’ : [‘\\delta e’,‘\\delta Z_3’,‘\\delta Z^{f,L}_1’,‘\\delta Z^{f,R}_1’,

‘\\delta m_1’,‘\\delta Z^{f,L}_2’,‘\\delta Z^{f,R}_2’,‘\\delta m_2’],
(...)
‘renorrules’ : [‘A[\\[Nu]_] -> A[\\[Nu]] + (1/2) \\[Delta]Z3 A[\\[Nu]]’, \

‘ee -> ee + \\[Delta]ee ee’, \
‘psi1L -> psi1L + (1/2) \\[Delta]ZfL1 psi1L’, \
‘chi1R -> chi1R + (1/2) \\[Delta]ZfR1 chi1R’, \
‘psi1Lbar -> psi1Lbar + (1/2) \\[Delta]ZfL1 psi1Lbar’, \
‘chi1Rbar -> chi1Rbar + (1/2) \\[Delta]ZfR1 chi1Rbar’, \
‘mf1 -> mf1 + \\[Delta]mf1’,
‘psi2L -> psi2L + (1/2) \\[Delta]ZfL2 psi2L’, \
‘chi2R -> chi2R + (1/2) \\[Delta]ZfR2 chi2R’, \
‘psi2Lbar -> psi2Lbar + (1/2) \\[Delta]ZfL2 psi2Lbar’, \
‘chi2Rbar -> chi2Rbar + (1/2) \\[Delta]ZfR2 chi2Rbar’, \
‘mf2 -> mf2 + \\[Delta]mf2’]

}

This completes the FeynMaster model, and hence the total specification of QED2.
Now that the model is totally specified, we want to proceed to its complete automatic renormalization — that is, to the determination

of the complete set of counterterms (in the MS scheme). To do so, we open Control.py (we assume that the user has already specified
all the required directories); we start by choosing model = ‘QED2’. Then, we must choose a sequence of processes such that all the
counterterms are computed. To do so, note that the total set of counterterms is:

δZ3, δZ f ,L
1 , δZ f ,R

1 , δm1, δZ f ,L
2 , δZ f ,R

2 , δm2, δe. (2)

However, from the renormalization of QED, we know that the first one, δZ3, can be determined by the vacuum polarization of the
photon; the following three, δZ f ,L

1 , δZ f ,R
1 , δm1, can be determined by the self-energy of f1; by the same token, δZ f ,L

2 , δZ f ,R
2 , δm2 can be

determined by the self-energy of f2; finally, δe can be determined by one of the vertices (either f1 f̄1γ or f2 f̄2γ) at 1 loop. From all this,
we conclude that the Processes section in Control.py should be37:

def processes(): #:::::::::::::::::::::::::::::::: Processes section ::::::: (...)
- - - - - - (do not edit):
Seq=[]; Loo=[]; LooTec=[]; Fac=[]; Opt=[]; ParS=[]
- - - - - - Write the sequence of 1-loop processes you want to study, in QGRAF style:
- - - - - - process 1:
- - - - - - - - - - incoming particles, separated by (...)
InParticles = [‘A’]
- - - - - - - - - - outgoing particles, separated by (...)
OutParticles = [‘A’]
- - - - - - - - - - number of loops, without prime symbols (example: 1):
loops = 1
- - - - - - - - - - selection of particles in the loop: keep or avoid an (...)
- - - - - - - - - - example: Parsel = [[‘avoid’,‘H’,‘1’,‘3’] (...)
Parsel = []
- - - - - - - - - - loop technique in FeynCalc (1 for OneLoop, 2 for (...)
LoopTec = 1
- - - - - - - - - - quantity to factor out in the end of the computation (...)
factor = ‘1’
- - - - - - - - - - QGRAF options (example: ‘onepi’); else, leave it ‘’:
options = ‘onepi’

37 Recall that, whenever a 1-loop process has external fermions, the variable LoopTec cannot be set equal to 1 or 2.

D. Fontes and J.C. Romão / Computer Physics Communications 256 (2020) 107311 13

- - - - - - (do not edit):
Sum = [InParticles,OutParticles]; Seq.append(Sum); (...)
- - - - - - end of process 1
- - - - - - process 2:
- - - - - - - - - - incoming particles, separated by (...)
InParticles = [‘f1’]
- - - - - - - - - - outgoing particles, separated by (...)
OutParticles = [‘f1’]
- - - - - - - - - - number of loops, without prime symbols (example: 1):
loops = 1
- - - - - - - - - - selection of particles in the loop: keep or avoid an (...)
- - - - - - - - - - example: Parsel = [[‘avoid’,‘H’,‘1’,‘3’] (...)
Parsel = []
- - - - - - - - - - loop technique in FeynCalc (1 for OneLoop, 2 for (...)
LoopTec = 3
- - - - - - - - - - quantity to factor out in the end of the computation (...)
factor = ‘1’
- - - - - - - - - - QGRAF options (example: ‘onepi’); else, leave it ‘’:
options = ‘onepi’
- - - - - - (do not edit):
Sum = [InParticles,OutParticles]; Seq.append(Sum); (...)
- - - - - - end of process 2
- - - - - - process 3:
- - - - - - - - - - incoming particles, separated by (...)
InParticles = [‘f2’]
- - - - - - - - - - outgoing particles, separated by (...)
OutParticles = [‘f2’]
- - - - - - - - - - number of loops, without prime symbols (example: 1):
loops = 1
- - - - - - - - - - selection of particles in the loop: keep or avoid an (...)
- - - - - - - - - - example: Parsel = [[‘avoid’,‘H’,‘1’,‘3’] (...)
Parsel = []
- - - - - - - - - - loop technique in FeynCalc (1 for OneLoop, 2 for (...)
LoopTec = 3
- - - - - - - - - - quantity to factor out in the end of the computation (...)
factor = ‘1’
- - - - - - - - - - QGRAF options (example: ‘onepi’); else, leave it ‘’:
options = ‘onepi’
- - - - - - (do not edit):
Sum = [InParticles,OutParticles]; Seq.append(Sum) (...)
- - - - - - end of process 3
- - - - - - process 4:
- - - - - - - - - - incoming particles, separated by (...)
InParticles = [‘A’]
- - - - - - - - - - outgoing particles, separated by (...)
OutParticles = [‘f1’,‘F1’]
- - - - - - - - - - number of loops, without prime symbols (example: 1):
loops = 1
- - - - - - - - - - selection of particles in the loop: keep or avoid an (...)
- - - - - - - - - - example: Parsel = [[‘avoid’,‘H’,‘1’,‘3’] (...)
Parsel = []
- - - - - - - - - - loop technique in FeynCalc (1 for OneLoop, 2 for (...)
LoopTec = 3
- - - - - - - - - - quantity to factor out in the end of the computation (...)
factor = ‘1’
- - - - - - - - - - QGRAF options (example: ‘onepi’); else, leave it ‘’:
options = ‘onepi’
- - - - - - (do not edit):
Sum = [InParticles,OutParticles]; Seq.append(Sum) (...)
- - - - - - end of process 4
- - - - - - for more processes, just replicate the above process
return (Seq,Loo,ParS,LooTec,Fac,Opt)

Finally, concerning the variables of the Selection section of Control.py, we set them all to True, except LoSpinors, which we set to
False. This being done, everything is set. We then move to dirFM, and run batch the file RUN-FeynMaster. In total, 10 PDF files
are automatically and subsequentially generated and opened: one for the non-renormalizable Feynman rules, another one for the
counterterms Feynman rules, and two files per process — one with the Feynman diagrams, another with the respective expressions. In
the last file for the expressions, we read ‘‘This completes the renormalization of the model’’, and the list of the full set of counterterms is
presented.

14 D. Fontes and J.C. Romão / Computer Physics Communications 256 (2020) 107311

Table 12
Values of the variables of Control.py for the example in
Section 5.2; cf. note 38.
Variable Value

model ‘StandardModel’
InParticles [‘H’]
OutParticles [‘A’,‘A’]
loops 1
Parsel []
LoopTec 1
factor ‘1’
options ‘onepi’
FRinterLogic True
RenoLogic True
Draw True
Comp False
FinLogic False
DivLogic False
SumLogic True
MoCoLogic False
LoSpinors False

5.2. h → γ γ in the Standard Model

In this example, we use the h → γ γ in the Standard Model as an illustration of several features of FeynMaster. We shall use
Standard Model model files — both the FeynRules one and the FeynMaster one — that come with FeynMaster, and we assume once
again that the user has already specified all the required directories in Control.py. As for the remaining variables in this file, we set
them in accordance with Table 12.38 We then go to the directory dirFM, and we run the batch file RUN-FeynMaster. In total, 3 PDF
files will automatically be generated and opened: one for the non-renormalizable Feynman rules, another one for the counterterms
Feynman rules, and a third one for the Feynman diagrams. We move to the directory 1-HAA inside dirPro (meanwhile generated) and
open the FeynCalc notebook Notebook.nb. We then run the Notebook.nb, after which we are ready to test some relevant features.

5.2.1. Notebook access to Feynman rules
First, we want to gain some intuition on how the notebook has access to the Feynman rules of the Standard Model and to the

amplitudes of the h → γ γ decay. We write

In[14]:= amp1

which should yield the expression:

2 e3 mW g−J2−J4

sw
(
k21 − mW

2
) (

(p1 − k1)2 − mW
2
) −

2D e3 mW g−J2−J4

sw
(
k21 − mW

2
) (

(p1 − k1)2 − mW
2
) . (3)

This is the amplitude for the first Feynman diagram, where D represents the dimension. Now, where does the notebook get this
information from? To answer the question, we open Amplitudes.m inside 1-HAA. If we check the first line, we realize that amp1
is essentially a product of Feynman rules such as propWP[...] and vrtxAAWPWM[...].39 These rules are defined either in Feynman-
Rules-Main.m inside dirFey, or in one of the other files present in that directory. Although they have been automatically generated,
they can always be edited for particular purposes.

5.2.2. Finiteness and gauge invariance
Next, we use some of the features described in Section 4.4.2 to test two important properties of h → γ γ : finiteness and gauge

invariance. We start with the former; by writing

In[15]:= resD

we obtain the list with all the expressions for the divergents parts. It is a non-trivial list: although some of its elements are zero, most
of them are not. However, when we sum the whole list, we find:

In[16]:= resDtot

Out[16]= 0

so that the process as a whole is finite, as expected for this decay mode.

38 A Control.py file adapted to this example was included inside the folder containing the FeynRules model for the Standard Model, under the name Control-
Example-5.2.py. We are setting FRinterLogic to True, which only needs to be done in case it was not yet done before. Actually, generating all Feynman rules
for both the non-renormalizable interactions and the counterterms in the Standard Model may take some minutes. Therefore, if we have already performed that
operation, we can save time by setting FRinterLogic and RenoLogic to False.
39 Diagrams 7 to 24 have a factor Nc, which corresponds to the color number. This factor shall be present whenever there are fermions present.

D. Fontes and J.C. Romão / Computer Physics Communications 256 (2020) 107311 15

Let us now check gauge invariance. First of all, note that the total amplitude M for h → γ γ can be written as

M = ϵν1ϵ
σ
2 Mνσ , (4)

where we are just factoring out the polarization vectors ϵν1 and ϵσ2 of the two photons. Then, it is easy to show that gauge invariance
forces Mνσ to have the form

Mνσ
= (gνσ q1.q2 − qσ1 q

ν
2)F , (5)

where q1 and q2 are the 4-momenta of the two photons, and F is a scalar function of the momenta and the masses. In other words, it
is a consequence of gauge invariance that, in the total process, the coefficient of gνσ q1.q2 must be exactly opposite to that of qσ1 q

ν
2 . To

test this, we define some replacement rules:

(* momentum conservation in scalar products and four-vectors *)

In[17]:= dist = {SP[p1, x_] -> SP[q1, x] + SP[q2, x], FV[p1, x_] -> FV[q1, x] + FV[q2, x]};

(* external particles on-shell *)

In[18]:= onshell = {SP[q1, q1] -> 0, SP[q2, q2] -> 0, SP[p1, p1] -> mH^2};

(* kinematics *)

In[19:= kin = {SP[q1, q2] -> MH^2/2, SP[p1, q1] -> MH^2/2, SP[p1, q2] -> MH^2/2};

(* transversality of the external photons polarizations *)

In[20]:= transv = {FV[q1, -J2] -> 0, FV[q2, -J4] -> 0};

which we use to define a new res list:

In[21]:= resnew = (res /. dist /. onshell /. kin /. transv) // Simplify;

Finally, we write the coefficients of gνσ q1.q2 and qσ1 q
ν
2 as

In[22]:= resnewT = (Coefficient[resnew, MT[-J2, -J4]] // MyPaVeReduce)
/(MH^2/2) // Simplify // FCE;

In[23]:= resnewL = (Coefficient[resnew, FV[q1, -J4]*FV[q2,-J2]] // MyPaVeReduce)
// Simplify // FCE;

respectively, to conclude that

In[24]:= Total[resnewT] + Total[resnewL] // Simplify

Out[24]:= 0

in accordance with gauge invariance. For what follows, it is convenient to save the expressions for the total transverse and longitudinal
part. We write

In[25]:= FT = Total[resnewT] // Simplify;

In[26]:= FL = Total[resnewL] // Simplify;

5.2.3. MyTeXForm
We now illustrate how to use MyTeXForm inside the FeynCalc notebook. Suppose we want to write the sum of final results for the

diagrams with quartic vertices (diagrams 1 to 6) in a LATEX document. We define the variable toprint1 as

In[27]:= toprint1 = Sum[res[[i]], {i, 1, 6}] // Simplify

after which we write

In[28]:= toprint1 // MyTeXForm

If we now copy the outcome as plain text and paste it in a LATEX document like the present one, we get:

−
(
e3

((
mh

2
+ 6mW

2) B0
(
p21,mW

2,mW
2)

+mW
2 (

−4 + B0
(
q21,mW

2,mW
2)

+ B0
(
q22,mW

2,mW
2))) gνσ

)
/
(
16mW π

2 sw
)
.

(6)

16 D. Fontes and J.C. Romão / Computer Physics Communications 256 (2020) 107311

Fig. 1. Width of the process h → γ γ as a function of the Higgs boson mass.

Note that we did not need to break the line manually in the LATEX equation. This is because we are using the breqn package, which
automatically breaks lines in equations.40

5.2.4. LoopTools interface
We mentioned in the Introduction that FeynMaster includes an interface with LoopTools. We now want to show how it works in

the context of h → γ γ . Suppose we want to plot the decay width as a function of the Higgs mass; we could start by computing the
total h → γ γ decay width:

In[27]:= X0 = restot // DecayWidth

However, although this works, it takes a long time and produces large expressions. It is simpler to use the amplitude in the generic
form of Eq. (5), that is,

In[27]:= X0 = F (MT[-J2, -J4] MH^2/2 - FV[q1, -J4] FV[q2, -J2]) // DecayWidth

Then, we write

In[28]:= (X0 /. F -> Abs[FT] // Simplify) // FCtoLT

where we replaced the generic variable F by the absolute value of the total transverse part, FT, defined above. As explained in
Section 4.4.2, the command FCtoLT generates three files: MainLT.F, FunctionLT.F and MyParameters.h. We open MainLT.F,
and immediately after the comments

* Write now the rest of the program

we write41
xMH=38d0
do i=1,162
xMH=xMH+1d0
write(50,98)xMH,MyFunction(..., xMH, ...)

enddo

where 50 and 98 represent the output file and the impression format, respectively. We are varying the Higgs mass from 38 GeV to 200
GeV in steps of 1 GeV. The result is presented in Fig. 1.

5.2.5. Edition of Feynman diagrams
Finally, we briefly explain how to edit the Feynman diagrams. Recall that they were written in a LATEX file inside the TeXs-drawing

folder, which in turn is located in the dirPro directory. If we open the file (1-output-Drawing-HAA.tex), we find the diagrams
written according to the feynmf package. Let us consider the first diagram. The original code produces the original diagram:

40 For documentation, cf. https://www.ctan.org/pkg/breqn. Recall that the line breaking does not work when the point where the line is to be broken is involved
in three or more parentheses.
41 The parameters loaded from the file MyParameter.h cannot be changed inside the Fortran program (MainLT.F). Hence, since we define the parameter MH
as the Higgs boson mass, we name xMH the variable we are using to make the plot; in doing so, we must be careful to replace MH for xMH in the arguments of
MyFunction inside the loop.

https://www.ctan.org/pkg/breqn

D. Fontes and J.C. Romão / Computer Physics Communications 256 (2020) 107311 17

(...)
\fmflabel{γ}{...}
\fmflabel{γ}{...}
\fmf{dashes,tension=3}{...}
\fmf{photon,tension=3}{...}
\fmf{photon,tension=3}{...}
\fmf{photon,label=W^{+},right=1}{...}
\fmf{photon,label=W^{+},right=1}{...}
(...)

However, we can modify the code in order to change the aspect of the diagram. In particular, we can change the labels, the tensions
and the curvatures.42 We give two examples:

(...)
\fmflabel{γ}{...}
\fmflabel{γ}{...}
\fmf{dashes,tension=1}{...}
\fmf{photon,tension=3}{...}
\fmf{photon,tension=3}{...}
\fmf{photon,label=W^{-},right=1}{...}
\fmf{photon,label=W^{-},right=1}{...}
(...)

(...)
\fmflabel{γ_1}{...}
\fmflabel{γ_2}{...}
\fmf{dashes,tension=5}{...}
\fmf{photon,tension=3}{...}
\fmf{photon,tension=3}{...}
\fmf{photon,label=W^{-},right=0.7}{...}
\fmf{photon,label=W^{-},right=0.7}{...}
(...)

5.3. QED ward identity

In the previous example, we showed how to use FeynMaster to manipulate the results of a single process. Here, we illustrate how
it can also be used to combine information of several processes. For that purpose, we consider a simple task: prove the QED Ward
identity.

It is easy to show that the Ward identity at 1-loop order in QED can be written as:

pν1 Γν(p1, p2, p3) = e
(
Σ(p2) −Σ(p3)

)
, (7)

where

Γν(p1, p2, p3) = , Σ(pi) = , (8)

and where the momenta p1 and p3 are incoming, while p2 is outgoing. In order to prove Eq. (7) with FeynMaster, we need to consider
the two processes depicted in Eq. (8): the QED vertex and the fermion self-energy. Hence, we open and edit Control.py according
to Table 13 and we run FeynMaster.43 Then, we move to the directory 1-AfF inside dirPro (meanwhile generated), we copy the
notebook that lies there to a different directory (say, dirPro), and we rename it Notebook-Global.nb. This is going to be the
notebook where we shall combine the information of both processes. We open it, and delete most of the lines there: in a first phase,
we only want to load the general files. So it must look like this:

In[1]:= << FeynCalc‘
In[2]:= dirNuc = "(...)";
In[3]:= dirFey = "(...)";
In[4]:= Get["Feynman-Rules-Main.m", Path -> {dirFey}]
In[5]:= Get["FunctionsOneLoop.m", Path -> {dirNuc}]

42 The tensions represent the strength of the lines: the larger the tension, the tighter the line will be. The default tension is 1. The curvature is represented by
the variable right. Note that tensions, labels and curvatures are just a few examples of variables that can be changed to generate a different diagram. For more
informations, please consult the feynmf manual.
43 A Control.py file adapted to this example was included inside the folder containing the FeynRules model for QED, under the name Control-Example-5.3.py.

18 D. Fontes and J.C. Romão / Computer Physics Communications 256 (2020) 107311

Table 13
Values of the variables of Control.py for the
example in Section 5.3.
Variable Value

model ‘QED’
process 1:

InParticles [‘A’]
OutParticles [‘f’,‘F’]
loops 1
Parsel []
LoopTec 3
factor ‘1’
options ‘onepi’

process 2:
InParticles [‘f’]
OutParticles [‘f’]
loops 1
Parsel []
LoopTec 3
factor ‘1’
options ‘onepi’

Selection section:
FRinterLogic True
RenoLogic False
Draw False
Comp False
FinLogic False
DivLogic False
SumLogic False
MoCoLogic False
LoSpinors False

Now, we want to load the first process. To do so, we write:

In[6]:= dirHome = "(...)";
In[7]:= SetDirectory[dirHome];
In[8]:= << Helper.m;
In[9]:= Get["Definitions.m", Path -> {dirNuc}];
In[10]:= Get["Finals.m", Path -> {dirNuc}];

where dirHome should be set to the directory corresponding to 1-AfF. Next, we define new variables: X0 as Γ of Eq. (7), with the
above-mentioned momentum definitions, and X1 as the whole left-hand side of Eq. (7).

In[11]:= X0 = res1 /. {p1 -> p2 - p3, q1 -> p2, q2 -> -p3};
In[12]:= X1 = Contract[X0, FV[p2 - p3, -J1]];

We now load the second process:

In[13]:= dirHome = "(...)";
In[14]:= SetDirectory[dirHome];
In[15]:= << Helper.m ;
In[16]:= Get["Definitions.m", Path -> {dirNuc}];
In[17]:= Get["Finals.m", Path -> {dirNuc}];

where dirHome should now be set to the directory corresponding to 2-ff. From this, and recalling that the default momentum of a
self-energy is p1 (cf. Table 11), we can obtain the right-hand side of Eq. (7) by writing:

In[18]:= Y0a = res1 /. p1 -> p2;
In[19]:= Y0b = res1 /. p1 -> p3;
In[20]:= Y1 = (ee*(Y0a - Y0b) // DiracSimplify) // Simplify;

Finally, we prove the Ward identity by showing that both sides of Eq. (7) are equal:

In[21]:= WI = (Y1 - X1) // Simplify;
In[22]:= CheckWI = MyPaVeReduce[WI]

which yields 0, thus completing the proof.

D. Fontes and J.C. Romão / Computer Physics Communications 256 (2020) 107311 19

6. Brief comparison with other softwares

We should not end this paper without providing an (even if brief) explanation of how FeynMaster relates to other frameworks
which also study to particle physics processes at the one-loop level. Among the most closely related to FeynMaster, we select five:
GRACE [1], FormCalc [10], GoSam [2,3], MadGraph5_aMC@NLO [19] and NLOCT [5].44

Before entering the comparison, let us consider a preliminary aspect. As we insisted throughout the paper, one of the major
advantages of the present software is the flexible manipulation of intermediate and final results, due to the user-friendly features
of FeynCalc and Mathematica. Now, if it is true that a software based on Mathematica is flexible, it is also true that softwares
based on other frameworks (such as FORM [34]) can be much faster. In fact, if one is interested in obtaining the numerical result for
a one-loop process with hundreds of diagrams in a well known model, other softwares are certainly preferable to FeynMaster. If,
however, one wants to use a slightly different model, or ascertain some properties of the analytical results, or make sure to have no
problems with interfaces between different softwares, or simply obtain a printed list of the Feynman rules, then FeynMaster is an
interesting alternative. In this sense, the purpose of FeynMaster is not compete with the five aforementioned programs, but rather to
enrich the flexibility of FeynCalc by creating a unified platform around it that performs a vast list of tasks.

Let us now consider the referred programs. GRACE is a very robust software that aims at numerically computing cross sections. It
generates Feynman rules from a model, generates and draws Feynman diagrams, and writes the differential cross section in a Fortran
file. It is not restricted to 2 particles in the final state; it employs other softwares for the numerical integration and event generation;
it also addresses renormalization, and calculates counterterms in the on-shell renormalization scheme. However, it cannot calculate
one-loop processes that do not exist at tree-level, such as h → γ γ . And although it performs algebraic calculations, it does not seem
to allow a large margin for the user to manipulate analytical expressions.

FormCalc is a program that calculates one-loop Feynman diagrams based on both FORM and Mathematica. It combines the speed
of the former and the vast amount of instructions of the latter. It gets the amplitudes from FeynArts [11] and generates an output
to numerically evaluate the one-loop integrals with LoopTools. Although FormCalc is excellent for fast results, it lacks the flexibility
to perform simple manipulations involving Dirac algebra or Lorentz contractions, which are very useful to check properties of the
processes (see, for example, Section 5.2.2).

GoSam is designed to an automated calculation of one-loop amplitudes for multi-particle processes. Like FeynMaster, it uses QGRAF
to generate the Feynman diagrams in symbolic form, and also uses both Python and feynmf to draw the diagrams. Like GRACE, GoSam
produces a Fortran file required to perform the evaluation of one-loop matrix elements. But unlike FeynMaster, it uses helicity
amplitudes formalism, and makes renormalization for QCD corrections only. And although it generates one-loop amplitudes, it seems
to be mostly focused on numerical evaluation, and not to allowing a manipulation of intermediate or final expressions.

MadGraph5_aMC@NLO is a very powerful framework for parton shower simulations and event analysis. It computes tree-level and
one-loop amplitudes for arbitrary processes. However, it is not complete in one-loop processes of general models. For example, the
one-loop corrections are restricted to QCD in the Standard Model. Hence, although it has some points in common with FeynMaster,
its focus is essentially different.

NLOCT determines the UV counterterms for any Lagrangean in an automated way. It requires an interaction with both FeynRules
and FeynArts, and works only in the Feynman gauge. It not only obtains the Feynman rules for the counterterms, but also computes
the analytical expressions for these counterterms in the on-shell renormalization scheme. Hence, concerning renormalization, NLOCT
is more powerful than FeynMaster, which only calculates (automatically) analytical expressions in MS and does so only by considering
a sequence of processes (see Section 5.1). It should be clear, however, that it is certainly possible to use FeynMaster to renormalize a
full model like the Standard Model in the on-shell scheme, although such procedure will not be fully automatic.

In conclusion, although some of softwares considered here are more powerful than FeynMaster in some specific tasks (e.g., FormCalc
for fast results, NLOCT for an on-shell renormalization of different models), FeynMaster exploits the strength of FeynCalc to allow a
practical manipulation of the analytical expressions. In addition — it should not be forgotten —, FeynMaster condenses in itself a
multiplicity of tasks, so that there is no need to convert (and hence there are no obstacles in converting) between different softwares.
All this makes FeynMaster a truly flexible framework.

7. Summary

We introduced the new software FeynMaster, designed to perform several tasks of particle physics studies in a flexible and
consistent way. We described in detail how to install it and how to use it, and gave some examples. Finally, we compared it with
some other relevant softwares, and concluded that its main advantages stem from its practical and multifaceted character.

For a quick first usage of FeynMaster, the user should follow this sequence of steps:

(1) Make sure you have installed Python, Mathematica and LATEX , on the one hand, and FeynRules, QGRAF and FeynCalc, on the
other;

(2) Download FeynMaster in https://porthos.tecnico.ulisboa.pt/FeynMaster/;
(3) Extract the downloaded file and place the resulting folder in a directory at will;
(4) Edit the files RUN-FeynMaster and Control.py as explained in Section 2.2;
(5) Run RUN-FeynMaster.

This should generate and open 4 PDF files relative to QED: the Feynman rules for the non-renormalized interactions, the Feynman rules
for the counterterms interactions, the Feynman diagram for the 1-loop vacuum polarization, and a document containing not only the
expressions for the vacuum polarization, but also the expression for the associated counterterm in MS.

44 For a review comparing different softwares, see [33].

https://porthos.tecnico.ulisboa.pt/FeynMaster/

20 D. Fontes and J.C. Romão / Computer Physics Communications 256 (2020) 107311

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

Both authors are very grateful to António P. Lacerda, who kicked off the entire program. We also thank Vladyslav Shtabovenko,
Paulo Nogueira and Augusto Barroso for useful discussions concerning FeynCalc, QGRAF and renormalization, respectively; Maximilian
Löschner for bringing the feynmf package to our attention; Miguel P. Bento and Patrick Blackstone for testing the program; Darius
Jurčiukonis for a careful reading of the manuscript; João P. Silva for the suggestion of the name ‘FeynMaster’, as well as for a careful
reading of the manuscript. D.F. is also grateful to Isabel Fonseca for many useful suggestions concerning Python and to Sofia Gomes for a
suggestion regarding the printing of the Feynman rules. Both authors are supported by projects CFTP-FCT Unit 777 (UID/FIS/00777/2013
and UID/FIS/00777/2019), and PTDC/FIS-PAR/ 29436/2017, which are partially funded through POCTI Portugal (FEDER), COMPETE
Portugal, QREN Portugal and EU. D.F. is also supported by the Portuguese Fundação para a Ciência e Tecnologia under the project
SFRH/BD/135698/2018.

References

[1] G. Belanger, F. Boudjema, J. Fujimoto, T. Ishikawa, T. Kaneko, K. Kato, Y. Shimizu, Phys. Rep. 430 (2006) 117, http://dx.doi.org/10.1016/j.physrep.2006.02.001,
[hep-ph/0308080].

[2] G. Cullen, N. Greiner, G. Heinrich, G. Luisoni, P. Mastrolia, G. Ossola, T. Reiter, F. Tramontano, Eur. Phys. J. C 72 (2012) 1889, http://dx.doi.org/10.1140/epjc/s10052-
012-1889-1, arXiv:1111.2034 [hep-ph].

[3] G. Cullen, et al., Eur. Phys. J. C 74 (8) (2014) 3001, http://dx.doi.org/10.1140/epjc/s10052-014-3001-5, arXiv:1404.7096 [hep-ph].
[4] A. Lorca, T. Riemann, Comput. Phys. Comm. 174 (2006) 71, http://dx.doi.org/10.1016/j.cpc.2005.09.003, [hep-ph/0412047].
[5] C. Degrande, Comput. Phys. Comm. 197 (2015) 239, http://dx.doi.org/10.1016/j.cpc.2015.08.015, arXiv:1406.3030 [hep-ph].
[6] V. Shtabovenko, R. Mertig, F. Orellana, Comput. Phys. Comm. 207 (2016) 432, http://dx.doi.org/10.1016/j.cpc.2016.06.008, arXiv:1601.01167 [hep-ph].
[7] R. Mertig, M. Bohm, A. Denner, Comput. Phys. Comm. 64 (1991) 345, http://dx.doi.org/10.1016/0010-4655(91)90130-D.
[8] A. Alloul, N.D. Christensen, C. Degrande, C. Duhr, B. Fuks, Comput. Phys. Comm. 185 (2014) 2250, http://dx.doi.org/10.1016/j.cpc.2014.04.012, arXiv:1310.1921

[hep-ph].
[9] N.D. Christensen, C. Duhr, Comput. Phys. Comm. 180 (2009) 1614, http://dx.doi.org/10.1016/j.cpc.2009.02.018, arXiv:0806.4194 [hep-ph].

[10] T. Hahn, M. Perez-Victoria, Comput. Phys. Comm. 118 (1999) 153, http://dx.doi.org/10.1016/S0010-4655(98)00173-8, [hep-ph/9807565].
[11] T. Hahn, Comput. Phys. Comm. 140 (2001) 418, http://dx.doi.org/10.1016/S0010-4655(01)00290-9, [hep-ph/0012260].
[12] J. Kublbeck, M. Bohm, A. Denner, Comput. Phys. Comm. 60 (1990) 165, http://dx.doi.org/10.1016/0010-4655(90)90001-H.
[13] A. Pukhov, et al., CompHEP: A Package for evaluation of Feynman diagrams and integration over multiparticle phase space, hep-ph/9908288.
[14] P. Nogueira, J. Comput. Phys. 105 (1993) 279, http://dx.doi.org/10.1006/jcph.1993.1074.
[15] A.V. Semenov, LanHEP: A Package for automatic generation of Feynman rules in gauge models, hep-ph/9608488.
[16] A. Semenov, Comput. Phys. Comm. 115 (1998) 124, http://dx.doi.org/10.1016/S0010-4655(98)00143-X.
[17] M. Tentyukov, J. Fleischer, Comput. Phys. Comm. 132 (2000) 124, http://dx.doi.org/10.1016/S0010-4655(00)00147-8, [hep-ph/9904258]..
[18] J.X. Wang, Nucl. Instrum. Methods A 534 (2004) 241, http://dx.doi.org/10.1016/j.nima.2004.07.094, [hep-ph/0407058].
[19] J. Alwall, et al., J. High Energy Phys. 1407 (2014) 079, http://dx.doi.org/10.1007/JHEP07(2014)079, arXiv:1405.0301 [hep-ph].
[20] J.C. Romão, J.P. Silva, Internat. J. Modern Phys. A 27 (2012) 1230025, http://dx.doi.org/10.1142/S0217751X12300256, arXiv:1209.6213 [hep-ph].
[21] A. Denner, Fortschr. Phys. 41 (1993) 307, http://dx.doi.org/10.1002/prop.2190410402, arXiv:0709.1075 [hep-ph].
[22] M. Tanabashi, et al., [Particle Data Group], Phys. Rev. D 98 (3) (2018) 030001, http://dx.doi.org/10.1103/PhysRevD.98.030001.
[23] T. Ohl, Comput. Phys. Comm. 90 (1995) 340, http://dx.doi.org/10.1016/0010-4655(95)90137-S, [hep-ph/9505351].
[24] A. Denner, S. Dittmaier, Nuclear Phys. B 734 (2006) 62, http://dx.doi.org/10.1016/j.nuclphysb.2005.11.007, [hep-ph/0509141].
[25] J.C. Romão, Advanced Quantum Field Theory, IST, 2019, Available online at http://porthos.tecnico.ulisboa.pt/Public/textos/tca.pdf.
[26] D.A. Akyeampong, R. Delbourgo, Nuovo Cimento A 17 (1973) 578, http://dx.doi.org/10.1007/BF02786835.
[27] M.S. Chanowitz, M. Furman, I. Hinchliffe, Nuclear Phys. B 159 (1979) 225, http://dx.doi.org/10.1016/0550-3213(79)90333-X.
[28] A. Barroso, M.A. Doncheski, H. Grotch, J.G. Korner, K. Schilcher, Phys. Lett. B 261 (1991) 123, http://dx.doi.org/10.1016/0370-2693(91)91336-T.
[29] D. Kreimer, hep-ph/9401354.
[30] F. Jegerlehner, Eur. Phys. J. C 18 (2001) 673, http://dx.doi.org/10.1007/s100520100573, [hep-th/0005255].
[31] W. Greiner, S. Schramm, E. Stein, Berlin, Germany: Springer, 2002, Appendix B.
[32] N. Zerf, arXiv:1911.06345 [hep-ph].
[33] R. Harlander, M. Steinhauser, Prog. Part. Nucl. Phys. 43 (1999) 167, http://dx.doi.org/10.1016/S0146-6410(99)00095-2, [hep-ph/9812357].
[34] J. Kuipers, T. Ueda, J.A.M. Vermaseren, J. Vollinga, Comput. Phys. Comm. 184 (2013) 1453, http://dx.doi.org/10.1016/j.cpc.2012.12.028, arXiv:1203.6543 [cs.SC].

http://dx.doi.org/10.1016/j.physrep.2006.02.001
http://dx.doi.org/10.1140/epjc/s10052-012-1889-1
http://dx.doi.org/10.1140/epjc/s10052-012-1889-1
http://dx.doi.org/10.1140/epjc/s10052-012-1889-1
http://arxiv.org/abs/1111.2034
http://dx.doi.org/10.1140/epjc/s10052-014-3001-5
http://arxiv.org/abs/1404.7096
http://dx.doi.org/10.1016/j.cpc.2005.09.003
http://dx.doi.org/10.1016/j.cpc.2015.08.015
http://arxiv.org/abs/1406.3030
http://dx.doi.org/10.1016/j.cpc.2016.06.008
http://arxiv.org/abs/1601.01167
http://dx.doi.org/10.1016/0010-4655(91)90130-D
http://dx.doi.org/10.1016/j.cpc.2014.04.012
http://arxiv.org/abs/1310.1921
http://dx.doi.org/10.1016/j.cpc.2009.02.018
http://arxiv.org/abs/0806.4194
http://dx.doi.org/10.1016/S0010-4655(98)00173-8
http://dx.doi.org/10.1016/S0010-4655(01)00290-9
http://dx.doi.org/10.1016/0010-4655(90)90001-H
http://dx.doi.org/10.1006/jcph.1993.1074
http://dx.doi.org/10.1016/S0010-4655(98)00143-X
http://dx.doi.org/10.1016/S0010-4655(00)00147-8
http://dx.doi.org/10.1016/j.nima.2004.07.094
http://dx.doi.org/10.1007/JHEP07(2014)079
http://arxiv.org/abs/1405.0301
http://dx.doi.org/10.1142/S0217751X12300256
http://arxiv.org/abs/1209.6213
http://dx.doi.org/10.1002/prop.2190410402
http://arxiv.org/abs/0709.1075
http://dx.doi.org/10.1103/PhysRevD.98.030001
http://dx.doi.org/10.1016/0010-4655(95)90137-S
http://dx.doi.org/10.1016/j.nuclphysb.2005.11.007
http://porthos.tecnico.ulisboa.pt/Public/textos/tca.pdf
http://dx.doi.org/10.1007/BF02786835
http://dx.doi.org/10.1016/0550-3213(79)90333-X
http://dx.doi.org/10.1016/0370-2693(91)91336-T
http://dx.doi.org/10.1007/s100520100573
http://arxiv.org/abs/1911.06345
http://dx.doi.org/10.1016/S0146-6410(99)00095-2
http://dx.doi.org/10.1016/j.cpc.2012.12.028
http://arxiv.org/abs/1203.6543

	FeynMaster: A plethora of Feynman tools
	Introduction
	Installation
	Download
	Defining the directories

	Creating a new model
	Defining the FeynRules model
	Defining the FeynMaster model

	Usage
	Control.py
	Run
	Outputs
	The notebooks
	The FeynRules notebook
	The FeynCalc notebook

	Examples
	Creation and complete automatic renormalization of a toy model
	h →γγ in the Standard Model
	Notebook access to Feynman rules
	Finiteness and gauge invariance
	MyTeXForm
	LoopTools interface
	Edition of Feynman diagrams

	QED ward identity

	Brief comparison with other softwares
	Summary
	Declaration of competing interest
	Acknowledgments
	References

