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1 Introduction

The LHC experiments announced in 2012 the discovery of a neutral scalar (h) of mass

125 GeV [1, 2], consistent with the 1964 prediction of a Higgs Boson as a by-product of the

spontaneous symmetry breaking of a gauge symmetry [3–6]. This opened a very exciting

program addressing two fundamental questions: i) how many scalars are there?, and ii) do

the couplings of the 125 GeV state conform to the prediction in the Standard Model (SM)

of electroweak interactions [7, 8]? Thus far, there is no definite sign of an inconsistency

with the SM.

A model independent way to interpret the data is provided by the SM effective field

theory (SMEFT), where one allows for all operators constructed from the SM fields, orga-

nized in an expansion

Leff = LSM +
∞∑

D=5

(∑

i

c
(D)
i

ΛD−4
O(D)
i

)
. (1.1)

LSM is the SM Lagrangian, Λ is the mass scale at which new degrees of freedom become

propagating, each O(D)
i is an SU(3) × SU(2) × U(1) invariant operator of dimension D,

and c
(D)
i the corresponding Wilson coefficient. The new operators modify the interaction
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strength of the SM particles, or introduce new interactions that are not predicted within

the SM. Identifying their presence in the interaction Lagrangian would not only be an

evidence of new physics, but would also give indirect hints about the mass scale and

degrees of freedom of the underlying theory beyond the SM.

A complementary approach consists in investigating the constraints that the data place

on well motivated theories. One simple example consists in adding one more scalar doublet

to the SM. Two Higgs doublet models (2HDMs) are interesting because they contain many

properties which one may find in more complicated theories, such as the presence of extra

neutral scalars, charged scalars, CP-odd or admixtures of CP-even and CP-odd scalars, the

possibilities for spontaneous CP violation or flavour changing neutral scalar interactions,

among others [9, 10]. Here we focus on the so-called “complex 2HDM” (C2HDM) [11–18].

2HDMs can be approximated by the SMEFT at energies below the mass scale of

the new scalars, where the indirect effects of the new scalars are represented by a tower

of the higher-dimensional operators in the Lagrangian. There has been some interest in

the matching between the 2HDM parameters and the SMEFT Wilson coefficients [19–25].

This exercise allows one to get some intuition about the pattern of operators expected

from realistic extensions of the SM, and to identify the leading new physics effects in a

model-independent language. In this paper we discuss how CP violation of the C2HDM is

manifested in the SMEFT. More precisely, we concentrate on the CP violating ZZZ vertex,

which appears at one loop in the C2HDM. This is an especially interesting observable

because it measures directly a Jarlskog-type invariant in the Higgs-gauge sector [26], first

introduced in [27, 28]. At the technical level, the C2HDM computation involves loops with

both heavy and light particles, which require special care when matching to the low-energy

effective theory [29–34]. In fact, we will show that the effective description of the CP

violating ZZZ vertex is quite non-trivial in this case. Generally, the lowest order in the

SMEFT expansion where the ZZZ vertex may appear is dimension-8 (O(Λ−4)) [35, 36].

However, in turns out that in the SMEFT matched to the C2HDM at one loop the CP-

violating ZZZ vertex is only generated at (O(Λ−8)), that is by a dimension-12 operator.

Our paper is organized as follows. In section 2 we review the observable form factors

associated with the ZZZ vertex. Our C2HDM notation and conventions are summarized

in section 3. Section 4 contains the calculation of the CP-violating contribution to the ZZZ

vertex in a general Rξ gauge, which we compare with that in the previous literature [26].

The corresponding calculation and the CP violating operator in the SMEFT is discussed

in section 5. Finally, section 6 presents our conclusions. Some technical details concerning

approximation of the loop integrals using the method of regions are given in appendix A,

while derivation of the CP-violating dimension-12 SMEFT operators using gauge invariant

functional methods is given in appendix B.

2 The ZZZ vertex

We start by reviewing the formalism to describe the effective Z3 vertex [37, 38]. Consider

the diagram in figure 1 with two on-shell Z bosons characterized by outgoing 4-momenta

p1, p2 and polarization vectors ε(p1), ε(p2), and an off-shell Z boson with the incoming
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Zµ

q

Zα

p1

Zβ

p2

Figure 1. Conventions for the ZZZ vertex Γµαβ .

momentum q = p1 +p2. It follows that p2
1 = p2

2 = m2
Z , p1p2 = q2/2−m2

Z , qp1 = qp2 = q2/2.

The blob in figure 1 may represent a contact interaction or particles running in loops. The

Lorentz and Bose symmetries constrain the Z3 vertex function Γµαβ to the following form:

iΓµαβ = −q
2 −m2

Z

m2
Z

efZ4 (q2) (ηµαp1,β + ηµβp2,α)− q2 −m2
Z

m2
Z

efZ5 (q2)εµαβρ(p1 − p2)ρ

+f̃1(q2)(ηµαp2,β + ηµβp1,α) + f̃2(q2)ηαβqµ

+f̃3(q2)qµp1,βp2,α + f̃4(q2)qµp1,αp2,β + f̃5(q2)qµ(p1,αp1,β + p2,αp2,β). (2.1)

In the first line we have pulled out a function of q2 from the form factors so as to match

the standard notation of ref. [38].1

The form factor fZ4 (q2) corresponds to a C-odd and P -even (thus CP -odd) interaction.

One way to see this is to note that an effective Lagrangian with the Z3 interaction,

Leff ⊃
κ̃ZZZ
m2
Z

∂µZν∂
µZρ∂ρZ

ν , (2.2)

leads to the tree-level vertex in eq. (2.1) with fZ4 (q2) = κ̃ZZZ . The CP properties are

then easily obtained given C acting as Zµ → −Zµ and P acting as Z0 → Z0, Zi → −Zi,
∂0 → ∂0, ∂i → −∂i. By similar argument one shows that fZ5 (q2) corresponds to a C-odd

and P -odd (thus CP -even) interaction.

It is important to stress that the full vertex Γµαβ is not an observable. Neverthe-

less, the form factors fZ4 and fZ5 can be related to observable quantities in the following

sense. Consider the amplitude to produce a pair of Z bosons. This process will receive

a contribution from the diagram with an intermediate off-shell Z boson in the s-channel:

Mff̄→ZZ = M(s)

ff̄→ZZ + . . . , where the dots stand for other contributions. The s-channel

can be written as M(s)

ff̄→ZZ = 1
q2−m2

Z
Γµαβε

α(p1)εβ(p2)jµ(q), where jµ is the f current to

1For s-channel production of an on-shell ZZ pair from a conserved current our vertex parametrization

in eq. (2.1) and the one in ref. [38] both lead to the same amplitude eq. (2.3). The two parametrizations

differ only at the level of non-physical unmeasurable form factors.
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which the Z boson couples in the Lagrangian. We assume that jµ is conserved, qµj
µ = 0,

which is the case in the relevant situation of qq̄ and e+e− collisions in the limit where the

fermions are treated as massless. Moreover, pα1 εα(p1) = pβ2 εβ(p2) = 0. Then the s-channel

part of the ZZ production amplitude reduces to

M(s)

ff̄→ZZ = − 1

m2
Z

[
fZ4 (q2) (ηµαp1,β + ηµβp2,α) + fZ5 (q2)εµαβρ(p1 − p2)ρ

]
εα(p1)εβ(p2)jµ(q).

(2.3)

As long as it is possible to isolate the s-channel production, the form factors fZ4 and

fZ5 are measurable. In particular, fZ4 can be related to experimentally observable CP

asymmetries in ZZ production in colliders [26, 39]. On the other hand, the remaining

form factors f̃i(q
2) in eq. (2.1) are not observable; in fact, they may be gauge-dependent

in specific calculations.

3 Complex two-Higgs doublet model

In this section we summarize the salient features of the C2HDM, for a review see e.g. [9, 10].

The most general renormalizable scalar potential is

V = m2
11Φ†1Φ1 +m2

22Φ†2Φ2 − [m2
12Φ†1Φ2 + h.c.]

+
1

2
λ1(Φ†1Φ1)2 +

1

2
λ2(Φ†2Φ2)2 + λ3(Φ†1Φ1)(Φ†2Φ2) + λ4(Φ†1Φ2)(Φ†2Φ1)

+

[
1

2
λ5(Φ†1Φ2)2 + λ6(Φ†1Φ1)(Φ†1Φ2) + λ7(Φ†2Φ2)(Φ†1Φ2) + h.c.

]
, (3.1)

where Φ1 and Φ2 are complex scalar SU(2)L doublets, with vacuum expectation values

(VEVs) v1/
√

2 and v2/
√

2. The parameters m2
11, m2

22, and λ1 . . . λ4 are real parameters,

while m2
12 and λ5 . . . λ7 can be complex.

In general, both Φ1 and Φ2 can have Yukawa couplings to all the SM fermions. How-

ever, this leads to flavour changing neutral scalar interactions (FCNSI), which are tightly

constrained by experiment. As a result, it is usually assumed that there is a Z2 symme-

try [40, 41], acting on the scalars as

Φ1 → Φ1, Φ2 → −Φ2, (3.2)

with appropriate transformations on the fermions, guaranteeing that fermions of a given

charge couple exclusively to one of the two scalar fields.

Of course, one can perform a basis change on the scalar fields. The couplings in the

scalar potential and in the Yukawa interactions, as well as the specific implementation of the

Z2 symmetry, change from one basis to the next; but any physical observable cannot depend

on such a choice. We denote by the “Z2 basis”, the basis in which the transformation has the

specific form in eq. (3.2). For an exact Z2 symmetry, m2
12, λ6, and λ7 vanish. Since the ab-

sence of m2
12 precludes a decoupling limit [42], one usually breaks it softly through m2

12 6= 0.

If arg(λ5) = 2 arg(m2
12), then we may take both couplings real, and the potential preserves

CP. When v1 and v2 are also real, there is no CP violation (explicit or spontaneous) and
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the model is known as the “real 2HDM”. In contrast, if arg(λ5) 6= 2 arg(m2
12), then the

potential violates CP explicitly; this is known as the “complex 2HDM” (C2HDM) [11–18].

Here, we will choose a basis where v1 and v2 are real, without loss of generality.

It is convenient to introduce the “Higgs basis” [27, 28], defined as the basis where only

the first scalar has a VEV. This is obtained through the unitary transformation

(
H1

H2

)
=

(
cβ sβ
−sβ cβ

) (
Φ1

Φ2

)
, (3.3)

where cβ = cosβ = v1/v, sβ = sinβ = v2/v, and v =
√
v2

1 + v2
2 = (

√
2GF )−1/2. The

doublets in the Higgs basis may be parametrized as

H1 =

(
−iG+

1√
2
(v + h+ iG0)

)
, H2 =

(
H+

1√
2
(R+ iI)

)
, (3.4)

where G± and G0 are the Goldstone bosons which, in the unitary gauge, are absorbed as

the longitudinal components of W± and Z, while H± are the charged scalars.

The scalar potential in the Higgs basis has the form

VH = Y1|H1|2 + Y2|H2|2 + (Y3H
†
1H2 + h.c.) +

Z1

2
|H1|4 +

Z2

2
|H2|4

+ Z3|H1|2|H2|2 + Z4(H†1H2)(H†2H1)

+

{
Z5

2
(H†1H2)2 + (Z6|H1|2 + Z7|H2|2)(H†1H2) + h.c.

}
,

(3.5)

where we follow the notation of [43]. The parameters Y1,2 and Z1,2,3,4 are all real; the others

are, in general, complex. Note that, in the Higgs basis, H1 and H2 are not eigenstates of

the Z2 symmetry and, therefore, the cross terms proportional to Z6 and Z7 are in general

present. The stationarity conditions in the Higgs basis read

Y1 = −Z1

2
v2 , Y3 = −Z6

2
v2 . (3.6)

The last equation means that only Z5, Z6, and Z7 are independently complex. Thus, all

sources of CP violation in the Higgs potential must be related to the invariant quantities

Im(Z7Z
∗
6 ), Im(Z2

7Z
∗
5 ), and Im(Z2

6Z
∗
5 ) [27].2

The dictionary between the Z2 basis and the Higgs basis for the quadratic terms Yi is

Y1 = m2
11c

2
β +m2

22s
2
β + 2Re(m2

12)sβcβ , (3.7)

Y2 = m2
11s

2
β +m2

22c
2
β − 2Re(m2

12)sβcβ , (3.8)

Y3 = (m2
22 −m2

11)sβcβ +m2
12c

2
β −m∗ 2

12 s
2
β . (3.9)

2If all three invariants are non-vanishing, then only two are independent. But one needs all three in

order to cover also the cases in which two invariants vanish but the third does not.
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The generated cross-term H†1H2+h.c. (coefficient Y3) can be present even if m2
12 = 0, unless

m2
11 = m2

22 (the masses of Φ1 and Φ2 being equal). Similarly, for the quartic terms Zi:

Z1 = λ1c
4
β + λ2s

4
β + 2λ345s

2
βc

2
β , (3.10)

Z2 = λ1s
4
β + λ2c

4
β + 2λ345s

2
βc

2
β , (3.11)

Zi=3,4 = (λ1 + λ2 − 2λ345)s2
βc

2
β + λi , (3.12)

Z5 = (λ1 + λ2 − 2λ345)s2
βc

2
β + λ5c

2
β + λ∗5s

2
β , (3.13)

Z6 = −sβcβ
[
λ1c

2
β − λ2s

2
β − λ345c2β − iIm(λ5)

]
, (3.14)

Z7 = −sβcβ
[
λ1s

2
β − λ2c

2
β + λ345c2β + iIm(λ5)

]
, (3.15)

where λ345 = λ3 + λ4 + Re(λ5). What is relevant is that not all Zi are independent, as

they satisfy the relations:

Z2 − Z1 =
1− 2s2

β

sβcβ
Re(Z6 + Z7) ,

Z345 − Z1 =
1− 2s2

β

sβcβ
Re(Z6)− 2sβcβ

1− 2s2
β

Re(Z6 − Z7) ,

Im(Z6 + Z7) = 0 ,

Im(Z6 − Z7) =
2cβsβ

1− 2s2
β

Im(Z5) ,

(3.16)

where Z345 ≡ Z3 + Z4 + Re(Z5), and the first two equations are those relevant for the

real 2HDM discussed in [43]. Using these relations we can eliminate for example Z6 and

Z7, and express our results in terms of the remaining Zi. Thus, in the C2HDM, all CP

violation invariants in the Higgs potential are proportional to a single phase, which comes

from Im(m2
12λ
∗
5) in the original basis.

One goes from the neutral scalars {h,R, I} written in the Higgs basis into the neutral

scalar mass basis {h1, h2, h3} through [18]



h1

h2

h3


 = T T



h

R

I


 , (3.17)

where

T T =




c̃1c2 s̃1c2 s2

−(c̃1s2s3 + s̃1c3) c̃1c3 − s̃1s2s3 c2s3

−c̃1s2c3 + s̃1s3 −(c̃1s3 + s̃1s2c3) c2c3


 (3.18)

and si = sinαi and ci = cosαi (i = 2, 3). Similarly, s̃1 = sin α̃1 and c̃1 = cos α̃1, where

α̃1 = α1 − β. We have defined T to agree with the definition in ref. [10]. In the C2HDM

one usually defines a matrix R such that

T T = RRH =




c1c2 s1c2 s2

−(c1s2s3 + s1c3) c1c3 − s1s2s3 c2s3

−c1s2c3 + s1s3 −(c1s3 + s1s2c3) c2c3






cβ −sβ 0

sβ cβ 0

0 0 1


 . (3.19)
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The angles α1, α2, and α3 were introduced in [13], and, without loss of generality, may be

restricted to

− π/2 < α1 ≤ π/2, −π/2 < α2 ≤ π/2, 0 ≤ α3 ≤ π/2. (3.20)

The real 2HDM may be obtained by setting s2 = s3 = 0, and the usual α = α1 − π/2.

In the Higgs basis h is the only scalar field that has a coupling to two gauge bosons,

and it coincides with the SM one gsm
hV V . Thus,

ghkV V = gsm
hV V T1k . (3.21)

In the C2HDM,

T1k = cβRk1 + sβRk2 , (3.22)

and the coupling of the lightest Higgs to gauge bosons is given by

gh1V V = gsm
hV V c2 cos (α1 − β), (3.23)

which reduces in the real 2HDM to gh1V V = gsm
hV V sin (β − α). Notice that, since the matrix

T is orthogonal, eq. (3.21) implies that
∑

k

|ghkV V |2 = |gsm
hV V |2 (3.24)

and the coupling of each scalar mass eigenstate with two vector bosons must be smaller

than the corresponding coupling in the SM. This property generalizes to any multi Higgs

doublet model, so that a value well above the SM would exclude the SM and also all such

models. Conversely, since the measurements are consistent with a coupling of the 125 GeV

scalar with two gauge bosons very close to the SM value, then the mixing angles in T must

be such that this scalar almost coincides with the h in the Higgs basis. This translates into

the so-called alignment limit of

s2 → 0 and sin (α1 − β)→ 0 (C2HDM) , (3.25)

and

cos (β − α)→ 0 (real 2HDM) , (3.26)

in the C2HDM and real 2HDM, respectively.

4 CP-violating ZZZ vertex in C2HDM

We turn to the calculation of one-loop contributions to the ZZZ vertex in the C2HDM. The

goal is to determine the CP-violating form factor fZ4 (q2) defined by eq. (2.1) (the other phys-

ical form factor fZ5 (q2) vanishes at one loop). To that end, we can neglect all the Lorentz

structures that are not of the form ηµαpβ1 or ηµβpα2 . A good consistency check is to verify

that these two Lorentz structures have the same coefficient, as the result should be invari-

ant for the exchange (p1, α)↔ (p2, β). We perform the calculation in a general Rξ gauge,

and verify gauge invariance at the end of the calculation. We express the results in terms of

the Passarino-Veltman (PV) functions [44], following the LoopTools conventions [45]. To

evaluate the loop integrals we use the Mathematica packages FeynCalc [46], and we cross-

checked the result with Package-X [47]. Our final result disagrees with the previous litera-

ture [26], therefore we will present in some detail the intermediate steps of our calculation.
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k

k

k+q

k+p2
i

j

q, µ

p1, α

p2, β

Figure 2. Contribution to the Z3 vertex Γµαβ with three Higgs hi, hj , hk in the loop.

4.1 Couplings and propagators

For our calculation, we need the following vertices [48],

[hi, hj , Z
µ] =

g

2cW
(pi − pj)µ εijk xk , (4.1)

[Zµ, G0, hi] =
g

2cW
(pi − p0)µ xi , (4.2)

[hi, Z
µ, Zν ] = i

g

cW
mZ g

µν xi , (4.3)

where cW = cos θW , all momenta are incoming, and the i of the Feynman rules is already

included.3 The coefficient xi above is related to the C2HDM parameters as

xi ≡ T1i = [cβRi1 + sβRi2] . (4.4)

That is, xi coincide with the T1i in eq. (3.22). As we are doing the calculation in a general

Rξ gauge, we also need the propagators for the Goldstone G0 and the Z in this gauge [49],

[G0, G0] =
i

p2 − ξm2
Z + i ε

, (4.5)

[Zµ, Zν ] = −i 1

k2 −m2
Z + i ε

[
gµν − (1− ξ) kµkν

k2 − ξm2
Z

]
. (4.6)

4.2 Diagrams with hi, hj, hk

We start with the diagrams containing only Higgs bosons in the internal lines, as shown

in figure 2. Because of the coupling structure in eq. (4.1), all the three scalars have to be

different. We get the same result as in ref. [26],

e
q2 −m2

Z

m2
Z

fZ,hhh4 = − 8

16π2

(
g

2cW

)3

x1x2x3

∑

i,j,k

εijkC001(q2,m2
Z ,m

2
Z ,m

2
i ,m

2
j ,m

2
k) . (4.7)

3Note that we use the convention for the gauge couplings where the covariant derivatives are written as

Dµ = ∂µ + igAµ. If the opposite convention (Dµ = ∂µ − igAµ) were used, then the sign of the vertices

[hi, hj , Z
µ] and [Zµ, G0, hi] would be flipped and the Z3 form factor calculated below would pick up an

overall minus sign. When the form factor is included for example into the ff̄ → Z∗ → ZZ amplitude,

this sign cancels with the corresponding sign choice for the [f, f̄ , Z] vertex; only the product [f, f̄ , Z]fZ4 has

physical meaning.
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Figure 3. Contribution to the Z3 vertex Γµαβ with hi, hj , G
0 in the loop.

k

k+q

k+p2
i

j
Z

q, µ

p1, α

p2, β

Figure 4. Contribution to the Z3 vertex Γµαβ with hi, hj , Z
0 in the loop.

4.3 Diagrams with hi, hj, G
0

We consider now the diagram with one Goldstone boson in one of the internal lines (there

are no diagrams with either two or three Goldstone bosons), as shown in figure 3. There

are two more diagrams with the G0 in the other internal lines. Each of them will have all

the possible combinations of hi, hj . As before, due to the coupling structure in eq. (4.1) and

eq. (4.2), we must have i 6= j in all possible combinations. In the Rξ gauge, we get the result,

e
q2 −m2

Z

m2
Z

fZ,hhG4 =
8

16π2

(
g

2cW

)3

x1x2x3

∑

i,j,k

εijk
[
C001(q2,m2

Z ,m
2
Z ,m

2
i ,m

2
j , ξm

2
Z) (4.8)

+ C001(q2,m2
Z ,m

2
Z , ξm

2
Z ,m

2
j ,m

2
k) + C001(q2,m2

Z ,m
2
Z ,m

2
i , ξm

2
Z ,m

2
k)
]
,

which agrees with ref. [26] in the Feynman gauge limit ξ = 1.

4.4 Diagrams with hi, hj, Z

Finally, we evaluate the contribution from the diagrams with one Z boson in an internal

line (again there are no diagrams with two or three Z bosons in internal lines), as shown
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in figure 4. We get

e
q2 −m2

Z

m2
Z

fZ,hhZ4 =
8

16π2

(
g

2cW

)3

x1x2x3

∑

i,j,k

εijk
[
C001(q2,m2

Z ,m
2
Z ,m

2
i ,m

2
j ,m

2
Z) (4.9)

+ C001(q2,m2
Z ,m

2
Z ,m

2
Z ,m

2
j ,m

2
k) + C001(q2,m2

Z ,m
2
Z ,m

2
i ,m

2
Z ,m

2
k)
]

− 8

16π2

(
g

2cW

)3

x1x2x3

∑

i,j,k

εijk
[
C001(q2,m2

Z ,m
2
Z ,m

2
i ,m

2
j , ξm

2
Z)

+ C001(q2,m2
Z ,m

2
Z , ξm

2
Z ,m

2
j ,m

2
k) + C001(q2,m2

Z ,m
2
Z ,m

2
i , ξm

2
Z ,m

2
k)
]

− 8

16π2

(
g

2cW

)3

x1x2x3m
2
Z

∑

i,j,k

εijkC1(q2,m2
Z ,m

2
Z ,m

2
i ,m

2
Z ,m

2
k) .

In the limit ξ = 1 this result differs in the overall sign from that in ref. [26].

4.5 Final result

Summing the different contributions, fZ4 = fZ,hhh4 + fZ,hhZ4 + fZ,hhG4 , we find that the ξ

dependent parts of eqs. (4.8) and (4.9) cancel out, ensuring gauge invariance of the final

result. Also the antisymmetry of each term in eqs. (4.7), (4.8) and (4.9) implies that the

divergences originating from the PV function C001 cancel and the final result is finite. All

in all, the CP violating Z3 form factor expressed by the PV functions takes the form

e
q2 −m2

Z

m2
Z

f4(q2)

[
1

16π2

(
g

cW

)3

x1x2x3

]−1

≡ f̂Z4 =

=
∑

i,j,k

εijk
[
−C001(q2,m2

Z ,m
2
Z ,m

2
i ,m

2
j ,m

2
k) + C001(q2,m2

Z ,m
2
Z ,m

2
i ,m

2
j ,m

2
Z)

+C001(q2,m2
Z ,m

2
Z ,m

2
Z ,m

2
j ,m

2
k) + C001(q2,m2

Z ,m
2
Z ,m

2
i ,m

2
Z ,m

2
k)

−m2
Z C1(q2,m2

Z ,m
2
Z ,m

2
i ,m

2
Z ,m

2
k)
]
. (4.10)

The dependence of the form factor on q2 is illustrated in figure 5 for several choices of

the heavy scalar spectrum. The order of magnitude of |fZ4 | that can be achieved in the

realistic parameter space of the C2HDM is shown in figure 6, reaching the values of order

10−5. For comparison, the recent ATLAS [50] and CMS [51] analyses of ZZ production at

the LHC set upper bounds on |fZ4 | (assumed real) on the order of 10−3. When considering

a generic framework beyond the SM, one must check whether effects other than fZ4 may

contribute to the actual experimental observable being measured (and from which fZ4 is

inferred). For example, one can see from figure 1 in ref. [51] that there is a contribution

from h125 → ZZ to the four lepton events from which fZ4 is extracted. For the SM Higgs

this is not a problem, since this is merely an order 5% contribution to the cross section

and, moreover, the measurement of fZ4 is made by requiring in addition that each Z in the

final state has a mass in the range 60-120 GeV. But it could be a concern if a heavier Higgs

were to decay into ZZ, competing with the signal from the ZZZ vertex. This problem is

mitigated in the C2HDM because of a combination of two facts. First, we know from the

h125 → ZZ measurements that the corresponding coupling in the C2HDM lies very close to

– 10 –
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Figure 5. Red: the normalized form factor f̂Z4 (q2) as defined in eq. (4.10). We show the dependence

on
√
q2 for 3 different values mH of the second neutral Higgs mass. The heaviest neutral Higgs

mass is assumed to be
√
m2
H + v2. Blue: the same observable calculated in the matched SMEFT

(cf. eq. (5.1) in section 5).

the SM value (the so-called alignment limit). Second, the sum rule in eq. (3.24) guarantees

that any heavier scalar will have a very small coupling to ZZ. Nevertheless, once statistics

improve at LHC, a precise constraint on fZ4 can best be achieved by a detailed simulation

of the C2HDM within the experimental analysis of the collaborations, which is beyond the

scope of this work. Our results for the maximum of |fZ4 | are slightly below those reported in

ref. [26]. This is mainly due to the effect of including in our scan the bound on the electron

EDM [52]. The sign difference that we have found does not affect much the absolute value,

because the diagram where it occurs is typically the dominant one (in the gauge ξ = 1) [26].

For future reference, we also give the final form of the Z3 vertex before evaluating the

loop integrals:

iΓµαβ = −i
(
g

cW

)3

(x1x2x3)

∫
d4k

(2π)4
εijk

{
kµkαkβ

((k − p1)2 −m2
i )((k + p2)2 −m2

j )(k
2 −m2

k)

− kµkαkβ
((k − p1)2 −m2

j )((k + p2)2 −m2
k)(k

2 −m2
Z)

– 11 –
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Figure 6. Scatter plots showing the absolute value of the CP violating form factor fZ4 (q2) for two

values of
√
q2 for points in the parameter space of the type-1 C2HDM satisfying theoretical (unitar-

ity, bounded from below) and experimental (LHC Higgs, electric dipole moments, and electroweak

precision measurements) constraints.

− kµkαkβ
((k − p1)2 −m2

Z)((k + p2)2 −m2
j )(k

2 −m2
k)

− kµkαkβ
((k − p1)2 −m2

k)((k + p2)2 −m2
Z)(k2 −m2

j )

+
m2
Zkβηµα

((k − p1)2 −m2
Z)((k + p2)2 −m2

j )(k
2 −m2

k)

− m2
Zkαηµβ

((k − p1)2 −m2
j )((k + p2)2 −m2

Z)(k2 −m2
k)

}
+ (ILS), (4.11)

where ILS stands for (in general divergent and gauge dependent) irrelevant Lorentz struc-

tures that do not contribute to the observable form factors. In this form the vertex is

manifestly symmetric under interchanging p1 ↔ p2, α ↔ β. Performing the momentum

integral and extracting from the coefficient of the tensor structure ηµαp1,β + ηµβp2,α, cf.

eq. (2.1), one obtains the result in eq. (4.10).

5 CP-violating ZZZ vertex in SMEFT

In this section we discuss how the CP-violating ZZZ vertex arises in the low-energy EFT

where the heavy non-SM scalars of the C2HDM are integrated out. We denote m1 = mh =

125 GeV, m2 = mH , m3 =
√
m2
H + δ2 with δ ∼ v, and we are interested in the decoupling

limit mH � mh. In such a case, only the SM degrees of freedom are available at the energies

E ∼ v � mH . In this regime the dynamics is described by the SMEFT, with the SM La-

grangian augmented by higher-dimensional operators. At the level of dimension-6 operators

the matching of the SMEFT Lagrangian to the 2HDM UV completion was discussed e.g. in

refs. [19–21, 23, 25, 53, 54]. However, within the EFT framework studied in these references,
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there is no source of CP violation contributing to the ZZZ vertex. Below we will identify

the higher-dimensional CP-violating operator and discuss how the ZZZ vertex is generated.

The first step toward this goal is to expand the form factor fZ4 (q2) in powers of 1/mH .

In principle, one could expand the result in eq. (4.9) using the known expressions for

the PV functions. In practice, this path is difficult due to a complicated form and non-

analytic behavior of the PV functions involved. Instead, we find it easier to apply the

method of regions [55]. A loop integral containing two disparate mass scales mlight �
mheavy can be calculated by A) expanding the integrand for k ∼ mlight and performing the

integral, B) expanding the integrand for k ∼ mheavy and performing the integral, and then

adding these two contributions together. An important point here is that both A) and

B) have a clear counterpart on the EFT side where the scales mheavy are integrated out.

Namely, A) corresponds to 1-loop Feynman diagrams with the light particles in the loop and

an insertion of tree-level-generated effective operators, while B) corresponds to tree-level

diagrams with an insertion of operators whose Wilson coefficients are suppressed by a loop

factor. Applying the method of regions to the integrals in eq. (4.11) we find that the leading

contributions to the sum of the integrals are O(m−4
H ) and come from the diagrams with one

heavy scalar and two SM particles in the loop (h, Z, or the corresponding Goldstone boson).

Moreover, we find that it is the soft region A), k � mH , which dominates. Other diagrams

and integration regions contribute only at O(m−6
H ) or higher. This immediately tells us

that, in the EFT for the 2HDM, the CP-violating ZZZ vertex is generated at one loop via

diagrams with h, Z in the loop and an insertion of a tree-level-generated effective operator.

In appendix A we give the details of the method of regions applied to eq. (4.11), albeit

for the sake of brevity we work there in the simplified limit mh → mZ . Here we write

down the leading contribution to the CP-violating form factor fZ4 for a general mh, valid

for mh � mH and q2 � m2
H :

efZ4 (q2)≈ δ
2x1x2x3

m4
H

(
g

cW

)3 1

384π2m4
Zq

6(q2−m2
Z)

{
(5.1)

+ 2m2
hm

2
Zq

6
(
m4
h−5m2

hm
2
Z +10m4

Z

)
DiscB

(
m2
Z ,mh,mZ

)

− 2m6
Zq

2DiscB
(
q2,mh,mZ

)
×

×
[
m6
h−m4

h

(
3m2

Z +2q2
)

+m2
h

(
3m4

Z +6m2
Zq

2 +q4
)
−m2

Z

(
m4
Z +4m2

Zq
2−5q4

)]

+m2
Zq

2
(
m2
Z−m2

h

)(
m2
Z−q2

)(
2m4

h

(
m2
Z +q2

)
−m2

h

(
4m4

Z +9m2
Zq

2
)

+2m6
Z +9m4

Zq
2
)

+
[
m8
h

(
m4
Z +m2

Zq
2 +q4

)
−m6

h

(
4m6

Z +7m4
Zq

2 +7m2
Zq

4
)

+3m4
h

(
2m8

Z +5m6
Zq

2 +6m4
Zq

4
)

−m2
hm

6
Z

(
4m4

Z +13m2
Zq

2 +13q4
)

+m8
Z

(
m4
Z +4m2

Zq
2−5q4

)](
m2
Z−q2

)
log

(
m2
h

m2
Z

)}
,

where we introduced the DiscB function as defined in [47]:

DiscB(p2,m1,m2) = λ(p2,m1,m2) log

(
m2

1 +m2
2 − p2 + p2λ(p2,m1,m2)

2m1m2

)
,

λ(p2,m1,m2) =

√
1− 2(m2

1 +m2
2)

p2
+

(m2
1 −m2

2)2

p4
. (5.2)

– 13 –



J
H
E
P
0
4
(
2
0
1
8
)
0
0
2

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
2

10
3

10
4

|f̂Exact
4 | (red) versus |f̂EFT

4 | (blue)

|f̂ 4
|

√
q2 = 200 (GeV)

mH (GeV)

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
2

10
3

10
4

|f̂Exact
4 | (red) versus |f̂EFT

4 | (blue)

|f̂ 4
|

√
q2 = 1000 (GeV)

mH (GeV)

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
2

10
3

10
4

|Re(f̂4)|Exact (red) versus |Re(f̂4)|EFT (blue)

|R
e
(f̂

4
)|

√
q2 = 1000 (GeV)

mH (GeV)

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
2

10
3

10
4

|Im(f̂4)|Exact (red) versus |Im(f̂4)|EFT (blue)

|Im
(f̂

4
)|

√
q2 = 1000 (GeV)

mH (GeV)

Figure 7. Red: the normalized form factor f̂Z4 (q2) as defined in eq. (4.10). We show the dependence
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separately the real and imaginary parts (for
√
q2 = 200 GeV the form factor is purely real). The

heaviest neutral Higgs mass is assumed to be
√
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H + v2. Blue: the same observable calculated in

the matched SMEFT (cf. eq. (5.1)).

We have checked numerically that eq. (5.1) correctly reproduces the fZ4 form factor in the

C2HDM in the decoupling limit. This is illustrated in figure 7 where, as long as q2 � m2
H ,

both the real and imaginary parts of the two results converge as we increase mH .

We find that the CP violating Z3 form factor is strongly suppressed in the decoupling

limit. First, the momentum integration brings the suppression factor 1/m4
H in eq. (5.1),

which is stronger than the naive estimate from dimensional analysis due to cancellations

between diagrams with h2 and h3. Moreover, in the decoupling limit the mixing angles

between the Higgs scalars are also suppressed:

δ2x1x2x3 ≈
v6

2m4
H

Im [Z∗5Z
2
6 ]. (5.3)

All in all, we find that fZ4 ∼ 1
(16π2)m8

H
in the decoupling limit. This tells us that, in the

SMEFT matched to C2HDM at one loop, the CP violating ZZZ vertex arises from a
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dimension-12 operator! Note that fZ4 (q2) has an imaginary part for q2 > (mZ + mh)2.

Indeed, the DiscB function has an imaginary part and a branch cut for p2 > (m1 +m2)2,

while it is real for p2 < (m1 + m2)2. This confirms the argument above eq. (5.1) that the

ZZZ vertex should arise from loop diagrams in the EFT where Z and h can simultaneously

go on-shell and that the CP-violating dimension-12 operator should be present in the EFT

matched at tree level to the C2HDM.

In appendix B, using the functional integral methods [30, 33], we sketch how to

systematically derive the tree-level EFT Lagrangian for the C2HDM in the manifestly

SU(3)× SU(2)× U(1) gauge invariant language up to an arbitrary order in 1/mH expan-

sion. We follow that procedure and find that the leading CP-violating operator in the

bosonic sector indeed occurs at O(m−8
H ). The operator in question is identified as

LSMEFT ⊃ −
Z∗5Z

2
6

2m8
H

[
D2
(
H†X0

)
H
]2

+ h.c., (5.4)

where X0 ≡ H†H − v2/2. Expanding the Higgs doublet around its VEV, the operator in

eq. (5.4) yields (among others) the Z3h interaction term:

LSMEFT ⊃ Im (Z∗5Z
2
6 )

(
g

cW

)3 v7

8m8
H

∂νhZ
νZµZ

µ, (5.5)

which is P-even and C-odd (thus CP-odd). Hence, the dimension-12 operator in eq. (5.4)

leads to CP violation when Im (Z∗5Z
2
6 ) 6= 0. An equivalent way to derive the effective

interaction in eq. (5.5) from the C2HDM is to consider a tree-level exchange of the heavy

Higgs scalars between the ZZ and Zh vertices.

In the presence of the CP-violating interaction in eq. (5.5), one indeed finds 1-loop

contributions to the Z3 vertex, see the diagrams in figure 8. Working in the unitary gauge
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we find

iΓµαβ = iIm(Z∗5Z
2
6 )

(
g

cW

)3 v6

2m8
H

∫
d4k

(2π)4

1

k2−m2
Z

{

+
m2
Z [ηµα(k+q)β+ηµβ(k+q)α]−kµ [kα(k+q)β+kβ(k+q)α]

(k+q)2−m2
h

+
m2
Z [ηµα(k−p2)β+ηµβ(k−p2)α)]−kβ

[
kα(k−p2)µ+kµ(k−p2)α+ηµα(k2−kp2)

]

(k−p2)2−m2
h

+
m2
Z [ηµα(k−p1)β+ηµβ(k−p1)α)]−kα

[
kβ(k−p1)µ+kµ(k−p1)β+ηµβ(k2−kp1)

]

(k−p1)2−m2
h

}

+(ILS). (5.6)

Evaluating the integral in Package-X [47] and extracting fZ4 , we exactly recover the result

in eq. (5.1). This confirms that the dimension-12 operator in eq. (5.4) fully accounts for the

leading 1/mH behavior of the ZZZ vertex in the C2HDM at one loop in the decoupling

limit.

It may be surprising that the Z3 vertex in the EFT arises only at the dimension-12 level.

After all, there are lower-dimensional CP-violating operators that lead to Z3 interactions.

It is well known that the Z3 vertex cannot be generated by dimension-6 operators, however

it does arise from the dimension-8 operator

LD=8 ⊃
ic8

Λ4
BµνB

µρH†{Dν , Dρ}H, (5.7)

and other similar operators with Bµν →W i
µν [36]. These operators lead to the contact Z3

interaction in eq. (2.2), and thus directly contribute to the fZ4 form factor without going

through a loop diagram. However, one can prove that the dimension-8 operators like the

one in eq. (5.7) cannot be generated from the C2HDM at one loop. The underlying reason

is that in the C2HDM all new CP-violating effects are proportional to the Jarlskog-type

invariant [27]:

JCP ≡
(m2

h3
−m2

h2
)(m2

h3
−m2

h1
)(m2

h2
−m2

h1
)

m2
h3
m2
h2
m2
h1

x1x2x3. (5.8)

In the decoupling limit, eq. (5.3) shows that this invariant is proportional to the Higgs

potential couplings Zi in the 3rd power. The rest follows from power counting using the

Planck constant ~ as a proxy [56–60]. Reinstating the Planck constant ~ in the path inte-

gral,
∫
Dφei

∫
d4xL/~, the Lagrangian should carry the dimension [L] = ~1. One can assign

the power ~1/2 to each propagating field, the power ~1−n/2 to the coupling multiplying

the term with n fields in the Lagrangian, and the power ~1 for each loop factor 1
16π2 . In

this scheme, the electroweak couplings carry the power [g] = ~−1/2, while for the quartic

Higgs couplings [Zi] = ~−1. It follows that the CP violating invariant is proportional to

JCP ∼ ~−3. On the other hand, the Wilson coefficient of the dimension-8 operator in

eq. (5.7) should have [c8] = ~−1. If that operator arises at l loops in the C2HDM then

c8 ∼ g2JCP

(16π2)l
and the ~ power counting fixes l = 3: the dimension-8 operator in eq. (5.7) can-

not appear before the 3 loop level in the matching of the SMEFT to the C2HDM. The same

power counting shows that the dimension-12 operator in eq. (5.7) is allowed at tree level.
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6 Conclusions

In this paper we have studied the CP violating triple-Z vertex in the C2HDM and in its

effective description within the SMEFT framework. From the point of view of the high-

energy theory, the ZZZ vertex probes one of the two independent Jarlskog-type invariants

in the extended Higgs sector. The leading contributions arise from triangle one-loop dia-

grams with both SM particles and the new Higgs scalars. We obtained the CP violating

form factor fZ4 in a general Rξ gauge, thus demonstrating the gauge invariance of the result

and reassessing previous calculations in the literature. Starting from the (complicated) full

result, we extracted an analytic approximation valid in the decoupling limit when the mass

scale mH of the heavy scalars is much larger than mZ and the momentum flowing through

the vertex. Given that approximation, we were able to identify the operators and diagrams

responsible for the generation of the ZZZ vertex in the low-energy effective theory where

the heavy scalars are integrated out. Even though the ZZZ vertex can in principle be

generated by dimension-8 operators in the SMEFT, such contributions are absent in the

effective theory matched to the C2HDM at one loop. This fact may be surprising at first,

but it follows from simple power counting, given the dependence of the Jarlskog invari-

ants on the masses and couplings of the C2HDM. Instead, we found that the CP violating

ZZZ vertex appears in the effective theory only at the level of dimension-12 operators.

In practice, this means the CP violating effects in diboson production will be extremely

suppressed (by a loop factor multiplied by (v/mH)8) if the mass scale of the heavy Higgs

partners is well above the weak scale.
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A Effective ZZZ vertex via method of regions

In this appendix we discuss how to isolate the leading contribution to the CP-violating

ZZZ form factor fZ4 (q2) in the C2HDM in the limit where the extra scalars are much

heavier than the Higgs boson. To this end we will utilize the method of regions [55]. A

loop integral with two disparate mass scales mlight � mheavy can be calculated by A)

expanding the integrand for soft momenta k ∼ mlight and performing the integral, B)

expanding the integrand for hard momenta k ∼ mheavy and performing the integral, and
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adding the contributions A) and B). Note that the separate soft and hard contributions

may be UV or IR divergent. If that is the case, the integrals have to be regulated, with

the regulator dependence canceling out when the full result is finite. In the following we

will implicitly use the dimensional regularization which is convenient because the EFT

expansion is not complicated by the presence of massive regulators.

We apply this method to the ZZZ vertex in the C2HDM, whose integral representation

is given in eq. (4.11). For presentation purposes, in this appendix we work in the unphysical

limit m1 = mZ . The reason is that in this limit the ZZZ vertex simplifies considerably, as

the first four lines in eq. (4.11) cancel against each other:

iΓµαβ → −im2
Z

(
g

cW

)3

(x1x2x3)

∫
d4k

(2π)4
εijk

{
kβηµα

((k−p1)2−m2
Z)((k+p2)2−m2

j )(k
2−m2

k)

− kαηµβ
((k−p1)2−m2

j )((k+p2)2−m2
Z)(k2−m2

k)

}
+(ILS)≡ iΓ̂µαβ . (A.1)

Taking that simplified limit allows us to illustrate the gist of the argument. The discussion

for the general case m1 = mh is completely analogous, but much more tedious and paper-

consuming.

We can rewrite eq. (A.1) as

iΓ̂µαβ = −m2
Z(m2

3 −m2
2)

(
g

cW

)3

(x1x2x3)
[
ηµα(ILHβ + IHHβ ) + ηµβ(ĨLHα + ĨHHα )

]
+ (ILS).

(A.2)

Here ILHβ sums the contributions with one heavy scalar in the loop:

ILHβ =

∫
d4k

(2π)4

ikβ
((k−p1)2−m2

Z)
(A.3)

×
[

1

(k2−m2
Z)((k+p2)2−m2

2)((k+p2)2−m2
3)
− 1

((k+p2)2−m2
Z)(k2−m2

2)(k2−m2
3)

]
,

while IHHβ sums the contributions with two heavy scalars in the loop:

IHHβ =

∫
d4k

(2π)4

ikβ(2kp2 +m2
Z)

((k − p1)2 −m2
Z)

1

(k2 −m2
2)(k2 −m2

3)((k + p2)2 −m2
2)((k + p2)2 −m2

3)
.

(A.4)

ĨXHα is the same as IXHα with p2 ↔ p1. Note that IXH have dimensions [mass]−4.

Let us apply the method of regions to IXHβ . We assume m2 ∼ m3 ∼ mH � mZ . Start-

ing with IHHβ , the soft limit is strongly suppressed by the heavy scalar mass, IHH,soft
β ∼

O(m−8
H ). In the hard limit the suppression is less severe: IHH,hard

β ≈ O(m−4
H )p2,β +

O(m−6
H )p1,β . Contributions to fZ4 arise only from the second term, thus they are O(m−6

H ).

Turning to ILHβ , its hard part scales in the same way as IHH,hard. However, the soft part

is only suppressed by m−4
H :

ILH,soft
β ≈ i

m4
H

∫
d4k

(2π)4

kβ
((k − p1)2 −m2

Z)

[
1

(k2 −m2
Z)
− 1

((k + p2)2 −m2
Z)

]
, (A.5)
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and therefore provides the leading contribution to fZ4 (q2). The integral can be evaluated

using Package-X [47]:

ILH,soft
β ≈

√
3π + 3DiscB[q2,mZ ,mZ ]

96π2m4
H

, (A.6)

where the function DiscB is defined in eq. (5.2). All in all we find

efZ4 (q2) = −m
2
Z(m2

3 −m2
2)

m4
H

(
g

cW

)3

(x1x2x3)

√
3π + 3DiscB[q2,mZ ,mZ ]

96π2
+O(m−6

H ). (A.7)

For arbitrary mh the calculation is completely analogous. In particular, the leading con-

tribution to fZ4 is still O(m−4
H ) and corresponds to the soft region of the diagrams with

a single heavy scalar in the loop. The (much more lengthy) result in the general case is

displayed in eq. (5.1). With a bit of algebra one can show that eq. (A.7) indeed corresponds

to the mh → mZ limit of the general result.

Taking into account x1x2x3 ∼ O(m−4
H ), the form factor is dramatically suppressed,

fZ4 ∼ O(m−8
H ). This tells us that in the low-energy EFT below the scale mH the form fac-

tor must arise from a dimension-12 operator. Since the leading contribution to fZ4 arises

from the soft region of the integral in eq. (A.1), in the EFT it will be reproduced by a loop

diagram with a single insertion of the dimension-12 operator. The same conclusion can be

reached by observing that fZ4 has a branch cut corresponding to the light scalar and Z bo-

son in the loop simultaneously going on-shell. The responsible operator, the CP-violating

vertex, and the loop diagram were identified in section 5. The hard part of eq. (A.1) corre-

sponds to tree-level contributions of contact interactions in the EFT, but that is suppressed

by an additional factor of 1/m2
H and thus enters only at the level of dimension-14 operators.

B ZZZ vertex from CP-violating EFT operators

In this appendix we identify the leading CP-violating operators contributing to the ZZZ

vertex in the low-energy effective theory of the C2HDM after integrating out the heavy

Higgs scalars. An efficient way to proceed is to use functional methods while keeping the

electroweak SU(2) × U(1) symmetry manifest. In this approach, the effective Lagrangian

at tree level is given by LEFT(H1) = LC2HDM(H1, H
c
2(H1)), where Hc

2 is the solution of

its classical equation of motion in the C2HDM with H1 treated as background field. The

result does not depend on which 2HDM basis is used as the starting point, however the

calculation is simplest in the Higgs basis where one avoids the complications of VEV and

couplings redefinitions and Zh kinetic mixing.

Solving the equation of motion and deriving LEFT can be readily performed perturba-

tively in the 1/Y2 expansion. As explained in section 5, power counting arguments show

that the relevant CP-violating operators arise only at the level at O(Y −4
2 ), corresponding

to dimension-12 operators. Deriving the complete effective Lagrangian up to dimension 12

would be quite a task. For the present purpose, we focus only on its small fragment contain-

ing purely bosonic CP-violating interactions. We know that these have to be proportional

– 19 –



J
H
E
P
0
4
(
2
0
1
8
)
0
0
2

to the Jarlskog-like invariant Im (Z∗5Z
2
6 ). Therefore we will only trace the terms in LEFT

that contain Z5 or Z6, and ignore everything else. We thus consider the C2HDM Lagrangian

LC2HDM = |DµH1|2 − Y1|H1|2 −
Z1

2
|H1|4 (B.1)

+|DµH2|2 − Y2|H2|2 −
[
(Y3 + Z6|H1|2)H†1H2 + h.c.

]
−
[
Z5

2
(H†1H2)2 + h.c.

]
+ . . . ,

where the dots stand for other terms in the Higgs potential, gauge kinetic terms, and all

fermionic terms, which are not relevant for the present discussion. We work in the Higgs

basis where Y3 = −Z6v
2/2, 〈H1〉 = v/

√
2, 〈H2〉 = 0. Then Y3 + Z6|H1|2 = Z6X0, where

we defined X0 ≡ |H1|2 − v2/2. The equation of motion for H2 takes the form

Y2H2 +D2H2 + Z∗6X0H1 + Z∗5 (H†2H1)H1 + · · · = 0. (B.2)

We search for a perturbative solution in the form Hc
2 =

∑∞
n=1 Y

−n
2 H

(n)
2 . This leads to the

recursive system of equations:

H
(1)
2 = −Z∗6X0H1 + . . . ,

H
(n+1)
2 = −D2H

(n)
2 − Z∗5 (H

(n)
2
†H1)H1 + . . . , (B.3)

which determines Hc
2 (or at least its part depending on Z5 and Z6) to an arbitrary order

n. We will only need the explicit solution up to n = 4:

H
(2)
2 = Z∗6D

2(X0H1)+Z∗5Z6X0|H1|2H1 + . . . , (B.4)

H
(4)
2 = D4H

(2)
2 +Z∗5D

2[(H
(2)
2
†H1)H1]+Z∗5 (D2H

(2)
2
†H1)H1 + |Z5|2|H1|2(H†1H

(2)
2 )H1 + . . . .

Plugging that solution back into eq. (B.1) one gets the EFT Lagrangian in 1/Y2 expansion:

LEFT = LSM +
∑∞

n=1 Y
−n

2 L(2n+4), where each term contains local operators composed of

H1 and its (covariant) derivatives. In the low-energy theory H2 is integrated out and H1

remains as the only doublet scalar, so in the following we relabel H1 → H. It is now

a trivial if tedious exercise to determine the EFT operators L(2n+4) at each given order.

For example, this procedure yields L(6) ⊃ |Z6|2X2
0 |H|2 which shifts the triple Higgs bo-

son coupling away from the SM prediction, or L(8) ⊃ |Z6Dµ(X0H)|2 which renormalizes

the Higgs boson kinetic terms, thus uniformly shifting all the Higgs boson couplings. At

n = 8 we also encounter a term proportional to Z∗5Z
2
6 , L(8) ⊃ −Z∗5Z

2
6X

2
0 |H|4

2 + h.c., but it

is CP-conserving and only yields interactions proportional to ReZ∗5Z
2
6 . At n = 10 we find

L(10) ⊃ −Z∗5Z
2
6Dµ(H†X0)Dµ(X0|H|2H)

2 + h.c., but the only resulting interactions proportional

to ImZ∗5Z
2
6 are of the form ∼ hm∂µZµ with m ≥ 3, which is not interesting for our purpose.

The first time we encounter a genuine CP-violating interaction proportional to ImZ∗5Z
2
6 is

in L(12). At that order the effective Lagrangian can be written as

L(12) = −1

2
H

(2)
2
†D2H

(2)
2 −H(1)

2
†D2H

(3)
2 −H(1)

2
†H

(4)
2 −H(2)

2
†H

(3)
2

−Z6X0H
†H

(4)
2 − Z5

2
(H†H

(2)
2 )2 − Z5(H†H

(1)
2 )(H†H

(3)
2 ) + h.c.

=
1

2
H

(2)
2
†D2H

(2)
2 − Z6X0H

†H
(4)
2 +

Z5

2
(H†H

(2)
2 )2 + h.c.+ . . . (B.5)
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To derive the second equality we used the recursion in eq. (B.3). Plugging in the solu-

tion in eq. (B.4) and integrating by parts we find that L(12) contains the following terms

proportional to Z∗5Z
2
6 :

L(12) ⊃ −Z∗5Z2
6

[
D2(H†X0)D2(X0|H|2H) +

1

2

(
D2(H†X0)H

)2
]

+ h.c.. (B.6)

Ignoring again interactions proportional to ∂µZ
µ, only the second term in the bracket leads

to non-trivial CP-violating interactions:

L(12) ⊃ Im (Z∗5Z
2
6 )
gv6

2cW
Zν∂νh�h+O(Zh3)

→ Im (Z∗5Z
2
6 )
gv5

2cW
∂νhZ

ν
(
m2
ZZµZ

µ + 2m2
WW

+
µ W

µ−) . (B.7)

In the last step we used the classical equation of motion for the Higgs boson field. These

are the leading CP-violating interactions in the bosonic sector of the low-energy effective

theory of C2HDM. At one loop in the EFT, the interaction term ∼ ∂νhZνZµZµ generates

the CP-violating ZZZ vertex via the Feynman diagram in figure 8.
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