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Abstract
The main goal of this paper is a direct diagrammatic evaluation of the effective
four-photon Lagrangian of the Euler–Heisenberg type for the quantum elec-
trodynamics of massive charged vector bosons. This QED model is naturally
embedded in the standard electroweak theory, and we have carried out the
corresponding one-loop calculation in the unitary gauge. As far as we know,
such a work has not been published before since usually the R-gauge tech-
niques are preferred for the computation of loop Feynman diagrams. We have
recovered the result obtained many years ago by Vanyashin and Terent’ev,
who used a specific functional method. For completeness and for validation of
our techniques, we have also redone the analogous calculations for scalar and
spinor QED.

Keywords: quantum electrodynamics, effective Lagrangians, light-by-light
scattering, massive vector bosons

1. Introduction

Effective Lagrangians of the Euler–Heisenberg (EH) type represent a time-honored topic in
quantum field theory (see e.g. [1, 2] for a historical retrospective). The EH Lagrangian
describes a direct interaction of low-energy photons (e.g. light-by-light scattering) and
represents a quantum correction to the classical Maxwell term. Its evaluation is in fact one of
the earliest applications of spinor quantum electrodynamics (QED), as it dates back to the
pioneering paper [3] by Euler and Heisenberg published in 1930s.
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A similar work has been done by Weisskopf within the framework of scalar QED [4]. In
modern terms, the results of these seminal papers can be reproduced by means of functional
methods used for the calculation of the one-loop effective action for QED in a classical
electromagnetic background of constant field strength. Perhaps less known than the classic
papers [3, 4] is the work of Vanyashin and Terent’ev [5], who have calculated the EH
effective Lagrangian within the QED of massive charged vector bosons using also an
appropriate functional method. (In fact, the paper [5] may be better known for providing the
first hint of asymptotic freedom in coupling constant renormalization within a non-Abelian
gauge theory.) The original results of the above-mentioned papers have been subsequently
extended and generalized in various ways—many relevant results in this area are reviewed in
[6]. For more recent papers on the subject, see e.g. [7–9].

Apart from the aforementioned functional techniques, an alternative way of finding the
EH effective Lagrangian consists in a direct evaluation of Feynman diagrams. This amounts
to calculating an appropriate one-loop scattering amplitude at the level of the fundamental
theory (QED), then performing the low-energy expansion with respect to photon energies and
matching the result to the tree-level amplitude corresponding to the form of the EH
Lagrangian. Of course, the low-energy expansion in question can be understood equivalently
as the large mass expansion with respect to the charged field in the closed loop. The best
known ‘textbook’ example of this sort is the process of light-by-light scattering within spinor
QED described by box diagrams made of charged Dirac fields—the first full evaluation of the
relevant one-loop diagrams has been done in [10].

As for scalar QED, the explicit diagram calculations are not so easy to be found in the
literature, but in principle one could extract them from some of the existing results concerning
the full electroweak standard model (SM) treated within a renormalizable (e.g. ’t Hooft–
Feynman) gauge. The same could be said about the loops made of charged vector bosons.
Some earlier papers to be mentioned in this context are e.g. [11, 12], but it should also be
noted that matching of the available SM results to the EH effective Lagrangian is by no means
straightforward. From the technical point of view, the most challenging task would be a direct
calculation of W boson loops within the U-gauge in SM. In fact, it is precisely the same as the
evaluation of such loops within the QED alone, with the WWγ and WWγγ couplings of the
Yang–Mills type. To the best of our knowledge, such a diagrammatic calculation has not been
published previously. Performing such a tour de force should bring one an additional bonus
of recovering the old result [5] obtained years ago by means of completely different methods.

The rest of the paper is organized as follows. In the next section, the effective EH
Lagrangian is specified, and the corresponding lowest order matrix element for a four-photon
scattering process is shown. In section 3, the familiar case of spinor QED is recapitulated,
mostly for reference purposes. The case of scalar QED is treated in some detail in section 4.
Section 5 covers the main result of this paper: there the EH effective Lagrangian is evaluated
within the QED of massive charged vector bosons. Section 6 contains some concluding
remarks.

2. The EH Lagrangian

As we have noted in section 1, we will consider here the four-photon effective interactions
only (otherwise the computational complexity seems to be prohibitive). To begin with, let us
recall the familiar form of the EH effective Lagrangian. Taking into account the electro-
magnetic gauge invariance as well as the discrete symmetries C and P, this can be written as
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L = +mn
mn

mn
mn( ) ( ) ( )g F F g F F , 1eff. 1

2
2

2

where Fμν is the electromagnetic field tensor and  mnF its dual,  
e=mn mn s
sF F1

2
. The

numbers g1 and g2 are some effective coupling constants of mass dimension −4.
The Feynman rules for the relevant vertices can be extracted from (1) in a straightforward

way, and the lowest order matrix element for a four-photon process can then be written as

 
e e e e= Gmn s

m n s( ) ( )p p p, , , 21 2 3 1 2 3 4

where pi are the photon four-momenta, and e eº ( )p h,i i i are the corresponding polarization
vectors, with hi denoting the photon helicities. The quantity Γμνñσ will be called occasionally
the polarization tensor in what follows. The external photons are taken to be on the mass
shell, and their physical polarizations are of course transverse. Thus, one has

e
=
= Î· { } ( )

p

p i

0

0, 1, 2, 3, 4 . 3
i

i i

2

The momentum conservation amounts to

å =
=

( )p 0 4
i

i
1

4

(we take all the photons as outgoing), and this leads immediately to the identity

+ + =· · · ( )p p p p p p 0. 51 2 1 3 2 3

In what follows, we will write the polarization tensor Γμνñσ as a function of the three
independent momenta p1, p2, and p3 satisfying the constraint (5), which will be utilized
repeatedly in the subsequent considerations. For the sake of brevity of our formulae, we also
introduce a shorthand notation

º
º

a a( )
· ⟨ ⟩ ( )

i p

p p ij , 6
i

i j

to be used throughout the paper.
The evaluation of the matrix element (2) is not difficult but somewhat lengthy, so we will

present only the final result. All the necessary calculational details can be found in [13]. The
polarization tensor Γμνñσ can be split naturally into three parts according to the number of
fully contracted momenta pairs (i.e. their scalar products). Such a decomposition can be
written schematically as

G = G + G + Gmn s ( ), 7pppp ppg gg

where the meaning of the used symbols is as follows: Γpppp contains only the terms with the
structure a b g d( ) ( ) ( ) ( )p p p pi j k l (this can be written as a b g di j k l in our shorthand notation), Γppg

is composed only of the terms a b gd ⟨ ⟩i j g kl , and finally Γgg incorporates only the terms

ab gd ⟨ ⟩⟨ ⟩g g ij kl , where Î { }i j k l, , , 1, 2, 3 are some external momenta, and
a b g d m n sÎ { }, , , , , , are some tensor indices.

Before displaying our results for the three terms in (7), there are two simple technical
points to be mentioned. First, for the on-shell photons, all expressions containing squares of
the external momenta p1, p2, or p3 effectively vanish and therefore do not appear in the tensor
Γμνñσ. Further, due to the transversality of the photon polarizations, all longitudinal terms (i.e.
those involving at least one element from the set {1μ, 2ν, 3ñ}) are discarded from Γμνñσ too.
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The final form of the tensor Γμνñσ is then the following

 

 

 

  

  

  

å

å

å

G = - -

G = - +

G = - + -

+ - -

- + +

+ - +

n s m s m n

mn s ms n

n m s s mn

n ms m ns n m s

s m n s mn m s n

m ns m n s m s n

⎜ ⎟

⎜ ⎟

⎡
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⎛
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( ) ⟨ ⟩
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(

)]⟨ ⟩ ( )

N g g g

N
g

g g g g g g

N g
g

g g g g

g g g g

g g g

g g g

1 1 2 3 1 1 2 3

2
12

2
1 2 2 1 3

1 3 1 2 1 3

1 2 1 2 2 3

1 3 3 3 3 3 12 , 8

pppp

gg

ppg

perm.
2 1 2

perm.

1
2 2

2

perm.
2

1
1 2

2

where N=32, and åperm. denotes a summation over all simultaneous permutations of {1, 2,
3} and {μ, ν, ñ}. For example,

   

  

å = + +

+ + +

s mn s mn s nm m s n

n s m m s n n s m

⟨ ⟩ ⟨ ⟩ ⟨ ⟩ ⟨ ⟩

⟨ ⟩ ⟨ ⟩ ⟨ ⟩ ( )

g g g g

g g g

1 2 13 1 2 13 2 1 23 3 2 31

1 3 12 2 3 21 3 1 32 . 9
perm.

The expression for Γppg can be made a bit shorter if we use the identity (5). For instance,
we can obtain a relation such as

  å + + =m ns n m s n ms( )⟨ ⟩ ( )g g g1 2 1 3 1 3 12 0 10
perm.

and many similar ones. Using them, the expression can be shrunk down to just seven terms.
For clarity, here is the entire tensor again including the adjusted term
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N
g
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N g g g g g

g g g g

g g

1 1 2 3 1 1 2 3

2
12

1 3 1 3 3 3 3 3

1 3 1 3

2 1 3 12 . 11

pppp

gg

ppg

perm.
2 1 2

perm.

1
2 2

2

perm.
2

1 2

2

Clearly, the tensor (11) is symmetric under photon exchange, which correctly reflects the
bosonic nature of photons. Also, it is straightforward (though somewhat tedious) to show that
the polarization tensor satisfies the Ward identities










G =
G =
G =

G + + =

mn s
m

mn s
n

mn s

mn s
s s s( ) ( )

1 0

2 0

3 0

1 2 3 0, 12
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in accordance with the gauge invariance of the EH Lagrangian (1). Note that for the direct
proof of these identities, the kinematic relations (3) and (5) are needed.

Finally, we present a formula for the unpolarized differential cross section

s
J

J
pW

=
+

- + +( ) ( ) [( ) ( )] ( )s
s

g g g g
d

d
,

3 cos

16
2 , 13

3 2 2

2 1 2
2

1
2

2
2

which can be obtained by computing the quadratic invariant 
G Gmn s

mn s. Note that the
momenta 1 and 2 should be reversed (i.e.  -m m1 1 , 2μ→−2μ) for this purpose, having in
mind that all the photons are taken as outgoing in our original expression.

As indicated in section 1, the next step is to compute appropriate one-loop amplitudes of
the four-photon process in question within various models of QED, perform the low-energy
expansion, and then match the obtained polarization tensors to the effective one. Thus one can
determine the corresponding coupling constants g1 and g2. We are going to proceed in this
way in the following three sections. Most of the calculations are too long to be presented here
explicitly; the interested reader is referred to [13] for details.

3. Spinor QED

Spinor QED is the best known case, and the corresponding result has been described in many
textbooks (see e.g. [14, 15]). The lowest order contribution to the considered process is given
by the familiar one-loop box diagrams of the type shown in figure 1.

The evaluation of the one-loop amplitude is carried out using standard dimensional
regularization technique. It is a well-known fact that while an individual box diagram contains
a (logarithmic) ultraviolet (UV) divergence, the full four-photon amplitude is finite since the
UV divergences are canceled upon taking into account all relevant permutations of the
external photon lines. Along with the UV divergences, some finite terms independent of the
external momenta are eliminated as well.

Let us also note that the low-energy expansion of the finite part of the amplitude can be
performed before the integration over Feynman parameters, and thus one need not deal with
polylogarithms, etc—all expressions to be integrated are polynomials. Another crucial con-
sequence of the aforementioned summation over the photon permutations is a cancellation of
the finite terms involving only two external momenta: obviously, the survival of such terms
would make the envisaged matching of the one-loop amplitude with the form (11) impossible.
In other words, these unwanted terms would violate the gauge invariance.

Figure 1. Spinor QED: only box diagrams contribute. The internal lines represent
propagators of the charged massive Dirac field.
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As in the previous section, the polarization tensor is split into three parts

 

 

   

 



å

å

å

G = -

G = -

G = - - +

- +

+

n s m s m n

m ns ms n

s m n s n m m n s m s n

m ns s mn

n ms

( ) ( )

( )⟨ ⟩⟨ ⟩

[ ( )

( )

( )]⟨ ⟩ ( )

N

N g g g g

N g g g g

g g

g

3 1 1 2 3 7 1 1 2 3

3 7 12 13

7 1 3 1 3 3 3 3 3

3 1 3 1 3

14 1 3 12 , 14

pppp

gg

ppg

spin.
spin.

perm.

spin.
spin.

perm.

spin.
spin.

perm.

where a=N m4 45spin.
2 4, with m being the fermion mass.

One may notice immediately that almost the entire tensor structure in (11) is thus
reproduced. The only discrepancy is the Ggg

spin. term. It is easy to guess that utilizing the
identity (5) would now help. Squaring it yields

= - -⟨ ⟩⟨ ⟩ (⟨ ⟩ ⟨ ⟩ ⟨ ⟩ ) ( )12 13
1

2
23 12 13 , 152 2 2

which implies

 å å= -m ns mn s⟨ ⟩⟨ ⟩ ⟨ ⟩ ( )g g g g12 13
1

2
12 . 16

perm. perm.

2

Substituting this into Ggg
spin. (the other part is processed in a similar way) then leads to

 åG = - +mn s ms n( )⟨ ⟩ ( )N g g g g5 7 12 . 17gg
spin.

spin.
perm.

2

This is precisely what we need for matching with the expression (11). Thus, we get the
familiar effective coupling constants (see e.g. [14])

a

a

= =

= = ( )

g
N

N m

g
N

N m

4

90
7 7

360
. 18

1
spin. spin. 2

4

2
spin. spin. 2

4

4. Scalar QED

The interaction Lagrangian for scalar QED has the familiar form

L f f f f f f= - ¶ - ¶ +m
m m

m
m[ ( ) ( ) ] ( )† † †eA e A Ai , 19int.

2

where f denotes a charged scalar field. One is thus obviously led to three topologically
distinct types of one-loop Feynman diagrams contributing to the considered four-photon
process, namely the box, triangle, and the bubble, depicted in figure 2.

As in the case of spinor QED, all of them are individually only logarithmically divergent.
The UV divergences mutually cancel in the sum of the three diagrams, and the fate of the
gauge non-invariant finite terms (involving the wrong number of the external momenta) is the
same. Unlike spinor QED, the latter terms drop out only upon using the kinematic identity (5).
The rest of the computation is essentially the same as before, and the final form for the
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polarization tensor reads

 

 

 

 

 

 

 

å

å

å

G = - -

G = +

+ +

G = -

+ +

- -

+ -

n s m s m n

mn s ms n

mn s ms n

m ns s m n

n ms s mn

s n m m n s

m s n s m n

( )

( )⟨ ⟩

( )⟨ ⟩⟨ ⟩

[ ( ) ( )

( )

( )]⟨ ⟩ ( )

N

N g g g g

g g g g

N g g

g g

g g

g g

6 1 1 2 3 1 1 2 3
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pppp

gg

ppg

scal.
scal.

perm.

scal.
scal.

perm.

2

scal.
scal.

perm.

where a=N m45scal.
2 4, with m being the charged scalar boson mass.

Employing the tricks mentioned in the preceding section (i.e. utilizing appropriately the
identity (5)), the expression (20) can be recast in the desired form
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G = +

G = - - +
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2
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Figure 2. Scalar QED: box, triangle, and bubble diagrams contribute. Dashed lines
represent propagators of the charged massive scalar field.
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and its direct comparison with (11) then yields

a

a

= =

= = ( )

g
N

N m

g
N

N m

7 7

1440

1440
. 22

1
scal. scal.

2

4

2
scal. scal.

2

4

5. Vector QED

Now we proceed to the technically most difficult case, namely the QED of charged massive
vector bosonsW (for brevity, we use the term vector QED). As we have noted in section 1, we
will employ the Yang–Mills form of the interaction since it is naturally embedded in the
standard electroweak theory formulated in the physical U-gauge. The relevant interaction
Lagrangian thus can be written as

L L L= +g gg ( ), 23WW WWint.

where

L

L

º- ¶ + ¶ + ¶

º- -

g m n
m n

m n
m n

m n
m n

gg m
m

n
n

m
m

n
n

« « «
( )

( ) ( )

† † †

† †

e A W W W W A W A W

e W W A A W A W A

i

. 24

WW

WW
2

It is then obvious that the one-loop Feynman diagrams for the considered four-photon process
are topologically analogous to those encountered in scalar QED: we have to deal again with
the box, triangle, and the bubble (see figure 3).

The W boson propagator has the canonical U-gauge form

e
=

- +

- +
mn

mn m n
( ) ( )D k

g k k m

k m i
, 25

2

2 2

and for the reader’s convenience, let us also recall that the Feynman rule corresponding to the
trilinear interaction WWγ involves the function

   = - + - + -mn mn m n n m( ) ( ) ( ) ( ) ( )V k p q k p g p q g q k g, , . 26

where k, p, and q denote the four-momenta outgoing from the vertex. It is a common wisdom
that the main source of technical difficulties in any U-gauge calculations is precisely the form
of the propagator (25): it behaves as a constant at infinity, and this in turn leads to a high
degree of UV divergences occurring in the individual diagrams. An extra amount of work is

Figure 3.Vector QED: box, triangle, and bubble diagrams contribute. The internal lines
represent propagators of the charged massive vector field.
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thus needed to eliminate such spurious divergences before arriving at the final meaningful
result (in fact, this is the price to be paid for the relatively low number of the relevant
diagrams in comparison with the R-gauge calculations in SM). In any case, by combining the
expressions (25) and (26) in the contributions of the diagrams in question, one gets a huge
number of terms when the necessary algebraic manipulations are worked out in detail (it is
easy to guess that the situation is particularly severe for the box diagram), and it would be
practically impossible to proceed without using computer algebra systems such as
Mathematica.

Let us now summarize briefly the essential steps of our calculational algorithm. In the
integral representing a considered diagram, we introduce Feynman parameterization and
perform an appropriate shift of the loop momentum ℓ so as to make the denominator of the
integrand an even function (i.e. a function of ℓ2). As a book-keeping device, we will employ
the rescaling ℓ→ξℓ and then expand the numerator of the integrand in powers of the
auxiliary parameter ξ. This allows us to isolate and process individually the terms involving
even powers of ℓ (those containing the odd powers drop out immediately upon symmetric
integration). The next step is to use the symmetric integration recipe

   




+

+ +

¼

m n mn

m n s mn s m ns ms n( )
( )

( )

ℓ ℓ
ℓ

d
g

ℓ ℓ ℓ ℓ
ℓ

d d
g g g g g g

2
, 27

2

4

where d is the spacetime dimension (the parameter of dimensional regularization), and we
denote º ( )ℓ ℓn n2 2 . Note that for a product of L loop momenta, the corresponding relation
(27) has -( )!!L 1 terms on its right-hand side. The rest of the calculation is then essentially
the same as in the previous two sections—it incorporates the low-energy expansion followed
by the integration over Feynman parameters.

However, there are some special points to be mentioned here. Starting with the box
diagram, it is easy to see that here the highest possible divergence would be octic. This
corresponds to the power ℓ12 in the integrand numerator (combined with the power ℓ8 in the
denominator). It turns out that such a potential divergence vanishes by itself, on purely
algebraic grounds. Remarkably, the next-to-leading (sextic) divergence has the same fate. It is
worth noting that these cancellations can be observed even before launching the routine of
Feynman parameterization and the usual subsequent steps. Concerning quartic and lower
divergences, these are eliminated in the sum of the three diagrams in figure 3, together with all
the unwanted finite terms, when dimensional regularization is carried out in the standard way.

Another technical comment is perhaps in order here. With the growing number L of
factors in products of the loop momenta, the relations (27) would obviously lead to an
excessive proliferation of the terms to be taken into account. Fortunately, it turns out that
upon some algebraic manipulations, the maximum relevant value of L is reduced to six (and
the corresponding relation (27) thus yields fifteen terms only).

It is also interesting to observe the role played by the kinematic identity (5) in the
aforementioned cancellation mechanism in the three considered QED models. In spinor QED,
it is not needed at all (neither for the UV divergences nor for the unwanted gauge non-
invariant finite terms). In scalar QED, it must be employed for the elimination of the latter.
Finally, in vector QED, it is necessary for eliminating both the UV divergences and the
unwanted finite terms.
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The result of the calculational tour de force sketched above then reads
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where a=N m90vect.
2 4, with m being the vector boson mass. Utilizing the tricks explained

earlier, this can be easily recast as
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which matches correctly the tensor structure in (11). The relevant effective coupling constants
are then

a
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= =
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160
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. 30

1
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2

4

2
vect. vect.

2

4

6. Conclusion

The main goal of the present work is a direct diagrammatic evaluation of the effective
Lagrangian of the EH type for light-by-light scattering in the electrodynamics of charged
massive vector bosons. This QED model is naturally embedded in the standard electroweak
theory, and we have performed the calculation at the one-loop level in the physical U-gauge.
We believe that such a calculation has not been published before since the R-gauge formalism
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is usually adopted as more feasible for SM loop calculations. We have confirmed the old
result [5] obtained by means of a functional technique.

Our diagrammatic calculation may be viewed as a rather laborious technical exercise, but
it is certainly gratifying that we have been able to reproduce the result [5] by means of an
entirely different method. For the sake of completeness, we have also recovered the
corresponding (perhaps better known) result for scalar QED. For validation of our methods
and for comparison with other models, we have of course discussed first the familiar reference
case of spinor QED. Our results are neatly summarized in table 1, where we display the
‘reduced’ effective coupling constants g̃1 and g̃2 defined in terms of the original constants g1
and g2 appearing in (1) as aº ˜g g m1,2 1,2

2 4. Let us remark that our results are also consistent
with those shown in the recent papers [16, 17], where the heat kernel method has been
employed for the calculation of the relevant effective Lagrangians.

Light-by-light scattering is a fundamental quantum process, which should exist beyond
any reasonable doubt, and its characteristics have been theoretically predicted since the early
days of modern QED. It is also well-known that its direct detection is an extremely difficult
experimental task, and thus it remained elusive for many years.

However, quite recently, there has been a remarkable progress in this direction, may be
from a somewhat unexpected side: it turns out that it is possible to detect the scattering of
(quasi)real photons produced by colliding Pb–Pb beams at the LHC (see [18] for the original
report of the measurements performed by the ATLAS Collaboration). Phenomenological
analysis of such a setup can be found in several recent papers, see e.g. [19–21], and [22].
Thus, it is encouraging to see that such an old topic related to the basics of quantum field
theory still retains its interest and exhibits some potential for a further research.
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