Chapter 213 Probing Wrong-Sign *hbb* Couplings in $h \rightarrow \Upsilon \gamma$

Tanmoy Modak, Jorge C. Romão, Rahul Srivastava, João P. Silva and Soumya Sadhukhan

213.1 Motivation

Couplings of the 125 GeV scalar discovered at the LHC should be probed in detail to compare it with the SM Higgs. One interesting possibility is the "wrong-sign" solution, where the *hbb* coupling has a sign opposite to that of the SM. Among variants of two Higgs doublet model (2HDM) with a softly broken Z_2 symmetry [1, 2], type II and Flipped can have a "wrong sign" solution. These models have BSM scalars H^{\pm} , A, H, apart from a scalar h, which can be identified to be the 125 GeV scalar of LHC.

A *hbb* sign change does not alter the SM Higgs total decay width, dominated by $h \rightarrow b\bar{b}$ rate. To probe wrong-sign effects indirectly through interference effects, one-loop contribution to $gg \rightarrow h$ and $h \rightarrow \gamma\gamma$ can be probed. For these cases there are uneven competition between bottom and top loops and top and W boson loops respectively. So even with wrong sign the values will be close to the SM, and only a very precise LHC measurement of order 5% in $pp \rightarrow h \rightarrow \gamma\gamma$ will distinguish the normal sign from the wrong-sign solutions. In contrast, the rare decay $h \rightarrow \Upsilon\gamma$ consists of two diagrams with almost the same magnitude, suppressing the rate in the SM due to an accidental precise cancellation between them [3]. Reversal of the

T. Modak NTU, Taipei, Taiwan

J. C. Romão · J. P. Silva CFTP, Lisboa, Portugal

R. Srivastava IFIC, Valencia, Spain

S. Sadhukhan (⊠) PRL, Ahmedabad, India e-mail: soumyas@prl.res.in

© Springer International Publishing AG, part of Springer Nature 2018 Md. Naimuddin (ed.), XXII DAE High Energy Physics Symposium, Springer Proceedings in Physics 203, https://doi.org/10.1007/978-3-319-73171-1_213 *hbb* sign will destroy the precise cancellation and this makes $h \to \Upsilon \gamma$ decay the best channel to probe the wrong-sign solutions. In this proceeding, we show impact of $h \to \Upsilon \gamma$ channel in probing wrong-sign solution, following our work, [4].

213.2 Theoretical Framework

The direct and indirect diagrams for $h \to \Upsilon \gamma$ decay are given in Fig. 2 of [4]. The direct diagram arises from the direct $hb\bar{b}$ coupling. The indirect diagram arises from the effective $h\gamma\gamma$ coupling with a virtual photon giving an Υ . With a CP-conserving 2HDM scalar potential with a softly broken Z_2 and the field parametrization used in [1, 2], the gauge and Yukawa couplings of the lightest 125 GeV scalar (*h*) are given as,

$$\mathcal{L}_{hVV} = \sin (\beta - \alpha) h \left[\frac{m_Z^2}{v} Z^{\mu} Z_{\mu} + 2 \frac{m_W^2}{v} W^{+\mu} W_{\mu}^{-} \right], -\mathcal{L}_{Yuk} = \frac{m_t}{v} k_U h \bar{t} t + \frac{m_b}{v} k_D h \bar{b} b + \frac{m_\tau}{v} k_{\tau} h \tau^+ \tau^-.$$
(213.1)

Here $k_U = \frac{\cos \alpha}{\sin \beta}$, $k_D = -\frac{\sin \alpha}{\cos \beta}$ and $k_\tau = k_D$ (Type II), $k_\tau = k_U$ (Flipped). The SM (alignment) limit corresponds to $\sin (\beta - \alpha) = 1$ which translates to $k_U = k_D = k_\tau = 1$. The wrong sign limit is defined as $\sin (\beta + \alpha) = 1$ which gives $k_U = 1$, $k_D = -1$. Only type II and Flipped 2HDMs are experimentally consistent with this wrong sign possibility [5–7]. Fig. 1 of [4] shows the parameter space allowing the wrong sign solution.

213.3 Results

In Fig. 213.1 results are presented where the red/dark-grey points pass all theoretical constraints. The blue/black (green/light-grey) points pass those and also μ_{VV} ($V \equiv W, Z$), $\mu_{\gamma\gamma}$, and $\mu_{\tau\tau}$ at 20% (10%). With only the theoretical constraints, a very large range of k_D gets allowed but it does not improve BR($h \rightarrow \Upsilon\gamma$) much, as it also increases the total width with k_D . After adding experimental constraints, only right-sign ($k_D \sim 1$) and wrong-sign ($k_D \sim -1$) regions get allowed. This is mostly due to μ_{VV} being very close to the SM values. In contrast to the $k_D = 1$ case, constructive interference in the wrong sign case makes BR($h \rightarrow \Upsilon\gamma$) larger by two orders of magnitude.

The possible experimental reach at 13 TeV LHC is presented in Fig. 213.1 (right), where we find a $\sigma \times BR$ value around 0.06 fb. For total integrated luminosity around 100 fb⁻¹, a measurement is becoming possible. A high-Luminosity LHC, will allow for either the detection or complete ruling out of the wrong-sign solution.

Fig. 213.1 BR($h \rightarrow \Upsilon \gamma$) (left), $\sigma \times BR(h \rightarrow \Upsilon \gamma)$ at 13 TeV LHC (right), as a function of k_D

References

- 1. The Higgs Hunter's Guide (Westview Press, Boulder, CO, 2000)
- 2. Phys. Rept. 516, 1 (2012) arXiv:1106.0034 [hep-ph]
- 3. Phys. Rev. D 88(5), 053003 (2013) arXiv:1306.5770 [hep-ph]
- 4. Phys. Rev. D 94(7), 075017 (2016) arXiv:1607.07876 [hep-ph]
- 5. JHEP 1312, 095 (2013) arXiv:1310.7941 [hep-ph]
- 6. Phys. Rev. D 89(11), 115003 (2014) arXiv:1403.4736 [hep-ph]
- 7. Phys. Rev. D 90(1), 015021 (2014) arXiv:1406.6080 [hep-ph]