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Abstract: If the scalar sector of the Standard Model is non-minimal, one might expect

multiple generations of the hypercharge-1/2 scalar doublet analogous to the generational

structure of the fermions. In this work, we examine the structure of a Higgs sector consisting

of N Higgs doublets (where N ≥ 2). It is particularly convenient to work in the so-called

charged Higgs basis, in which the neutral Higgs vacuum expectation value resides entirely in

the first Higgs doublet, and the charged components of remaining N−1 Higgs doublets are

mass-eigenstate fields. We elucidate the interactions of the gauge bosons with the physical

Higgs scalars and the Goldstone bosons and show that they are determined by an N × 2N

matrix. This matrix depends on (N − 1)(2N − 1) real parameters that are associated with

the mixing of the neutral Higgs fields in the charged Higgs basis. Among these parameters,

N − 1 are unphysical (and can be removed by rephasing the physical charged Higgs fields),

and the remaining 2(N − 1)2 parameters are physical. We also demonstrate a particularly

simple form for the cubic interaction and some of the quartic interactions of the Goldstone

bosons with the physical Higgs scalars. These results are applied in the derivation of Higgs

coupling sum rules and tree-level unitarity bounds that restrict the size of the quartic scalar

couplings. In particular, new applications to three Higgs doublet models with an order-4

CP symmetry and with a Z3 symmetry, respectively, are presented.
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1 Introduction

The discovery of the Higgs boson at the Large Hadron Collider (LHC) appears to complete

the story of the Standard Model (SM) of particle physics [1, 2]. In particular, the subsequent

experimental measurements of the properties of the observed scalar with mass 125 GeV are

so far consistent with those of the SM Higgs boson [3]. The current Higgs data set is still

statistically limited, so a more precise statement is that the observed scalar behaves as a

SM-like Higgs boson, to within an accuracy of about 20%. Future experimental studies of

the Higgs boson at the LHC will continue to search for deviations from SM behavior, as

well as evidence for additional scalar states that might comprise an extended Higgs sector.

Nevertheless, there are numerous reasons to suspect that there must exist new physi-

cal phenomena beyond the SM. For example, the SM cannot accommodate dark matter,1

massive neutrinos,2 baryogenesis3 and the gravitational interaction. Indeed, there is no

fundamental understanding of how the electroweak scale arises, and why this scale is many

orders of magnitude smaller than the Planck scale.4 However, the casual observer exam-

ining the structure of the SM in its present form might also be puzzled that the set of

fundamental scalar fields consists of a single neutral CP-even Higgs boson. After all, the

SM employs a direct product of three separate gauge groups and the elementary fermionic

matter comes in three generations. Why should one expect a scalar sector to consist only

of a single physical state?

In light of the non-minimal structure of the fermionic and gauge bosonic sectors of the

SM, one is tempted to suppose that the scalar sector is likewise non-minimal. It is a simple

1See e.g. M. Drees and G. Gerbier, Dark matter, in [4].
2See e.g. K. Nakamura and S.T. Petkov, Neutrino mass, mixing, and oscillations, in [4].
3See e.g. ref. [5].
4See e.g. ref. [6].
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matter to construct an extension of the SM that incorporates an enlarged Higgs sector.

In order to preserve the tree-level relation, ρ0 ≡ mW /mZ cos θW = 1 (which is confirmed

by the electroweak data after accounting for electroweak radiative corrections5), the elec-

troweak quantum numbers of the Higgs scalar multiplets are constrained [7, 8]. For exam-

ple, a Higgs sector employing hypercharge-1/2 scalar doublets and hypercharge-zero scalar

singlets yields ρ0 = 1, independently of the vacuum expectation values (vevs) of the neutral

scalar fields. Following the generational pattern of the fermions, we shall simply replicate

the SM Higgs doublet and consider an extended Higgs sector consisting of N hypercharge-

1/2 scalar doublets. For N ≥ 2, one must further require that at the minimum of the

scalar potential, only the neutral components of the N scalar fields acquire vevs [9, 10].6

In this paper, we wish to explore various relations among Higgs couplings and bounds

on scalar masses that arise in an N Higgs doublet extension of the SM. Electroweak gauge

invariance plays a central role in determining the structure of the Higgs couplings. Our

primary focus here will be the couplings of Higgs bosons to gauge bosons and the cubic and

quartic scalar self-couplings. The couplings of the Higgs bosons to fermions is governed

by the Yukawa couplings, which must be highly constrained in order to avoid tree-level

flavor-changing neutral currents mediated by neutral scalars [11, 12]. In this paper, we

shall simply postpone the consideration of the scalar-fermion interactions [13].

Our main tool for obtaining relations among Higgs couplings and constraints on Higgs

masses is tree-level unitarity. If one computes the scattering amplitudes for 2 → 2 scattering

of gauge and Higgs bosons, under the assumption that all Higgs couplings are independent

of one another, then one finds that some of the scattering amplitudes grow with the center of

mass energy. Such behavior is not consistent with unitarity. Of course, there is no paradox

here since the assumption of independent Higgs couplings is incorrect. Electroweak gauge

invariance imposes relations among the couplings that guarantee that the bad high energy

behavior of any scattering amplitude must exactly cancel. One can turn this argument

around and derive relations among the Higgs couplings that are required to cancel the bad

high energy behavior of all scattering amplitudes [14, 15]. This procedure allows one to

deduce a variety of sum rules that relate various Higgs couplings [16–18].

Having canceled the bad high energy behavior, one finds that scattering amplitudes in

the high energy limit either approach a constant value or vanish in the limit of large center

of mass energy. In the former case, the condition of tree-level unitarity imposes an upper

limit on the value of this constant. Ultimately, one can show that this constant is a function

of dimensionless quartic couplings that appear in the scalar potential. Thus, the imposition

of tree-level unitarity yields an upper bound on the values of various combinations of quartic

scalar couplings. This in turn can provide upper bounds on some combinations of scalar

masses [19, 20].

In section 2 we consider the most general N Higgs doublet model (NHDM). We ex-

plicitly write out the couplings of the Higgs bosons to the gauge bosons, which arise from

5See e.g. J. Erler and A. Freitas, Electroweak model and constraints on new physics, in [4].
6The requirement that the electric charge preserving vacuum is a global minimum of the scalar potential

imposes some constraints on the scalar potential parameters. Henceforth, we assume that these constraints

are respected.
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the scalar field kinetic energy terms after replacing the ordinary derivative with the gauge

covariant derivatives of the electroweak theory. Remarkably, these couplings are controlled

by an N × 2N matrix B, whose physical significance is explained below. We also note

the appearance of the 2N × 2N matrix A = Im(B†B). The matrix A is an orthogonal

antisymmetric matrix that is governed by N(N − 1) parameters. These parameters are

independent of the basis of scalar fields used to define the model, and thus are related to

physical observables.7 The matrix B is governed by 2(N − 1)2 physical parameters, which

include the N(N − 1) parameters that already appear in the matrix A. In addition, the

matrix B depends on N − 1 (unphysical) phases that can be eliminated by appropriately

rephasing the physical charged Higgs fields of the model. We also examine some aspects

of the scalar self-couplings. We find that some specific cubic and quartic couplings involv-

ing Goldstone boson fields also depend exclusively on the matrices A and B. This is a

consequence of the fact that these interactions terms are related by gauge-fixing to terms

appearing in the gauge-covariant scalar kinetic energy terms. The structure of the other

cubic and quartic couplings are not as simple, and involve more complicated invariant

expressions involving the coefficients of the scalar potential.

In section 3, we derive a variety a sum rules involving the couplings of gauge bosons

and Higgs bosons and the couplings of Goldstone bosons and Higgs bosons. In section 4,

we present an efficient technique to impose the condition of tree-level unitarity, leading to

upper bounds on various combinations of couplings and scalar masses. We apply this to

known results and present new results for the three Higgs doublet models (3HDMs) with Z3

symmetry and with order-4 CP symmetry, respectively. Conclusions are given in section 5.

In our analysis of the NHDM, one can define a new basis of scalar fields such that the

neutral scalar vev resides entirely in one of the Higgs doublet fields, denoted by ΦH
1 . This

is the well-known Higgs basis [21–24], in which the charged component of ΦH
1 is identified

as the charged Goldstone boson field and the imaginary part of the neutral component

of ΦH
1 is the neutral Goldstone boson field. The Higgs basis is not unique, since one is

free to make an arbitrary U(N − 1) transformation among the remaining N − 1 doublet

fields. In particular, one can employ this transformation to diagonalize the physical charged

Higgs squared-mass matrix. This procedure yields the charged Higgs basis, as discussed in

appendix A. Note that the resulting basis is unique up to an arbitrary separate rephasing

of the N − 1 scalar doublets that contain the physical charged Higgs boson fields.

In appendix B, we apply the analysis of the NHDM given in section 2 to the two-Higgs

doublet model (2HDM). We first discuss the complex two-Higgs doublet model (C2HDM),

in which a Z2-symmetric scalar potential is softly broken by a complex squared-mass pa-

rameter. We then generalize to the most general 2HDM, which is treated using the basis-

independent formalism of ref. [25]. In both cases, we display the explicit 2HDM forms for

the matrices A and B and exhibit the unphysical parameters in the matrix B that can be

eliminated by an appropriate rephasing of the physical charged Higgs fields. In appendix C,

7Given a set of N scalar doublet fields {Φk}, one is always free to consider another basis of scalar fields,

{Φ′`} that is related to the original set of scalar fields by a unitary transformation. Any physical observable

must be independent of the choice of basis.
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we demonstrate how to count the number of parameters that govern the matrices A and

B of the NHDM and identify which of these parameters are physical.

In our derivation of coupling sum rules and unitarity relations, the coupling of the

Goldstone bosons fields to the physical Higgs fields play an important role. Although the

initial forms of these expressions are quite complicated, the corresponding cubic couplings

end up reducing to remarkably simple forms. As an example, we provide in appendix D the

details of the derivation and simplification of the coupling of two neutral Goldstone fields

and a physical Higgs scalar. Finally, in appendix E, we rederive the sum rules obtained

directly from the NHDM interaction Lagrangian using an alternative method, which im-

poses the cancellation of bad high energy behavior in the 2 → 2 scattering amplitudes of

processes involving the gauge and Higgs bosons. The relation between sum rules involving

the neutral Higgs boson couplings to W+W− and ZZ is clarified in appendix F.

2 N Higgs doublet models

In this section we discuss the bosonic Lagrangian of the most general NHDM. The field

content consists of the SU(2)L×U(1)Y gauge bosons and N hypercharge-1/2 Higgs doublet

fields, parameterized as,

Φk =

 ϕ+
k

1√
2
(vk + ϕ0

k)

 , for k = 1, . . . , N . (2.1)

The Higgs-fermion Yukawa interactions will be examined in a subsequent work [13].

2.1 The scalar potential

For the scalar potential, we follow the notation of [23, 26]:

VH = µij(Φ
†
iΦj) + λij,kl(Φ

†
iΦj)(Φ

†
kΦl) = −LHiggs, (2.2)

where, by hermiticity,

µij = µ∗ji, λij,kl ≡ λkl,ij = λ∗ji,lk. (2.3)

Using eq. (2.1), the Higgs potential becomes

VH = V0 + V1 + V2 + V3 + V4, (2.4)

where,8

2V0 = µij (v∗i vj) +
1

2
λij,kl (v

∗
i vj)(v

∗
kvl), (2.5)

2V1 = v∗i [µij + λij,klv
∗
kvl]ϕ

0
j + ϕ0∗

i [µij + λij,klv
∗
kvl] vj , (2.6)

8It is useful to note that, because (M2
±)ij and λik,ljvkv

∗
l are hermitian in (i, j), the second term in

eq. (2.7) may be written as[
(M2
±)ij + λik,ljvkv

∗
l

]
ϕ0∗
i ϕ

0
j = Re

{[
(M2
±)ij + λik,ljvkv

∗
l

]
ϕ0∗
i ϕ

0
j

}
.
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V2 = (M2
±)ij ϕ

−
i ϕ

+
j +

1

2

[
(M2
±)ij + λik,ljvkv

∗
l

]
ϕ0∗
i ϕ

0
j +

1

2
Re
{
λik,jlvkvl ϕ

0∗
i ϕ

0∗
j

}
, (2.7)

V3 = λij,kl ϕ
−
i ϕ

+
j

[
ϕ0∗
k vl + v∗kϕ

0
l

]
+

1

2
λij,kl ϕ

0∗
i ϕ

0
j

[
ϕ0∗
k vl + v∗kϕ

0
l

]
, (2.8)

V4 = λij,kl(ϕ
−
i ϕ

+
j )(ϕ−k ϕ

+
l ) + λij,kl(ϕ

−
i ϕ

+
j )(ϕ0∗

k ϕ
0
l ) +

1

4
λij,kl(ϕ

0∗
i ϕ

0
j )(ϕ

0∗
k ϕ

0
l ), (2.9)

and

(M2
±)ij = µij + λij,klv

∗
kvl (2.10)

is the mass matrix for the charged scalar fields. Requiring the absence of linear terms

yields the stationarity condition,

V1 = 0 =⇒ [µij + λij,klv
∗
kvl] vj = (M2

±)ij vj = 0. (2.11)

The vacuum of these models has been studied in ref. [9]; here we assume only that the

electromagnetic U(1)em remains unbroken.9 Expanding the neutral fields in terms of their

real and imaginary components, the second and third terms of V2 may be written as

1

2

(
Re(ϕ0

1), . . . ,Re(ϕ0
N ), Im(ϕ0

1), . . . , Im(ϕ0
N )
)


M2
R M2

RI

(M2
RI)

T M2
I





Re(ϕ0
1)

...

Re(ϕ0
N )

Im(ϕ0
1)

...

Im(ϕ0
N )


,

(2.12)

where [cf. footnote 8],

(M2
R)ij = Re

{
(M2
±)ij + λik,ljvkv

∗
l + λik,jlvkvl

}
, (2.13)

(M2
I )ij = Re

{
(M2
±)ij + λik,ljvkv

∗
l − λik,jlvkvl

}
, (2.14)

(M2
RI)ij = −Im

{
(M2
±)ij + λik,ljvkv

∗
l − λik,jlvkvl

}
. (2.15)

Using eq. (2.3), we conclude that M2
± is hermitian, the matrices M2

R and M2
I are real and

symmetric, and M2
RI is a general real matrix. Thus, the mass matrix in eq. (2.12) is real

and symmetric, as expected. Our mass matrices agree with those in ref. [9], after noting

that their νdk = vk/
√

2. Our eq. (2.15) differs by a minus sign in the last term with respect

to a similar eq. (A17) of ref. [30]. However, this sign error is the result of a misprint, in

light of the agreement in signs between our results and eqs. (A18)–(A22) of ref. [30].

For later use, we note that

(M2
RI)

T
ij = Im

{
(M2
±)ij + λik,ljvkv

∗
l + λik,jlvkvl

}
, (2.16)

9Some features of the vacuum of N Higgs doublet models have also been studied using the bilinear

formalism in refs. [10, 27–29].
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arises from eqs. (2.15) and (2.3). From eqs. (2.13)–(2.16), we find

2λik,ljvkv
∗
l = −2(M2

±)ij +
[
(M2

R)ij + (M2
I )ij

]
+ i
[
(M2

RI)
T
ij − (M2

RI)ij
]
, (2.17)

2λik,jlvkvl =
[
(M2

R)ij − (M2
I )ij

]
+ i
[
(M2

RI)
T
ij + (M2

RI)ij
]
. (2.18)

eqs. (2.5)–(2.9) are written in with respect to a generic basis of the scalar doublet fields.

One can define a new set of charged and neutral scalar fields denoted, respectively, by

S±a (a = 1, . . . , N) and S0
β (β = 1 . . . , 2N), via

ϕ+
k =

N∑
a=1

UkaS
+
a , (2.19)

ϕ0
k =

2N∑
β=1

VkβS
0
β , (2.20)

where U is an N ×N unitary matrix, and V is a complex N × 2N matrix. It is convenient

to define the real 2N × 2N matrix,

Ṽ =

(
Re V

Im V

)
. (2.21)

Note that the transformation given in eq. (2.20) results in a real orthogonal similarity

transformation of the 2N × 2N symmetric squared-mass matrix given in eq. (2.12). That

is Ṽ is a 2N × 2N real orthogonal matrix. As a result, we find

12N×2N = Ṽ T Ṽ = ReV T ReV + ImV T ImV = Re
(
V †V

)
, (2.22)

where 12N×2N is the 2N ×2N identity matrix. Similarly, from 12N×2N = Ṽ Ṽ T , we obtain,

ReV ReV T = 1N×N = ImV ImV T ,

ReV ImV T = 0N×N = ImV ReV T . (2.23)

Hence, it follows that,

V V T = Re(V V T ) + iIm(V V T ) = 0. (2.24)

Note that we have used the convenient notation of refs. [31, 32], which in turn was inspired

by refs. [30, 33]. In addition,

V V † = Re(V V †) + i Im(V V †) = 2·1N×N . (2.25)

Finally, one can show that the matrix Im
(
V †V

)
is antisymmetric. Moreover, using

eqs. (2.23), this matrix satisfies,[
Im
(
V †V

)]2
= −12N×2N . (2.26)

Thus, Im
(
V †V

)
is the only nontrivial piece of V V † and V †V . As we shall see below, it has

the crucial role of controlling scalar couplings involving the Z boson or its corresponding

– 6 –
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Goldstone boson. Combining the antisymmetry with eq. (2.26), we conclude that Im
(
V †V

)
is orthogonal [

Im
(
V †V

)]T [
Im
(
V †V

)]
= 12N×2N . (2.27)

In particular, all of its entries satisfy∣∣∣∣Im(V †V )αβ
∣∣∣∣ ≤ 1. (2.28)

This will be of interest later.

Let us consider matrices such that

Uk1 = v̂k, (2.29)

Vk1 = iv̂k, (2.30)

where we have defined

v̂k ≡
vk
v
. (2.31)

With these choices, the unitarity of U implies

(U †v̂)a = δ1a = (v̂†U)a (a = 1, . . . , N), (2.32)

while eq. (2.22) implies

−Im(V †v̂)β = Im(v̂†V )β = δ1β (β = 1, . . . , 2N), (2.33)

Re(V †v̂)β = Re(v̂†V )β = −Im(V †V )1β (β = 2, . . . , 2N), (2.34)

Re(V †v̂)1 = Re(v̂†V )1 = −Im(V †V )11 = 0, (2.35)

where the last equality holds because Im(V †V )αβ is antisymmetric in αβ. We wish to study

the squared-mass matrix of the charged scalars with respect to the charged scalar fields S+
a ,

M2
C = U †M2

±U. (2.36)

Using eqs. (2.10), (2.29), and (2.11), it is easy to show that(
U †M2

±U
)

1b
=
(
U †M2

±U
)
a1

= 0. (2.37)

This means that with respect to the charged scalar fields S+
a [reached by transformations

with (2.29)], the first row and first column of the transformed squared-mass matrix of

the charged scalars vanishes. This identifies S±1 with the charged would-be Goldstone

boson G±,

S±1 = G±. (2.38)

Next, we turn to the squared-mass matrix of the neutral scalar fields.

M2
N = Ṽ T


M2
R M2

RI

(M2
RI)

T M2
I


Ṽ (2.39)

= ReV T M2
R ReV + ImV T

(
M2
RI

)T
ReV + ReV T M2

RI ImV + ImV T M2
I ImV.

– 7 –
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Using eq. (2.30), we start by looking at(
M2
RReV

)
i1

+
(
M2
RIImV

)
i1

= −Re
{

(M2
±)ij + λik,ljvkv

∗
l + λik,jlvkvl

}
Im(v̂j)

−Im
{

(M2
±)ij + λik,ljvkv

∗
l − λik,jlvkvl

}
Re(v̂j)

= −Im
{

(M2
±)ij v̂j + λik,ljvkv

∗
l v̂j
}

+ Im
{
λik,jlvkvlv̂

∗
j

}
= 0. (2.40)

For the first equality, we have used eqs. (2.13) and (2.15). To reach the last line of eq. (2.40),

we have used eq. (2.31) and the stationarity condition given in eq. (2.11). Similarly,(
(M2

RI)
TReV

)
i1

+
(
M2
I ImV

)
i1

= −Im
{

(M2
±)ij + λik,ljvkv

∗
l + λik,jlvkvl

}
Im(v̂j)

+Re
{

(M2
±)ij + λik,ljvkv

∗
l − λik,jlvkvl

}
Re(v̂j)

= Re
{

(M2
±)ij v̂j + λik,ljvkv

∗
l v̂j
}
− Re

{
λik,jlvkvlv̂

∗
j

}
= 0. (2.41)

Multiplying eq. (2.40) by (ReV T )αi, multiplying eq. (2.41) by (ImV T )αi, and summing

over i, we conclude from eq. (2.39) that

(M2
N )1β = (M2

N )α1 = 0, (2.42)

where the first equality holds since M2
N is a real symmetric matrix. This means that with

respect to the scalar fields S0
β , [reached by transformations with (2.30)], the first row and

first column of the transformed squared-mass matrix of the neutral scalars vanishes. This

identifies S0
1 with the neutral would-be Goldstone boson G0,

S0
1 = G0. (2.43)

One can choose matrices U and V in such a way that the transformations in eqs. (2.19)

and (2.20) yield the charged and neutral scalar mass eigenstate fields, respectively,

U †M2
± U = D2

± = diag
(
m2
±,1 = 0,m2

±,2, . . . ,m
2
±,N
)

(2.44)

Ṽ T


M2
R M2

RI

(M2
RI)

T M2
I


Ṽ = D2

0 = diag
(
m2

1 = 0,m2
2, . . . ,m

2
2N

)
. (2.45)

Since we have identified S±1 = G± and S0
1 = G0, it follows from our above analysis that the

matrices U and V must satisfy eqs. (2.29) and (2.30), respectively. In this case, S±a (a =

2, . . . , N) and S0
β (β = 2, . . . , 2N) denote the fields of the physical charged and neutral

scalar particles, respectively. Their corresponding masses are m2
±,k (k = 1, 2, . . . , N) and

m2
β (β = 1, 2, . . . , 2N).10

10In appendix A we discuss two other ways to identify the neutral and charged scalar mass eigenstate

fields, involving intermediate steps which simplify some of the analysis.
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Using eqs. (2.44)–(2.45) in eqs. (2.17)–(2.18), we end up with

2λik,ljvkv
∗
l = −2

(
U D2

± U
†
)
ij

+
(
V D2

0 V
†
)
ij
, (2.46)

2λik,jlvkvl =
(
V D2

0 V
T
)
ij
. (2.47)

These are the only combinations of quartic couplings (and vevs) that one can obtain from

the diagonalization of the scalar squared-mass matrices. Thus, only those cubic and quartic

terms of the scalar potential involving these combinations will be related to scalar masses.

Eqs. (2.46)–(2.47) constitute a crucial result of our paper, since, they will enable us to

relate the gauge-Higgs couplings with the scalar-scalar couplings.11

2.2 Gauge-Higgs couplings

When expressed in terms of the physical gauge fields, the gauge covariant derivative may

be written as

iDµ = i∂µ −
g

2
(τ+W

+
µ + τ−W

−
µ )− eQAµ −

g

cW

(τ3

2
−Qs2

W

)
Zµ, (2.48)

where g is the SU(2) coupling constant, cW = cos θW , sW = sin θW , e is the electric charge

of the positron, Q is the charge operator, and12

τ+ =

(
0
√

2

0 0

)
, τ− =

(
0 0
√

2 0

)
, τ3 =

(
1 0

0 −1

)
, (2.49)

when acting on SU(2) doublets. Note that the signs of the coupling constants and gauge

fields above correspond to choosing all the ηk equal to +1 in the notation of ref. [34]. This

coincides with the conventions of ref. [7], but differs in the signs in g from refs. [35, 36].13

This also has an impact on any Feynman rules proportional to MW or MZ .

The kinetic term for the scalar fields is

LKΦ =
N∑
k=1

(DµΦk)
† (DµΦk) . (2.50)

We substitute eq. (2.48) and parameterize the Φk as in eq. (2.1). Next, we employ

eqs. (2.19)–(2.20) to express the charged and neutral fields in terms of the mass eigen-

state fields, and we use the properties in eqs. (2.22)–(2.35). We end up with,

LKΦ =

N∑
a=1

(
∂µS−a

)†(
∂µS

+
a

)
+

1

2

2N∑
β=1

(
∂µS0

β

)(
∂µS

0
β

)
+M2

WW
+µW−µ +

1

2
M2
ZZ

µZµ (2.51)

+iMW

[
W+
µ (∂µG−)−W−µ (∂µG+)

]
−MZZµ(∂µG0)+LV V S+LV SS+LV V SS ,

11This is, of course, consistent with gauge-fixing and is needed, in particular, for the equivalence theorem.
12In this paper, we normalize the hypercharge Y such that Q = T3 + Y, where ~T ≡ 1

2
~τ .

13The signs in refs. [23, 31] correspond to yet another choice, which yields an unexpected sign in the

relation tan θW = −g′/g.
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where,14

LV V S =
[
eMWA

µ − gMZs
2
WZ

µ
] [
W−µ G

+ +W+
µ G

−]
−g
[
MWW

+µW−µ +
MZ

2cW
ZµZµ

] 2N∑
β=2

S0
β A1β , (2.52)

LV SS = i

[
eAµ +

g c2W

2cW
Zµ

] N∑
a=1

S+
a

↔
∂ µS−a +

g

4cW
Zµ

2N∑
γ 6=β=1

(S0
γ

↔
∂ µS0

β)Aβγ

+i
g

2

N∑
a=1

2N∑
β=1

[
BaβW

+
µ (S0

β

↔
∂ µS−a ) + (B†)βaW

−
µ (S+

a

↔
∂ µS0

β)

]
, (2.53)

LV V SS =

[
g2

4
W+µW−µ +

g2

8c2
W

ZµZµ

] 2N∑
β=1

(S0
β)2

+

[
g2

2
W+µW−µ + e2AµAµ +

eg c2W

cW
AµZµ +

g2 c2
2W

4c2
W

ZµZµ

] N∑
a=1

S−a S
+
a

+

[
eg

2
Aµ −

g2s2
W

2cW
Zµ
] N∑
a=1

2N∑
β=1

S0
β

[
(B†)βaW

−
µ S

+
a +BaβW

+
µ S
−
a

]
, (2.54)

with c2W = cos (2θW ) and

B ≡ U †V [N × 2N ], (2.55)

A ≡ Im(V †V ) = Im(B†B) [2N × 2N ], (2.56)

are matrices of dimension N × 2N and 2N × 2N , respectively.

The matrix A is basis-independent and hence physical, whereas the matrix B is basis-

independent up to unphysical phases that can be absorbed into the definition of the physical

charged Higgs fields, S±a (for a = 2, 3, . . . , N). Further details will be provided in the next

section. Eqs. (2.51)–(2.54) agree with eqs. (29a)–(29p) of ref. [31], if we notice that, because

of the different sign in the coupling g, we have g = −gGLOO , MW = −MGLOO
W , and

MZ = −MGLOO
Z , where the subscript “GLOO” stands for ref. [31]. The only exception is

in the ZSγSβ coupling given in eq. (2.53) which, after the difference in notation is properly

accounted for, disagrees with the sign of eq. (29h) of ref. [31]. We have checked in both

notations that their incorrect sign can be attributed to a misprint.

2.3 The A and B matrices

In section 2.2 we showed that the couplings arising from the kinetic Lagrangian depend

exclusively on the matrix B in the charged scalar sector and on A = Im(B†B) in the

neutral scalar sector. A and B are defined in terms of the matrices U and V , which relate

the charged and neutral fields in a generic basis of scalar fields, {Φk}, to the corresponding

14We employ the notation where S+
a

↔
∂ µS−a ≡ S+

a (∂µS−a )− (∂µS+
a )S−a .
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mass-eigenstate scalar fields, respectively. The choice of basis is of course arbitrary. For

example, another set of scalar fields {Φ′`}, with

Φ` = Xk`Φ
′
`, (2.57)

where X is some N×N unitary matrix, could have been employed. The scalar field kinetic

energy terms are invariant with respect to eq. (2.57), since

LKΦ =
N∑
k=1

(DµΦk)
† (DµΦk) =

N∑
k=1

(
DµΦ′k

)† (
DµΦ′k

)
, (2.58)

which follows from X†X = 1N×N . Consequently, the interactions of the scalars with

the gauge bosons given by eqs. (2.51)–(2.54) are basis-independent. Indeed, any physical

observable cannot depend on the choice of basis. We would like to use these observations

to address the behavior of the matrices A and B under an arbitrary change of basis. The

interaction Lagrangian given by eqs. (2.51)–(2.54) is written in terms of the scalar mass

eigenstates S±a and S0
β , which are related via eqs. (2.19) and (2.20) to the scalar fields in

a generic basis. The diagonalization of the neutral scalar squared-mass matrix is given

by eq. (2.39) and yields real neutral scalar mass-eigenstate fields. The overall sign of the

neutral scalar mass-eigenstate fields are not physical. However, the standard practice is

to fix this sign by appropriately restricting the range of the angles that parameterize the

diagonalization matrix. Having adopted this convention where the sign of the neutral scalar

mass-eigenstate fields are fixed, it follows that the matrix A that appears in eqs. (2.52)

and (2.53) is basis-independent and hence physical.

In contrast, the diagonalization of the charged scalar squared mass matrix yields com-

plex mass-eigenstate charged scalar fields. By convention, the phase of the charged Gold-

stone field is fixed. In particular, it is convenient to choose X = U in eq. (2.57), which

yields the scalar field basis,

ΦC
1 =

 G+

1√
2

(
v +H0 + iG0

)
 , ΦC

2 =

 S+
2

1√
2
ϕC0

2

 , . . . , ΦC
N =

 S+
N

1√
2
ϕC0
N

 , (2.59)

where S+
2 , . . . , S

+
N are the physical (mass-eigenstate) charged Higgs fields with correspond-

ing masses m2
±,i. This is called the charged Higgs basis and has two defining properties:

1. S+
2 , S+

3 , . . ., S+
N , are the charged scalar mass-eigenstate fields;

2. the first doublet field, ΦC
1 , has the massless would-be Goldstone boson G+ as its

charged (upper) component, and its phase has been chosen such that the (real and

positive) vev, v ' 246 GeV, is contained in the real part of its neutral (lower) com-

ponent.

The Higgs basis (which is defined by property 2 alone) and the charged Higgs basis are

discussed in detail in appendix A. Notice that the fields H0 and ϕC0
2 , . . . , ϕC0

N are not the

neutral scalar mass-eigenstate fields. B is the matrix that transforms these fields, written

in the charged Higgs basis, into the neutral scalar mass-eigenstates.
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The charged Higgs basis is unique up to a possible rephasing of the charged Higgs fields,

S+
a → eiχaS+

a [for a = 2, 3, . . . , N ]. That is, the charged Higgs basis is a family of scalar

bases that is characterized by N − 1 phases, χa, as discussed at the end of appendix A. In

eqs. (2.53) and (2.54), the invariant combinations BaβS
−
a and its charged conjugate appear.

Hence, it follows that the matrix B is not quite basis-independent, since Baβ → eiχaBaβ [for

a = 2, 3, . . . , N ] under the rephasing of the charged Higgs fields to preserve the invariance

of eqs. (2.53) and (2.54).

In contrast, the mixing matrices U and V that relate the charged and neutral fields

in a generic basis of scalar fields, {Φk}, to the corresponding mass-eigenstate scalar fields,

respectively, are basis dependent. It is instructive to examine the question of basis de-

pendence and work out the explicit forms of the matrices A and B in the more familiar

2HDM. In this case, the matrix U contains the angle β = tan−1 (v2/v1). As discussed at

length in ref. [25], this means that the angle β does not in general have a physical mean-

ing, since the vevs v1 and v2 (and hence tan β) transform under the basis transformation

given by eq. (2.57). Similarly, the mixing angle parameters appearing in the matrix V

that transforms the neutral scalar fields of the generic basis into the neutral scalar mass-

eigenstate fields are also basis dependent. To find basis-independent quantities, one must

consider the neutral mixing angle parameters relative to the angle β. That is, under a

basis transformation, both the neutral mixing angle parameters and the angle β shift by

the same amount so that their difference is invariant. Thus, one way to determine the

invariant neutral mixing angle parameters is to work in the Higgs basis, in which β = 0.

Further details can be found in appendix B. The matrix B is the NHDM generalization of

the neutral mixing angle parameters relative to the angle β. As noted above, the matrix B

is almost basis-invariant, since unphysical phases remain that reflect the possible rephasing

of the charged Higgs fields.

From section 2.1, we can deduce the following properties of the matrices A andB. First,

it is convenient to re-express A in terms of the matrix Ṽ defined in eq. (2.21). We introduce

the 2N × 2N orthogonal antisymmetric matrix J̃ , which in block form is defined by

J̃ ≡

(
0 1N×N

−1N×N 0

)
. (2.60)

Then A = Im(V †V ) can be rewritten as,

A = Ṽ T J̃ Ṽ . (2.61)

It immediately follows that A is a real orthogonal and antisymmetric matrix; i.e.,

AAT = 12N×2N , AT = −A. (2.62)

In particular, the orthogonality of A implies that |Aαβ | ≤ 1.

Given an N × N unitary matrix U , it is always possible to represent this matrix by

the following 2N × 2N real orthogonal matrix,

ŨR ≡

(
ReU − ImU

ImU ReU

)
. (2.63)
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Henceforth, we shall always identify the real orthogonal representation of a unitary matrix

with a subscript R and a tilde (to indicate that the dimensionality of the matrix has been

doubled).

Using this notation, it is convenient to construct the 2N × 2N matrix B̃,

B̃ ≡

ReB

ImB

 = ŨTR Ṽ . (2.64)

Since ŨR and Ṽ are real orthogonal 2N × 2N matrices, it follows that B̃ is also a real

orthogonal 2N × 2N matrix. Moreover,

1

2
BB† = 1N×N , Re(B†B) = 12N×2N . (2.65)

Noting that B = U †V and A = Im(B†B), one can write

B†B = V †V = 12N×2N + iA . (2.66)

Finally, we note that

Ba1 = iδa1,

B1β = −A1β + iδ1β . (2.67)

The central point of this section is the following. Unless there is an (imposed symme-

try) reason to single out some specific basis, the best way to count parameters and to set up

a numerical simulation is to write the potential in the charged Higgs basis ab initio. As seen

from appendix A, the charged Higgs basis is (almost) unique, up to the separate rephasing

of the N − 1 doublets with zero vev. As a result, all the parameters of the scalar potential,

when written in the charged Higgs basis, are either invariant or pseudo-invariant quantities

with respect to arbitrary scalar basis transformations. Here, pseudo-invariant means invari-

ant up to an overall phase that arises from the rephasing of the N−1 doublets that contain

the physical charged Higgs fields. It is straightforward to construct invariants from appro-

priate products of pseudo-invariants in which the overall phase ambiguity cancels. All such

observable quantities are potential experimental observables. This provides the generaliza-

tion of the parameters Y1, Y2, Y3 and Z1, Z2, . . . , Z7 championed for the 2HDM in ref. [37].

2.4 Parameter counting

We begin by asking the following question. How many parameters govern the matrices A

and B and how many of these parameters are physical? To address this question, we first

examine the matrices V and U , which transform the neutral and charged scalar fields of a

generic basis to the corresponding scalar-mass eigenstates, respectively.

Starting from a scalar basis, {Φk}, one can compute the neutral scalar squared-mass

matrix as shown in eq. (2.45). The real orthogonal 2N × 2N diagonalizing matrix Ṽ is

related to the matrix V defined in eq. (2.20) via eq. (2.21). With respect to a new scalar

basis {Φ′`}, one obtains a new matrix V given by

V ′ = X†V , (2.68)
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after using eqs. (2.20) and (2.57). Employing eqs. (2.21) and (2.68), one obtains a new real

orthogonal diagonalizing matrix Ṽ ′ given by

Ṽ ′ = X̃T
R Ṽ , (2.69)

where [following eq. (2.63)] the 2N × 2N real orthogonal matrix X̃R is defined by

X̃R ≡

(
ReX − ImX

ImX ReX

)
. (2.70)

Using eq. (C.31), one can decompose the real orthogonal 2N × 2N matrix Ṽ = W̃RR̃c,

where W̃R and R̃c are the real orthogonal 2N × 2N matrices given in eq. (C.32). Inserting

this result back into eq. (2.70) yields,

Ṽ ′ = XT
RW̃RR̃c . (2.71)

Using the definition of the matrix A given in eq. (2.56), one can determine A with

respect to a new scalar basis {Φ′`},

A′ = Im(V ′ †V ′) = Im(V †V ) = A . (2.72)

Note that the same result can be obtained by employing eqs. (2.61) and (2.69), since

A′ = Ṽ ′T J̃ Ṽ ′ = Ṽ T J̃ Ṽ = A , (2.73)

after noting that X̃RJ̃X̃
T
R = J̃ (the latter makes use of the fact that X is unitary). That

is, A is basis-independent. In particular, if we choose X = W in eq. (2.71), then Ṽ ′ = R̃c,

which can be expressed in terms of N(N−1) parameters.15 Consequently, eq. (2.73) implies

that A = R̃Tc J̃R̃c, which depends on N(N − 1) physical parameters.16

Likewise, starting from a scalar basis, {Φk}, one can compute the charged scalar

squared-mass matrix as shown in eq. (2.44). The N × N unitary diagonalizing matrix

U defined in eq. (2.19) depends on the basis. One also must take into account that the

charged Higgs basis is not uniquely defined, as discussed at the end of appendix A. Hence,

the physical charged Higgs fields may acquire phases under the basis change. If we per-

form a basis transformation given by eq. (2.57), we must allow for the possibility that

S+
a → eiχaS+

a [for a = 2, 3, . . . , N ]. We can write the latter as

S+
a =

∑
b

KabS
′+
b , (2.74)

where the primes indicate quantities associated with the transformed basis and

K ≡ diag(1 , e−iχ2 , e−iχ3 , . . . , e−iχN ) . (2.75)

15Since Ṽ ′ = R̃c, we can use the results of appendix C.3 to show that R̃c, which depends on two N ×N
real antisymmetric matrices, is governed by N(N − 1) parameters.

16This result is consistent with eq. (2.62), since the most general real orthogonal antisymmetric 2N ×2N

matrix can be expressed in terms of N(N − 1) independent parameters, as shown in appendix C.1.
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Combining eqs. (2.19), (2.57) and (2.74) yields

ϕ′+k =

N∑
a=1

U ′kaS
′+
a , (2.76)

where

U ′ = X†UK . (2.77)

That is, one obtains a new unitary diagonalizing matrix U ′ given by

U ′j1 = (X†)jkUk1 , U ′ja = e−iχa(X†)jkUka , (2.78)

where there is an implicit sum over the repeated index k.

We can now compute the transformation of B under a change of scalar basis. With

respect to the basis {Φ′`}, we have

B′1β = (U ′ †V ′)1β = (U †V )1β = B1β , (2.79)

B′aβ = (U ′ †V ′)aβ = eiχa(U †V )aβ = eiχaBaβ . (2.80)

after making use of eqs. (2.68) and (2.78).

If we consider the charged Higgs basis where X = U , then eq. (2.77) yields U ′ = K

and

B̃′ = Ũ ′TR Ṽ ′ = Ũ ′TR (ŨTRW̃R)R̃c , (2.81)

after making use of eqs. (2.64) and (2.71) with X = U . The N − 1 phases χa (for a =

2, 3, . . . , N) that appear U ′ = K (and similarly are contained in Ũ ′TR ) are unphysical and

can be absorbed into the definition of the charged Higgs fields S+
a . Since W 6= U (unless

the neutral Higgs fields are mass eigenstates in the charged Higgs basis), it follows that B̃

contains additional parameters beyond the N(N − 1) physical parameters that determine

the matrix R̃c. As shown in appendix C.2, the matrix B (and B̃) depends on an additional

(N − 1)(N − 2) physical parameters. That is, after absorbing the N − 1 phases into a

redefinition of the charged Higgs fields, there are 2(N − 1)2 physical parameters remaining

in the matrix B (and B̃).

The C2HDM provides an interesting example, discussed in detail in appendix B. One

sees in eq. (B.49) that B̃ (or equivalently B) depends on 3 angles, where one of the angles is

unphysical and corresponds to the freedom to rephase the second scalar doublet with zero

vev. In contrast, A in eq. (B.56) depends only on the two invariant angles contained in B.

The case of N = 2 is special in that the parameters that define the matrix A corresponding

precisely to the physical parameters that appear in the matrix B.

The 2(N − 1)2 physical parameters contained in the matrix B are sufficient to param-

eterize all the gauge boson-Higgs boson interactions. But, the three-scalar and four-scalar

interactions derived from the scalar potential necessarily involve additional parameters.

We have already emphasized that the charged Higgs basis is especially useful in identifying

the invariant (and pseudo-invariant) scalar self-coupling coefficients. In particular, in the

charged Higgs basis, the scalar potential is given by

VH = Yij(Φ
C†
i ΦC

j ) + Zij,kl(Φ
C†
i ΦC

j )(ΦC†
k ΦC

l ). (2.82)
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parameters magnitudes phases

Y N2 N(N+1)
2

N(N−1)
2

Z N2(N2+1)
2

N2(N2+3)
4

N2(N2−1)
4

Y and Z N2(N2+3)
2

N4+5N2+2N
4

N4+N2−2N
4

Table 1. Number of parameters in the Y and Z coefficients of the Higgs potential.

The number of relevant parameters is shown in table 1.

The number of parameters gets reduced for two reasons. First, our definition of the

charged Higgs basis allows for a rephasing of the N−1 scalar doublets with zero vevs. This

reduces the number of phases by N − 1. In addition, the stationarity conditions written in

the charged Higgs basis relate some Y and Z parameters. More generally, eq. (A.16) can

be used to obtain a relation of the Y and Z parameters with the charged scalar masses,

Yij + v2Zij,11 = δijm
2
±,i, (2.83)

which can be used to trade in the Yij for the Z parameters and the charged scalar masses.

Hence, using the charged Higgs basis as parameters, we need only the 1
4N

2(N2 + 3) mag-

nitudes and the 1
4N

2(N2 − 1) phases in Z, of which only 1
4N

2(N2 − 1) − (N − 1) phases

are physical.

For example, in the 2HDM and in the notation of ref. [37], we find

Y1 = −1

2
Z1v

2,

Y3 = −1

2
Z6v

2,

Y2 = −1

2
Z3v

2 +m2
±. (2.84)

The seven magnitudes correspond to |Z1|, |Z2|, . . . , |Z7| and the two independent phases

are Im(Z∗5Z
2
6 ) and Im(Z∗5Z

2
7 ), first identified in ref. [22] as basis invariant measures of CP

violation. Although not independent in the case Z5, Z6, Z7 6= 0, the possibility of Z5 = 0

is only covered by considering in addition the third invariant phase, Im(Z6Z
∗
7 ) [22, 24].

Many different parameter choices exist in the literature. For example, one can employ:

(i) m±a and the quartic coefficients Z of the scalar potential in the charged Higgs basis;

or (ii) the quadratic coefficients Y not fixed by the scalar potential minimum conditions

and all of the quartic coefficients Z; or (iii) the physical parameters in B, the physical

charged and neutral scalar masses, and (if needed) some invariant combination of scalar self-

couplings. In extended Higgs sectors with additional symmetries (where the basis in which

the symmetries are manifest becomes physical), one can also employ the various ratios of

scalar vevs in the list of parameters. For example, in the CP-conserving 2HDM with a

softly-broken Z2-symmetric scalar potential, some authors choose parameters consisting of

β = tan−1 (v2/v1), β − α [which appears in the matrix B in our notation], the charged

scalar mass m±, the neutral scalar masses (mh, mH , and mA), and the soft Z2 breaking

squared-mass term m2
12.
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2.5 Scalar self-couplings

In this section, we demonstrate that some of the scalar self-couplings are related to the

kinetic terms obtained in section 2.2. In particular, it is convenient to enquire which scalar

couplings may be written exclusively in terms of the matrix B (and A), that appear in the

kinetic terms, and the scalar masses m±a and mβ .

We first consider the cubic scalar self-couplings. The scalar potential in eqs. (2.4)–

(2.9) can be expressed in terms of the physical fields using the mixing matrices U and V

in eqs. (2.19)–(2.20). The cubic vertex interactions can therefore be written as

V3 = λij,kl(U
†)aiUjb

[
(V †)βkvl + v∗kVlβ

]
S0
βS
−
a S

+
b

+
1

2
λij,kl(V

†)δiVjγ

[
(V †)βkvl + v∗kVlβ

]
S0
βS

0
γS

0
δ . (2.85)

In contrast to the terms of the interaction Lagrangian that couple the scalar and vector

bosons given in eqs. (2.51)–(2.54), additional structures appear beyond those combinations

of U and V that define the matrices A and B. However, if we focus on the cubic couplings

that involve at least one Goldstone field, the form of the cubic interaction terms simplify

significantly and can be expressed in terms of the A and B matrices and the squared masses

of the physical scalars.17 Indeed, this is to be expected, as these interaction terms are

related by gauge-fixing to the pure gauge boson terms arising from the kinetic Lagrangian,

which can be expressed in terms of the matrices A and B, as shown in eqs. (2.51)–(2.54).

In order to simplify the non-vanishing cubic potential terms we employ eqs. (2.22)–

(2.35), from which we obtain the further useful relations[
U †V

] [
U †V

]†
= 2·1N×N =⇒

2N∑
β=1

(U †V )aβ(V †U)βb = 2δab , (2.86)

[
U †V

]† [
U †V

]
= 1N×N + i Im(V †V ) =⇒

N∑
a=1

(V †U)αa(U
†V )aβ = δαβ + i Im(V †V )αβ ,

(2.87)

and

(U †V )a1 = iδa1 , (2.88)

(U †V )1β = − Im(V †V )1β + iδ1β . (2.89)

Moreover, we must use the crucial relations given in eqs. (2.46)–(2.47), relating some com-

binations of quartic couplings with the scalar masses. This simplifies considerably the final

expressions. The end result is,18

• For S0G−S+ + S0S−G+:

V3 ⊃
1

v

[
Baβ

(
m2
β −m2

±a
)
S0
βS
−
a G

+ + (B†)βa
(
m2
β −m2

±a
)
S0
βS

+
a G
−
]
. (2.90)

17In particular, we find that the couplings G0S−S+, G0G±S∓, G0G0G0, and G0G−G+ vanish. The

vanishing of the G0G0G0, and G0G−G+ couplings is a well-known result of the SM.
18The expressions for the cubic couplings of the Goldstone bosons and physical Higgs scalars in terms of

scalar squared-masses was first obtained in the CP-conserving 2HDM in ref. [38].
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Kinetic lagrangian Scalar potential

Coupling Feynman rule Coupling Feynman rule

[W±G∓Z] −igMZs
2
W gµν [G±G∓G0] Null

[ZS+
a S

−
a ] − ig c2W2cW

(p+a − p−a )µ , ∀a [G0S+
a S

−
a ] Null , ∀a

[ZS0
βS

0
γ ] g

2cW
(p0β − p0γ)µAβγ , ∀β 6= γ [G0S0

βS
0
γ ] − i

v (m2
β −m2

γ)Aβγ , ∀β 6= γ ≥ 2

[ZG0S0
β ] g

2cW
(p0G − p0β)µA1β , ∀β 6= 1 [G0G0S0

β ] i
vm

2
βA1β , ∀β 6= 1

[W+S−
a S

0
β ] ig

2 (p−a − p0β)µBaβ , ∀a, ∀β 6= 1 [G+S−
a S

0
β ] − i

v [m2
β −m2

±a]Baβ , ∀a, ∀β 6= 1

[W+G−S0
β ] − ig2 (p−G − p0β)µA1β , ∀β 6= 1 [G+G−S0

β ] i
vm

2
βA1β , ∀β 6= 1

[W+G−G0] − g2 (p−G − p0G)µ [G+G−G0] Null

[ZZS0
β ] − igMZ

cW
A1β gµν , ∀β 6= 1 [G0G0S0

β ] i
vm

2
βA1β , ∀β 6= 1

[W+W−S0
β ] −igMWA1β gµν , ∀β 6= 1 [G+G−S0

β ] i
vm

2
βA1β , ∀β 6= 1

Table 2. All cubic couplings from the kinetic lagrangian (except photon) and their scalar potential

counterparts obtained by substituting all gauge bosons by the corresponding Goldstone bosons.

• For S0G+G−:

V3 ⊃ −
1

v
G+G−m2

βA1β S
0
β (β ≥ 2) . (2.91)

• For G0S0S0:

V3 ⊃
1

v
G0m2

βAβγS
0
βS

0
γ (γ 6= β ≥ 2) . (2.92)

• For G0G0S0:

V3 ⊃ −
1

2v
G0G0m2

βA1βS
0
β (β ≥ 2) , (2.93)

where there is an implicit sum over repeated indices. Achieving the simplified forms of the

couplings above is rather laborious. For example, the explicit derivation of eq. (2.93) is

given in appendix D.

The cubic couplings that are present in the kinetic lagrangian are also present in parallel

with the scalar potential. A comparison is shown in table 2, where we have collected the rel-

evant Feynman rules. We notice that both sets of couplings depend on the same parameters:

A1β = Im(V †V )1β , Aαβ = Im(V †V )αβ , and Baβ = (U †V )aβ . (2.94)

This is not surprising, since gauge boson couplings and Goldstone boson couplings are

related by the gauge-fixing, as previously noted. Although the equivalence theorem [39] is

not a requirement on the couplings but rather on full processes [40], the relation between

these couplings insures that the equivalence theorem is satisfied.
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For the calculation of the quartic couplings we use the general expression

V4 = λij,kl (U
†)ai Ujb (U †)ck Uld (S−a S

+
b )(S−c S

+
d )

+λij,kl (U
†)ai Ujb (V †)αk Vlβ (S−a S

+
b )(S0

αS
0
β)

+
1

4
λij,kl (V

†)αi Vjβ (V †)γk Vlδ (S0
αS

0
β)(S0

γS
0
δ ). (2.95)

It is instructive to focus on the quartic couplings that involve the Goldstone boson fields.

After some very long simplifications, we find the non-vanishing Goldstone-scalar quartic

couplings that involve an even number of Goldstone boson fields listed below.

• For G−G+G−G+:

V4 ⊃
1

2v2
(G−G+)2

2N∑
β=2

m2
β [A1β ]2 (2.96)

• For G−G+S−S+:

V4 ⊃
1

v2
G−G+S−a S

+
b

 2N∑
β=2

m2
βBaβ(B†)βb − 2Yab

 (2.97)

• For G−G−S+S+ + h.c.:

V4 ⊃
1

2v2
G−G−S+

a S
+
b (B∗D2

0B
†)ab + h.c. (2.98)

• For G−G+G0G0:

V4 ⊃
1

2v2
G−G+G0G0

2N∑
β=2

m2
β [A1β ]2 (2.99)

• For G0G0G0G0:

V4 ⊃
1

8v2
G0G0G0G0

2N∑
β=2

m2
β [A1β ]2 (2.100)

• For G0G0S0S0:

V4 ⊃ −
1

2v2
G0G0S0

αS
0
β

[(
B†Y B

)
αβ
−
(
AD2

0A
)
αβ

]
(2.101)

• For G−G+S0S0:

V4 ⊃
1

v2
G−G+S0

αS
0
β

[
(B†D2

±B)αβ − (B†Y B)αβ

]
(2.102)

• For G0G0S−S+:

V4 ⊃
1

v2
G0G0S−a S

+
b

[
(D2
±)ab − Yab

]
(2.103)

• For G−G0S0S+ + h.c.:

V4 ⊃ −
1

v2
G−S+

b G
0S0

β

[
i(B†D2

±)βb + (AD2
0B
†)βb

]
+ h.c. (2.104)
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The corresponding expressions involving an odd number of Goldstone fields are more com-

plicated and will not be given here.

In contrast to the cubic couplings given in eqs. (2.90)–(2.93), additional structures

beyond the matrices A, B and the squared masses of the physical scalars appear in the

expressions above. For example, the quadratic coefficient of the scalar potential in the

charged Higgs basis, Y , appears on the right hand side of eq. (2.97). Note that there is

no simple relation between quartic couplings in the kinetic Lagrangian and quartic terms

from the scalar potential. For example, as in the SM, there is a (G0)
4

coupling, but no

Z4 coupling. This does not violate the equivalence theorem since the processes involving

quartic couplings typically involve other diagrams. In particular, only the sum of all

contributing diagrams must obey the equivalence principle.

3 Sum rules

3.1 Coupling relations and sum rules from the Lagrangian

One can obtain a large number of sum rules from the kinetic part of the Lagrangian and

the scalar potential of the NHDM. In the case of the 2HDM, two of the sum rules that are

usually exhibited (see, e.g., refs. [17, 18, 41, 42]) are∑
k

[S0
kV V ]2 = 1,

[S0
kV V ]2 +

∣∣[S0
kW

∓H±]
∣∣2 = 1 (any k), (3.1)

where k identifies some specific neutral scalar physical field. It is easy to find the corre-

sponding sum rules in the general NHDM:∑
β

[S0
βV V ]2 = 1, (3.2)

[S0
βV V ]2 +

N∑
b=2

∣∣[S0
βW

±S∓b ]
∣∣2 = 1 (for β > 1) , (3.3)

where the indices follow the same notation as above. In this section we use a simplified

notation for the couplings, strictly related to the matrices A and B, in which some coupling

[XaYbZc] is identified as the term in the Lagrangian that depends explicitly on family type

indices. For example, in the Lagrangian term

L ⊃ C1 f(a, b, c)XaYbZc, (3.4)

involving the fields Xa, Yb, Zc and the constant C1, we identify [XaYbZc] = f(a, b, c). In

cases where the corresponding coupling also exists in the SM, this procedure means simply

that we have divided out by the SM coupling C1.

In addition to these, we have found many sum rules for an arbitrarily extended scalar

doublet sector. For example,∣∣[S0
βW

±G∓]
∣∣2 = [S0

βV V ]2 (for β > 1) . (3.5)
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Using this result in eq. (3.3), and recalling that S±1 = G±, we find

N∑
b=1

∣∣[S0
βW

±S∓b ]
∣∣2 = 1 (any β) , (3.6)

2N∑
β=1

[W+
µ S
−
a S

0
β ][ZµS

0
βS

0
γ ] = −i[W+

µ S
−
a S

0
γ ] (any a, γ) . (3.7)

Further equations arising from the kinetic Lagrangian are∣∣[S0
βW

±S∓b ]
∣∣2 =

∣∣[S0
βW

±S∓b Z]
∣∣2 (any b, β) , (3.8)

2N∑
β=1

[ZS0
αS

0
β ]2 = 1, (3.9)

2N∑
α 6=β=1

[ZS0
αS

0
β ]2 = 2N. (3.10)

The relations among different couplings in the kinetic Lagrangian imply that one can write

eq. (3.9) in terms of massive fields (i.e., without the Goldstone bosons) as

[S0
αV V ]2 +

2N∑
β=2

[ZS0
αS

0
β ]2 = 1. (3.11)

We have checked that all our relations are verified when using the couplings in the special

case of the C2HDM. Notice that eqs. (3.5) and (3.8) are not proper sum rules, but rather

relations among couplings valid in our particular model.

These sum rules have been found by employing the NHDM interaction Lagrangian. But

we know that sum rules can also be found for generic Lagrangians by using unitarity argu-

ments, as in refs. [17, 18]. The sum rules we have derived in eqs. (3.2) and (3.6)–(3.8) can

also be found in that fashion. We will revisit this question in section 3.2 and in appendix E.

In the quartic couplings sector, we have found further interesting sum rules. For

example, using the couplings in eq. (2.97), we find19

N∑
a=1

[G−G+S−a S
+
a ] = tr[D2

0]− 2 tr[Y ] , (3.12)

which has the peculiar feature that a sum of couplings involving solely charged particles

yields a contribution that depends on the masses of the neutral fields. Similarly, using the

couplings in eq. (2.102), we find

2N∑
β=1

[G−G+S0
βS

0
β ] = 2 tr[D2

±]− 2 tr[Y ] . (3.13)

19Note that tr[µ] = tr[Y ] is a basis-invariant quantity.
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We can recombine a number of these sum rules as

N∑
a=1

[G−G+S−a S
+
a ]− 2

N∑
b=1

[G0G0S−b S
+
b ] = tr[D2

0]− 2 tr[D2
±] , (3.14)

or
N∑
a=1

[G−G+S−a S
+
a ]−

2N∑
α=1

[G−G+S0
αS

0
α] = tr[D2

0]− 2 tr[D2
±] , (3.15)

because the following equation is satisfied,

2

N∑
a=1

[G0G0S−a S
+
a ] =

2N∑
α=1

[G−G+S0
αS

0
α]. (3.16)

The sum rules involving quartic couplings presented in eqs. (3.12)–(3.16) are new.

3.2 Sum rules from unitarity

The constraints from unitarity have had an historical impact on the development of particle

physics. The idea is that the scattering among vector bosons and/or scalars cannot grow

with energy and must obey the optical theorem. Imagine that one writes the most general

effective couplings between these states, up to dimension four. Forcing the sum of all terms

growing like the fourth power of the center of mass energy (E) to vanish immediately

restricts the vector bosons to originate from a gauge theory [14, 15]. Requiring that all E2

terms vanish forces the scalar-gauge couplings to originate from a gauge theory and further

constrains the couplings [16, 17]. But unitarity also limits the value of the constant in the

E0 terms. This has been used in the past to place limits on (combinations) of the scalar

masses and couplings [16, 18–20].

In the previous section we derived the coupling relations (3.5) and (3.8) and many sum

rules directly from the Lagrangian of the NHDM. We have checked that most sum rules

involving triple couplings can be obtained from those presented in ref. [17], by applying

them to the NHDM and cycling through all possible indices. The exception arises in

applying eqs. (3.2) and (3.3) for the case of V V = ZZ, which are presented in ref. [17]

under the assumption of CP conservation. For completeness, we include in appendix E

a careful and detailed derivation of the sum rules given in eqs. (2.4)–(2.6) of ref. [17].

The derivation of these sum rules does not make use of CP conservation. Nevertheless,

when applied to models with scalars in their section IV, the authors of ref. [17] focus on

models that conserve CP. In particular, they point out that requiring CP conservation,

m2
W = m2

Zc
2
W , and [W+ZS−a ] = 0 leads, through their eq. (4.5), to [ZZS0

β ] = [W+W−S0
β ],

thus turning sum rules that involve [W+W−S0
β ] into sum rules involving [ZZS0

β ] in the

case of a CP conserving Higgs sector. In contrast, the general NHDM may (or not) violate

CP; nevertheless, the same sum rules apply. We include in appendix F a proof that

[ZZS0
β ] = [W+W−S0

β ], which makes no assumption concerning CP conservation, and yet

is valid for scalars in any representation of SU(2)L, provided that the theory satisfies

m2
W = m2

Zc
2
W without fine tuning of the various vevs.
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4 Tree-level unitarity bounds

In this section, we present an algorithm for the determination of the tree-level unitarity

bounds. We check that it reproduces results available in the literature, and present its ap-

plication to two new cases with three Higgs doublets. Finally, the techniques presented here

can be used for faster numerical implementation of unitarity bounds in more complicated

cases, not amenable to closed-form solutions.

The problem of finding the constraints imposed by tree-level unitarity has been ad-

dressed in the case of the 2HDM, both with Z2 symmetry [43] and also for most general

case [44, 45]. For the 2HDM with a Z2 symmetric scalar potential, the results are simple,

but for the most general case one has to compute the eigenvalues of 4× 4 and 3× 3 matri-

ces [44, 45]. For the case of the 3HDM a solution is known for the case of S3 symmetry [46]

where because of the symmetry the solutions are again simple, although the method to

obtain them is already quite complicated.

Clearly, for the NHDM one needs an algorithm that can be easily implemented nu-

merically. As explained in the references above, since one is interested in the high energy

limit, one just needs to evaluate the scattering S-matrix for the two body scalar bosons,

and these arise exclusively from the quartic part of the potential, V4. Then, the first part

of the problem consists in finding the set of two body states that can contribute. For the

cases of low N and high symmetry we can choose conveniently the sets to take advantage

of this [43, 44], but if we are going to solve the problem numerically it is better to have

a simple algorithm of general applicability. Since the electric charge and the hypercharge

are conserved in this high energy scattering, we can separate the states according to these

quantum numbers. For this it is better not to separate the real and imaginary parts of the

neutral components, using the following notation for Higgs doublets

Φ =

[
w+
i

ni

]
, Φ† =

[
w−i

n∗i

]T
. (4.1)

The relevant two body states are given in the entries of table 3, and their complex conju-

gates. As an example, for N = 2 we have,

S++
α = {w+

1 w
+
1 , w

+
1 w

+
2 , w

+
2 w

+
2 }, (4.2)

S+
α = {w+

1 n1, w
+
1 n2, w

+
2 n1, w

+
2 n2}, (4.3)

T+
α = {w+

1 n
∗
1, w

+
1 n
∗
2, w

+
2 n
∗
1, w

+
2 n
∗
2}, (4.4)

S0
α = {n1n1, n1n2, n2n2}, (4.5)

T 0
α = {w−1 w

+
1 , w

−
1 w

+
2 , w

−
2 w

+
1 , w

−
2 w

+
2 , n1n

∗
1, n1n

∗
2, n2n

∗
1, n2n

∗
2}, (4.6)

plus their complex conjugates. It is important to note that the index α is a compound index;

it refers to a set of {i, j} indices. Also note that in eqs. (4.2) and (4.5) the two body states

with equal particles have a normalization of 1/
√

2 that we have not written here (see below).
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Q 2Y State Number of states

2 2 S++
α = w+

i w
+
j , (i = 1, N, j = i,N) α = 1, . . . , 1

2N(N + 1)

1 2 S+
α = w+

i nj , (i = 1, N, j = 1, N) α = 1, . . . , N2

1 0 T+
α = w+

i n
∗
j , (i = 1, N, j = 1, N) α = 1, . . . , N2

0 2 S0
α = ninj , (i = 1, N, j = i,N) α = 1, . . . , 1

2N(N + 1)

0 0 T 0
α = {w−i w

+
j , nin

∗
j}, (i = 1, N, j = 1, N) α = 1, . . . , 2N2

Table 3. List of two body scalar states separated by (Q,Y).

Now we separate the different partial wave amplitudes for the different charges and

hypercharges. We have

16π
(
a++

0,Y=1

)
αβ
≡
(
M++

2

)
αβ
≡ ∂2(V4)

∂S−−α ∂S++
β

[
N(N + 1)

2
× N(N + 1)

2

]
, (4.7)

16π
(
a+

0,Y=1

)
αβ
≡
(
M+

2

)
αβ
≡ ∂2(V4)

∂S−α ∂S
+
β

[
N2 ×N2

]
, (4.8)

16π
(
a+

0,Y=0

)
αβ
≡
(
M+

0

)
αβ
≡ ∂2(V4)

∂T−α ∂T+
β

[
N2 ×N2

]
, (4.9)

16π
(
a0

0,Y=1

)
αβ
≡
(
M0

2

)
αβ
≡ ∂2(V4)

∂S0
α ∂S

0
β

[
N(N + 1)

2
× N(N + 1)

2

]
, (4.10)

16π
(
a0

0,Y=0

)
αβ
≡
(
M0

0

)
αβ
≡ ∂2(V4)

∂T 0
α ∂T

0
β

[
2N2 × 2N2

]
, (4.11)

where we have indicated on the right-hand side the dimensionality of the resulting matrices.

The compound nature of the index α should be taken in account. For instance

∂V4

∂S−−α
= Nij

∂2V4

∂w−i ∂w−j
(4.12)

where the set {i, j} corresponds to α and the normalization Nij is 1/
√

2 for the 2 body

states with equal particles and 1 in all the other cases. This factor can be understood

in the following way. When we take the derivative with respect to the 2 body state with

equal particles we should divide by the normalization 1/
√

2. But on the right-hand side

we are taking derivatives with respect to the individual fields. To avoid double counting

we should divide by two in the case of identical particles, so 1
2( 1√

2
)−1 = 1√

2
.

This procedure can be easily implemented in an algebraic program like Mathematica

and we can easily obtain the five matrices M++
2 ,M+

2 ,M
+
0 ,M

0
2 ,M

0
0 . For simple cases we

can obtain the eigenvalues; for the more complicated cases we can obtain the characteristic

equation and solve it numerically for the eigenvalues.

For illustration, consider the case of the 2HDM. The quartic part of the potential

contains

V4 ⊃
1

2
λ1(w−1 )2(w+

1 )2 +
1

2
λ2(w−2 )2(w+

2 )2 + λ3w
−
2 w
−
1 w

+
1 w

+
2 + λ4w

−
2 w
−
1 w

+
1 w

+
2
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+
1

2
λ5(w−1 )2(w+

2 )2 +
1

2
λ∗5(w−2 )2(w+

1 )2 + λ6(w−1 )2w+
1 w

+
2 + λ∗6w

−
2 w
−
1 (w+

1 )2

+ λ7w
−
2 w
−
1 (w+

2 )2 + λ∗7(w−2 )2w+
1 w

+
2 (4.13)

Using the procedure described above one can easily get for M++
2 ,

M++
2 =


λ1

√
2λ6 λ5√

2λ∗6 λ3 + λ4

√
2λ7

λ∗5
√

2λ∗7 λ2

 , (4.14)

which coincides with the result of ref. [45], up to an interchange of rows and columns.

We have applied this procedure for the known cases in the literature and, to illustrate

the power of the method, we also present two new cases.

4.1 An (almost) trivial case: the Standard Model

Consider the Standard Model with nH = 1. With the conventions of ref. [34], we have

V4 = λ
(

Φ†Φ
)2
, where λ =

g2

8m2
W

m2
H =

m2
H

2v2
. (4.15)

In this case the M matrices reduce to

M++
2 = [2λ], M+

2 = [2λ], M+
0 = [2λ], M0

2 = [2λ], M0
0 =

[
4λ 2λ

2λ 4λ

]
. (4.16)

There are therefore two independent eigenvalues,

Λ1 = 2λ, Λ2 = 6λ . (4.17)

Applying partial wave unitarity to the eigenvalues of the s-wave amplitude matrix, which

is a consequence of the optical theorem,

|a0|2 ≤ |Im a0| ≤ 1 . (4.18)

eq. (4.18) implies that

(Re a0)2 ≤ |Im a0|(1− |Im a0|) . (4.19)

Since the right hand side of eq. (4.19) is bounded by 1
4 , it follows that [47],

|Re a0| ≤
1

2
, (4.20)

which translates into

Λ2 ≤ 8π . (4.21)

This in turn implies

λ ≤ 4π

3
, or mH ≤

√
8π

3
v ' 712 GeV , (4.22)

a well known result [19, 20].
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4.2 Other known cases

We applied the method to the complex 2HDM with Z2 symmetry and we recover the results

of refs. [43, 44]. Next we studied the general complex 2HDM and we also agree with the

results of refs. [44, 45]. Both these cases are for N = 2. A more complicated case is the

3HDM with S3 symmetry. The matrices are larger but we were able to recover all the

results of ref. [46]. This makes us confident that the procedure can be generalized to cases

where the unitarity constraints have not been studied. We consider two new cases.

4.3 The 3HDM with order-4 CP symmetry

Consider the potential of the 3HDM with order-4 CP symmetry given in ref. [48],

V = −m2
11(Φ†1Φ1)−m2

22(Φ†2Φ2 + Φ†3Φ3) + λ1(Φ†1Φ1)2 + λ2

[
(Φ†2Φ2)2 + (Φ†3Φ3)2

]
+ λ3(Φ†1Φ1)(Φ†2Φ2 + Φ†3Φ3) + λ′3(Φ†2Φ2)(Φ†3Φ3) + λ4

[
(Φ†1Φ2)(Φ†2Φ1) + (Φ†1Φ3)(Φ†3Φ1)

]
+ λ′4(Φ†2Φ3)(Φ†3Φ2) +

[
λ5(Φ†3Φ1)(Φ†2Φ1) +

λ6

2

[
(Φ†2Φ1)2 − (Φ†1Φ3)2

]
+ λ8(Φ†2Φ3)2 + λ9(Φ†2Φ3)(Φ†2Φ2 − Φ†3Φ3) + h.c.

]
, (4.23)

with all parameters real except for λ8, λ9 that are complex. Applying the method we get

the following distinct eigenvalues for the M matrices,

Λ1−2 =λ3±λ4 , (4.24)

Λ3 =λ′3−λ′4 , (4.25)

Λ4−5 =λ3±
√
λ2

5+λ2
6 , (4.26)

Λ6−7 =λ3+2λ4±3
√
λ2

5+λ2
6 , (4.27)

Λ8−9 =
1

2

(
2λ1+2λ2+λ′4±

√
4λ2

1−8λ1λ2−4λ1λ′4+4λ2
2+4λ2λ′4+8λ2

4+λ′24

)
, (4.28)

Λ10−11 =3λ1+3λ2+λ′3+
λ′4
2

(4.29)

±

√(
−3λ1−3λ2−λ′3−

λ′4
2

)2

−
(
36λ1λ2+12λ1λ′3+6λ1λ′4−8λ2

3−8λ3λ4−2λ2
4

)
Λ12−14 =Roots of:

x3+x2(−2λ2−2λ′3+λ′4)+x
(
−4λ8λ

∗
8−4λ9λ

∗
9+4λ2λ

′
3+λ′23 −2λ′3λ

′
4

)
+8λ2λ8λ

∗
8+4λ′3λ9λ

∗
9−4λ′4λ8λ

∗
8−4λ2

9λ
∗
8−4λ8(λ∗9)2−2λ2λ

′2
3 +λ′23 λ

′
4 =0, (4.30)

Λ15−17 =Roots of:

x3+x2(−6λ2−3λ′4)+x
(
−36λ8λ

∗
8−36λ9λ

∗
9+12λ2λ

′
3+24λ2λ

′
4−3λ′23 −6λ′3λ

′
4

)
+216λ2|λ8|2−72λ′3|λ8|2+36λ′3|λ9|2−36λ′4|λ8|2+72λ′4|λ9|2−108λ2

9λ
∗
8−108λ8(λ∗9)2

−6λ2λ
′2
3 −24λ2λ

′
3λ
′
4−24λ2λ

′2
4 +2λ′33 +9λ′23 λ

′
4+12λ′3λ

′2
4 +4λ′34 =0, (4.31)

Λ18−21 =Roots of:

x4+x3(−2λ1−4λ2−λ′3−λ′4)+x2
(
−4λ8λ

∗
8−4λ9λ

∗
9+8λ1λ2+2λ1λ

′
3
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+2λ1λ
′
4+4λ2

2+4λ2λ
′
3+4λ2λ

′
4−2λ2

5−2λ2
6

)
+x(8λ1λ8λ

∗
8+8λ1λ9λ

∗
9

+8λ2λ9λ
∗
9+4λ′3λ8λ

∗
8+4λ′4λ8λ

∗
8−4λ5λ6λ

∗
9+2λ2

6λ
∗
8+4λ2

9λ
∗
8+4λ8(λ∗9)2

−8λ1λ
2
2−8λ1λ2λ

′
3−8λ1λ2λ

′
4−4λ2

2λ
′
3−4λ2

2λ
′
4+8λ2λ

2
5+4λ2λ

2
6+2λ′3λ

2
6

+2λ′4λ
2
6−4λ5λ6λ9+2λ2

6λ8

)
−16λ1λ2λ9λ

∗
9−8λ1λ

′
3λ8λ

∗
8−8λ1λ

′
4λ8λ

∗
8−8λ1λ

2
9λ
∗
8−8λ1λ8(λ∗9)2

+8λ2λ5λ6λ
∗
9−2λ′3λ

2
6λ
∗
8−2λ′4λ

2
6λ
∗
8+8λ2

5λ8λ
∗
8+8λ5λ6λ9λ

∗
8+8λ5λ6λ8λ

∗
9

−2λ2
6(λ∗9)2+4λ2

6λ9λ
∗
9+8λ1λ

2
2λ
′
3+8λ1λ

2
2λ
′
4−8λ2

2λ
2
5−4λ2λ

′
3λ

2
6−4λ2λ

′
4λ

2
6

+8λ2λ5λ6λ9−2λ′3λ
2
6λ8−2λ′4λ

2
6λ8−2λ2

6λ
2
9 =0. (4.32)

4.4 The 3HDM with Z3 symmetry

As a second example, we consider the potential for the 3HDM with a Z3 symmetry [49],

that we write in the form

V = a1(Φ†1Φ1) + a2(Φ†2Φ2) + a3(Φ†3Φ3) (4.33)

+ r1

(
Φ†1Φ1

)2
+ r2

(
Φ†2Φ2

)2
+ r3

(
Φ†3Φ3

)2
+ 2 r4

(
Φ†1Φ1

)(
Φ†2Φ2

)
+ 2 r5

(
Φ†1Φ1

)(
Φ†3Φ3

)
+ 2 r6

(
Φ†2Φ2

)(
Φ†3Φ3

)
+ 2 r7

(
Φ†1Φ2

)(
Φ†2Φ1

)
+ 2 r8

(
Φ†1Φ3

)(
Φ†3Φ1

)
+ 2 r9

(
Φ†2Φ3

)(
Φ†3Φ2

)
+

[
2 c4

(
Φ†1Φ2

)(
Φ†1Φ3

)
+ 2 c12

(
Φ†1Φ2

)(
Φ†3Φ2

)
+ 2 c11

(
Φ†1Φ3

)(
Φ†2Φ3

)
+ h.c.

]
,

where the parameters ai and ri are real, while ci are complex. We get the following

eigenvalues of the M matrices:

Λ1 = 2(r4 − r7) , (4.34)

Λ2 = 2(r5 − r8) , (4.35)

Λ3 = 2(r6 − r9) , (4.36)

Λ4−5 = r1 + r6 + r9 ±
√

8|c4|2 + r2
1 − 2r1r6 − 2r1r9 + r2

6 + 2r6r9 + r2
9 , (4.37)

Λ6−7 = r2 + r5 + r8 ±
√

8|c12|2 + r2
2 − 2r2r5 − 2r2r8 + r2

5 + 2r5r8 + r2
8 , (4.38)

Λ8−9 = r3 + r4 + r7 ±
√

8|c11|2 + r2
3 − 2r3r4 − 2r3r7 + r2

4 + 2r4r7 + r2
7 , (4.39)

Λ10−12 = Roots of:

x3 + x2(−2r1 − 2r2 − 2r3) + x
(
4r1r2 + 4r1r3 + 4r2r3 − 4r2

7 − 4r2
8 − 4r2

9

)
− 8r1r2r3 + 8r1r

2
9 + 8r2r

2
8 + 8r3r

2
7 − 16r7r8r9 = 0 , (4.40)

Λ13−15 = Roots of:

x3 + x2(−2r4 − 2r5 − 2r6)

+ x
(
−4|c11|2 − 4|c12|2 − 4|c4|2 + 4r4r5 + 4r4r6 + 4r5r6

)
− 8c4c

∗
11c
∗
12 − 8c11c12c

∗
4 + 8r4|c11|2 + 8r5|c12|2 + 8r6|c4|2 − 8r4r5r6 = 0 , (4.41)

– 27 –



J
H
E
P
1
1
(
2
0
1
7
)
0
9
5

Λ16−18 = Roots of:

x3 + x2(−6r1 − 6r2 − 6r3) + x
(
36r1r2 + 36r1r3 + 36r2r3 − 16r2

4 − 16r4r7

−16r2
5 − 16r5r8 − 16r2

6 − 16r6r9 − 4r2
7 − 4r2

8 − 4r2
9

)
− 216r1r2r3

+ 96r1r
2
6 + 96r1r6r9 + 24r1r

2
9 + 96r2r

2
5 + 96r2r5r8 + 24r2r

2
8 + 96r3r

2
4

+ 96r3r4r7 + 24r3r
2
7 − 128r4r5r6 − 64r4r5r9 − 64r4r6r8 − 32r4r8r9

− 64r5r6r7 − 32r5r7r9 − 32r6r7r8 − 16r7r8r9 = 0 , (4.42)

Λ19−21 = Roots of:

x3 + x2(−2r4 − 2r5 − 2r6 − 4r7 − 4r8 − 4r9) + x (−36c11c
∗
11 − 36c12c

∗
12

− 36c4c
∗
4 + 4r4r5 + 4r4r6 + 8r4r8 + 8r4r9 + 4r5r6 + 8r5r7 + 8r5r9 + 8r6r7

+8r6r8 + 16r7r8 + 16r7r9 + 16r8r9)

− 216c4c
∗
11c
∗
12 − 216c11c12c

∗
4 + 72c11r4c

∗
11 + 144c11r7c

∗
11

+ 72c12r5c
∗
12 + 144c12r8c

∗
12 + 72c4r6c

∗
4 + 144c4r9c

∗
4 − 8r4r5r6 − 16r4r5r9

− 16r4r6r8 − 32r4r8r9 − 16r5r6r7 − 32r5r7r9 − 32r6r7r8 − 64r7r8r9 = 0 . (4.43)

4.5 Unitarity bounds for specific processes in the NHDM

In the previous sections, we have presented an algorithm which computes tree-level uni-

tarity bounds on a given chosen model of scalar doublets. The method of Lee, Quigg and

Thacker [19, 20], which we have generalized and optimized, yields necessary and sufficient

conditions for tree unitarity in the scalar and gauge sectors of any NHDM. A possible

shortcoming of this method is the computational time needed to find all the eigenvalues for

each point in parameter space in the case of a general scalar doublet theory, i.e. without

symmetries, or with a large N .

A complementary approach of finding necessary, although not sufficient conditions for

every NHDM can be attained by using unitarity bounds on specific processes. Therefore, we

can compute the partial-wave coefficient a0 for gauge-gauge and gauge-scalar scatterings,

using that from the optical theorem |Re(a0)| < 1/2, and that we can use the Equivalence

Theorem to simplify calculations. The Equivalence Theorem allows us to perform all

calculations from the scalar potential, and therefore, we can always define

|Re(a0)| ≤ 1

2
⇒ |Re(M)| ≤ 8π , (4.44)

where M stands for the amplitude of the process. Another important property of this

method, also used in the previous section, is that we will only consider the quartic couplings

contribution at high energy. We use this simple approach to work out some examples in

the NHDM for an arbitrary N .

4.5.1 The W+W− → W+W− process

As a first example, we consider the process with amplitudeM (W+W− →W+W−), which

we approximate at high energies to M (G+G− → G+G−). The leading order contribution
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for the process will be the quartic coupling with amplitude

MQ

(
G+G− → G+G−

)
= − 2

v2

2N∑
β=2

m2
β [A1β ]2 = − 2

v2

2N∑
β=2

m2
β

[
S0
βV V

]2
, (4.45)

where we have used eq. (2.96) and the notation from section 3. It is straightforward to see

that this process enforces the bound∣∣∣∣∣∣
2N∑
β=2

m2
β

[
S0
βV V

]2∣∣∣∣∣∣ ≤ (872 GeV)2 . (4.46)

It is interesting to note that in the alignment limit of the coupling [hV V ]NHDM =

[hV V ]SM we cannot further constrain any masses of new neutral scalars. This observation

is due to the bound in the A matrix itself, which is orthogonal, implying that
∑

β [A1β ]2 = 1.

This bound is given as a special case of eq. (2.10c) of ref. [16], and it is valid in any NHDM.

4.5.2 The ZS+
a → ZS+

a process

We now turn to the unitarity bounds arising from the ZS+
a → ZS+

a scattering. Using the

same reasoning as before, we use the quartic coupling of eq. (2.103). We then have

MQ

(
G0S+

a → G0S+
a

)
= − 2

v2

[
(D2
±)aa − (U †µU)aa

]
= − 2

v2

[
(D2
±)aa − Yaa

]
, (4.47)

where Y is the quadratic parameter of the lagrangian in the charged Higgs basis. Using

the optical theorem we find that ∣∣m2
±a − Yaa

∣∣ ≤ 4πv2 , (4.48)

Although one cannot predict mass bounds for the charged scalars in this process, it is

possible to study numerically the dependence on a given choice of Y . This parameter in

the charged Higgs basis is a physical one and can, in principle, be measured.

4.5.3 The W+S−
a → W+S−

a process

As a final example we compute the unitarity bounds for the process W+S−a →W+S−a . We

follow the same arguments as before and write the quartic coupling in eq. (2.97) as

MQ

(
G+S−a → G+S−a

)
= − 1

v2

[
(BD2

0B
†)aa − 2Yaa

]
, (4.49)

where Baβ is the coupling to [S0
βW

+S−a ] and (B†)βa is the coupling to [S0
βW

−S+
a ]. We can

therefore use the optical theorem to obtain,∣∣∣(BD2
0B
†)aa − 2Yaa

∣∣∣ ≤ 8πv2 . (4.50)

It is convenient to rewrite eq. (4.50) as,∣∣∣∣∣∣
2N∑
β=2

m2
β [S0

βW
+S−a ][S0

βW
−S+

a ]− 2Yaa

∣∣∣∣∣∣ ≤ 8πv2 , (4.51)

so that the dependence on cubic couplings is explicit.
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5 Conclusions

We have studied the most general SU(2)L × U(1)Y theory with N Higgs doublets. We

have stressed the importance of the charged Higgs basis, where the magnitudes and basis-

invariant combinations of phases of its scalar couplings Y and Z are observables. The

kinetic Lagrangian depends exclusively on a N×2N matrix B, or equivalently the 2N×2N

real orthogonal matrix B̃ as defined in eq. (2.64), which governs the relation between

the neutral scalar components of the scalar doublets in the charged Higgs basis and the

neutral Higgs mass eigenstates. The matrix B (or B̃) depends on N − 1 unphysical phases

(corresponding to the non-uniqueness of the charged Higgs basis) and on 2(N−1)2 physical

parameters. Of these, N(N − 1) appear in the special combination A = Im(B†B).

Although new parameters beyond B appear in the scalar potential, many couplings

involving the Goldstone bosons G0 and G± can be related to couplings involving Z0 and

W±, as expected from consistency with gauge fixing. We use the crucial eqs. (2.46)–(2.47)

to show that such relations indeed hold. This is also consistent with bounds from unitarity,

which are discussed in great detail. In particular, we develop an efficient algorithm for the

inclusion of such bounds in NHDM and employ it in two new 3HDM models with a Z3 and

with a order-4 CP symmetry, respectively. Some model independent necessary constraints

are shown, by applying the optical theorem to selected processes.

In models where the scalar potential exhibits additional symmetries, some new param-

eters may appear to arise, relating the original basis to the charged Higgs basis (thereby

acquiring physical significance). For example, such a case arises in the 2HDM with a Z2-

symmetric scalar potential, where β is the angle that rotates the basis in which the Z2

symmetry is manifest into the charged Higgs basis. But, such parameters can always be

re-expressed in terms of those discussed here [e.g., as shown for β in eqs. (51) and (52) of

ref. [37]]. New parameters do arise when fermions are included, which will be addressed

elsewhere [13].
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A The Higgs basis and the charged Higgs basis

In section 2.1, we have discussed how to determine the physical charged and neutral scalar

mass eigenstates starting from a generic basis of scalar fields {Φk}. The charged and neutral
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components of the kth scalar doublet can be expressed as linear combinations of the physical

charged and neutral scalar mass eigenstates [cf. eqs. (2.19) and (2.20), respectively], where

the corresponding coefficients define the matrices U and V . To find the physical couplings,

we first determine the scalar potential minimum conditions in the original (generic) basis

(these stationarity conditions given in eq. (2.11) are complicated coupled cubic equations

in the vevs, vk). Substituting these conditions back into eqs. (2.7)–(2.9) and re-expressing

the generic basis scalar fields in terms of the physical charged and neutral scalar mass

eigenstates yields the desired expressions for the physical couplings.

Note that in determining the charged and neutral scalar mass eigenstates via (2.19)

and (2.20), one must decompose the scalar doublets into their charged and neutral compo-

nents, treating each component separately. This hides an important characteristic of the

Higgs potential — namely, physical observables must be invariant under a unitary transfor-

mation among the N scalar doublets. This is known as basis invariance, which is discussed

at length in refs. [23, 24, 26].

It is often more convenient to perform the analysis of the NHDM by first transforming

from the generic basis to the so-called Higgs basis [21–24], in which the neutral vev resides

entirely in the first scalar doublet. This is achieved through a unitary transformation X,

Φj =

N∑
k=1

XjkΦ
H
k , (A.1)

such that

Xj1 =
vj
v
≡ v̂j . (A.2)

Since X is unitary, we can invert eq. (A.1) to obtain

ΦH
` =

N∑
j=1

X∗j`Φj . (A.3)

We employ the normalization of the vevs such that 〈Φ0
j 〉 ≡ vj/

√
2. Hence, taking the

vacuum expectation value of both sides of eq. (A.3) and making use of eq. (A.2) yields

〈ΦH0
1 〉 = v/

√
2 , where v2 ≡

N∑
j=1

|vj |2 = (246 GeV)2. (A.4)

Moreover, 1
2v

2 =
∑

j Φ∗jΦj =
∑

` ΦH∗
` ΦH

` , since X is unitary. Thus, one can immediately

conclude that

〈ΦH0
1 〉 = v/

√
2, 〈ΦH0

k 〉 = 0 (for k = 2, . . . , N). (A.5)

In light of eqs. (2.38) and (2.43), it follows that the basis where the first scalar field contains

the would-be Goldstone bosons coincides with the basis where all scalar doublets except

the first have zero vev. Since only Xj1 is determined, “the Higgs basis” is not uniquely

determined. More precisely, the Higgs basis constitutes a class of bases, since starting in

any given Higgs basis, one can still perform an (N − 1)× (N − 1) unitary transformation

on ΦH
k (k = 2, . . . , N) without altering eq. (A.5). For example, if N = 2, one can still
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rephase the second Higgs doublet via ΦH
2 → exp(iχ)ΦH

2 without leaving the class of Higgs

bases.20 Comparing eq. (A.2) with eqs. (2.29) and (2.30), we conclude immediately that

the charged component of ΦH
1 is G+, while the imaginary part of the neutral component is

G0. The difference between eqs. (2.19)–(2.20) and eq. (A.5) is that, in the latter, we have

also transformed another combination of the real components of Φk, which yields a real

field H0 that is not a mass eigenstate. Thus, we may parameterize

ΦH
1 =

 G+

1√
2

(
v +H0 + iG0

)
 . (A.6)

One particularly nice feature of the Higgs basis is the simplification obtained in the

stationarity conditions of eq. (2.11),

µi1 + λi1,11v
2 = (M2

±)i1 = 0, (A.7)

and in the masses of eq. (2.10) and eqs. (2.13)–(2.15) [9]:

(M2
±)ij = µij + v2λij,11, (A.8)

(M2
R)ij = Re

[
µij + v2 (λij,11 + λi1,1j + λi1,j1)

]
, (A.9)(

M2
I

)
ij

= Re
[
µij + v2 (λij,11 + λi1,1j − λi1,j1)

]
, (A.10)(

M2
RI

)
ij

= −Im
[
µij + v2 (λij,11 + λi1,1j − λi1,j1)

]
. (A.11)

Note that the couplings in eqs. (A.7)–(A.11) are calculated in the Higgs basis ; they are

not the couplings µ and λ of the original generic basis of eq. (2.2). To derive the charged

and neutral scalar mass eigenstates, one must now perform an (N − 1)× (N − 1) unitary

transformation on the charged components of ΦH
k (k = 2, . . . , N), and a (2N−1)×(2N−1)

unitary transformation on the 2N − 1 neutral scalar components consisting of H0 and the

ΦH
k (k = 2, . . . , N).

Any matrix X obeying eq. (A.2) will yield a Higgs basis where, by definition, only

the first scalar doublet has a non-zero vev. Of the infinitely many choices for X that

satisfy eq. (A.2), it is particularly interesting to consider the transformation X = U ,

where U is the unitary matrix defined in eq. (2.19) that yields the physical charged Higgs

mass eigenstates [10]. Notice that we have left the scalar doublet structure intact; in

this procedure, the neutral components transform as the charged components. Thus, in

general, the corresponding neutral partner of the physical charged scalar will not be a mass

eigenstate. We define such a basis as the charged Higgs basis,

Φj =

N∑
k=1

UjkΦ
C
k . (A.12)

which is a subclass of the class of Higgs bases defined above. Now, eqs. (2.29) and (A.5)

remain valid and we may parameterize

ΦH
1 =

 G+

1√
2

(
v +H0 + iG0

)
 , ΦC

2 =

 H+
2

1√
2
ϕC0

2

 , . . . , ΦC
N =

 H+
N

1√
2
ϕC0
N

 , (A.13)

20The requirement that no physical observable can depend on the choice of χ provided the original

motivation for the basis invariance considerations in the Higgs sector [22].
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where H+
2 , . . . ,H

+
N are the physical charged Higgs mass eigenstate fields, with correspond-

ing masses m2
±,i. In this first step, the neutral components are transformed by

Re(ϕ0
1)

...

Re(ϕ0
N )

Im(ϕ0
1)

...

Im(ϕ0
N )


= ŨR



Re(ϕC0
1 )

...

Re(ϕC0
N )

Im(ϕC0
1 )

...

Im(ϕC0
N )


, (A.14)

where ϕC0
1 ≡ H0 + iG0, with

ŨR ≡


ReU −ImU

ImU ReU


. (A.15)

After this first step, eqs. (A.8)–(A.11) become

(M2
±)ij = Yij + v2Zij,11 = δijm

2
±,i, (A.16)

(M2
R)ij = δijm

2
±,i + v2 Re [Zi1,1j + Zi1,j1] , (A.17)(

M2
I

)
ij

= δijm
2
±,i + v2 Re [Zi1,1j − Zi1,j1] , (A.18)(

M2
RI

)
ij

= −v2 Im [Zi1,1j − Zi1,j1] , (A.19)(
M2
RI

)T
ij

= v2 Im [Zi1,1j + Zi1,j1] . (A.20)

Thus,

2v2Zi1,1j =
[
(M2

R)ij + (M2
I )ij − 2δijm

2
±,i
]

+ i
[(
M2
RI

)T
ij
−
(
M2
RI

)
ij

]
, (A.21)

2v2Zi1,j1 =
[
(M2

R)ij − (M2
I )ij

]
+ i
[(
M2
RI

)T
ij

+
(
M2
RI

)
ij

]
. (A.22)

In addition, (
M2
I

)
i1

= 0 =
(
M2
I

)
1j
,(

M2
RI

)
i1

= 0 =
(
M2
RI

)T
1j
, (A.23)

which implies that the N + 1st row and column of the matrix,
M2
R M2

RI

(M2
RI)

T M2
I


, (A.24)
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vanish, corresponding to the massless Im ϕC0
1 = G0. As a result,

2v2Z∗11,1j = 2v2Z11,j1 = (M2
R)1j + i

(
M2
RI

)
1j
, for j 6= 1,

2v2Z11,11 = (M2
R)11. (A.25)

The first equality above is a consequence of eq. (2.3), and it is consistent with eq. (A.21)

because m2
±,1 is the mass of G+, which vanishes. Notice that the couplings in Y and Z

eqs. (A.16)–(A.22) are calculated in the charged Higgs basis ; they are not the couplings µ

and λ of the original generic basis in eq. (2.2).

To determine the neutral scalar mass eigenstates, one must diagonalize the real or-

thogonal (2N − 1)× (2N − 1) squared-mass matrix that mixes the (2N − 1) neutral scalar

fields H0,Re ϕC0
2 , . . . ,Re ϕC0

N , Im ϕC0
2 , . . . , Im ϕC0

N (which are defined in the charged Higgs

basis). This is achieved thorough the N × 2N matrix V C

ϕC0
k =

2N∑
β=1

V C
kβS

0
β , (A.26)

where

V C
k1 = iδk1 (k = 1 . . . N),

Im(V C
1β) = δ1β (β = 1 . . . 2N). (A.27)

One can define the real orthogonal 2N × 2N matrix Ṽ C in analogy with eq. (2.21), which

satisfy equations analogous to eqs. (2.22)–(2.24). Deleting the first row and column of Ṽ C

yields the matrix that diagonalizes the squared-mass matrix of the neutral scalars fields in

the charged Higgs basis.

Performing the neutral scalar squared-mass diagonalization in the charged Higgs basis

can be especially useful in some circumstances. Eqs. (2.46) and (2.47) assume very simple

forms in the charged Higgs basis,

2v2Zi1,1j = −2(D2
±)ij +

(
BD2

0B
†
)
ij
,

2v2Zi1,j1 =
(
BD2

0B
T
)
ij
. (A.28)

As a further example, we notice that the cubic terms of the scalar potential in eq. (2.8)

may be written in the charged Higgs basis as

V3 = v

(
S−i S

+
j +

1

2
ϕC0∗
i ϕC0

j

)[
Zij,k1ϕ

C0∗
k + Zij,1kϕ

C0
k

]
. (A.29)

All couplings with two indices equal to 1 may be related with eqs. (A.21)–(A.22), and hence

can be related to the scalar masses. We find

vV3 =

(
S−1 S

+
1 +

1

2
|ϕC0

1 |2
){(

M2
R

)
11

ReϕC0
1 +

N∑
k=2

[(
M2
R

)
1k

ReϕC0
k +

(
M2
RI

)
1k

ImϕC0
k

]}

+

(
S−i S

+
1 +

1

2
ϕC0∗
i ϕC0

1

)[(
M2
R

)
1i

+ i
(
M2
RI

)
1i

]
ReϕC0

1 + h.c.
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+

(
S−i S

+
1 +

1

2
ϕC0∗
i ϕC0

1

) N∑
k=2

{[[(
M2
R

)
ik
− δikm2

±,k
]

+ i
(
M2
RI

)T
ik

]
ReϕC0

k

+
[(
M2
RI

)
ik

+ i
[(
M2
I

)
ik
− δikm2

±,k
]]

ImϕC0
k

}
+ h.c.

+

(
S−i S

+
j +

1

2
ϕC0∗
i ϕC0

j

)
2v2Zij,11ReϕC0

1

+

(
S−i S

+
j +

1

2
ϕC0∗
i ϕC0

j

)
v2

N∑
k=2

[
Zij,k1ϕ

C0∗
k + Zaij,1kϕ

C0
k

]
, (A.30)

where there are implicit sums over repeated indices, i = 2, . . . , N and j = 2, . . . , N .

As in the case of the Higgs basis, the charged Higgs basis is also not uniquely

determined. Indeed, the charged Higgs basis is a class of bases, since starting in

any given charged Higgs basis, one can separately rephase the N − 1 scalar doublet

fields, ΦC
2 ,Φ

C
3 , . . . ,Φ

C
N , while preserving the corresponding charged components as mass-

eigenstate fields. It is convenient to keep track of this rephasing degree of freedom. Thus,

in eq. (2.19), we will choose the unitary matrix U such that Uk1 = v̂k and make some

conventional choice for the overall phases of the column vectors Ukj , for j = 2, 3, . . . , N .

Such a choice picks out one of the possible charged Higgs bases. In this basis, the cor-

responding physical charged Higgs fields are denoted by S+
a (for a = 2, 3, . . . , N). One

can of course transform to any other charged Higgs basis by an appropriate rephasing of

ΦC
2 ,Φ

C
3 , . . . ,Φ

C
N , in which case the corresponding physical charged Higgs fields are also

rephased, S+
a → eiχaS+

a .

B Connections with the 2HDM

B.1 2HDM with a softly-broken Z2 discrete symmetry

The Lagrangian shown in sections 2.2 and 2.5 depends on the matrices U and V introduced

in eqs. (2.19) and (2.20). This is not the notation commonly used in two Higgs doublet

models (2HDM) [7, 50]. Here we make the connection to the notation used in the complex

two Higgs doublet model (C2HDM), where the Z2 symmetry (Φ1 → Φ1, Φ2 → −Φ2) is

softly broken by a complex squared-mass parameter [51–54]. In this case, one transforms

to the Higgs basis [22, 26] through(
H1

H2

)
=

(
cβ sβ

−sβ cβ

) (
Φ1

Φ2

)
, (B.1)

where √
2〈Φ0

1〉 ≡ v1 = v cβ ,
√

2〈Φ0
2〉 ≡ v2 = v sβ . (B.2)

In eq. (B.2), cβ = cosβ, sβ = sinβ, and v =
√
v2

1 + v2
2 = (

√
2GF )−1/2. Without loss of

generality, we have taken the vevs v1 and v2 real.21 The doublets in the Higgs basis may

21This just redefines the phase of terms in the scalar potential sensitive to the relative phase between Φ1

and Φ2.
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be written

H1 =

 G+

1√
2
(v + h+ iG0)

 , H2 =

 H+

1√
2
(R+ iI)

 , (B.3)

where G± and G0 are the Goldstone bosons and H± are the physical charged scalars. Thus,

the matrix U of eqs. (2.19) is simply

U =

(
cβ −sβ
sβ cβ

)
. (B.4)

Let us parameterize the scalars Φ1 and Φ2 in the original generic basis as

Φ1 =

 ϕ+
1

1√
2
(v1 + η1 + iχ1)

 , Φ2 =

 ϕ+
2

1√
2
(v2 + η2 + iχ2)

 . (B.5)

Eqs. (B.1) and (B.3) yield for the massless would-be Goldstone boson G0 = cβχ1 + sβχ2.

We define the orthogonal state

η3 = −sβχ1 + cβχ2. (B.6)

The fields η1, η2, and η3 combine into the mass eigenstates h1, h2, and h3 as
h1

h2

h3

 = R


η1

η2

η3

 , (B.7)

where the orthogonal matrix may be parameterized as

R =


c1c2 s1c2 s2

−(c1s2s3 + s1c3) c1c3 − s1s2s3 c2s3

−c1s2c3 + s1s3 −(c1s3 + s1s2c3) c2c3

 . (B.8)

Here, si = sinαi, ci = cosαi (i = 1, 2, 3), and, without loss of generality, the angles may

be restricted to [55]

− π/2 < α1 ≤ π/2, −π/2 < α2 ≤ π/2, 0 ≤ α3 ≤ π/2. (B.9)

By definition, we take the masses of the neutral scalars in increasing order: m1 < m2 < m3.

We would like to recombine these expressions into the form of eqs. (2.1) and (2.21):
Reϕ0

1

Reϕ0
2

Imϕ0
1

Imϕ0
2

 = Ṽ


G0

h1

h2

h3

 =

(
Re V

Im V

)

G0

h1

h2

h3

 . (B.10)
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We find

Ṽ =


0 c1c2 −c3s1 − c1s2s3 −c1c3s2 + s1s3

0 c2s1 c1c3 − s1s2s3 −c3s1s2 − c1s3

cβ −s2sβ −c2s3sβ −c2c3sβ

sβ s2cβ c2s3cβ c2c3cβ

 (B.11)

and

B̃ =


0 c̃1c2 −c3s̃1 − c̃1s2s3 −c̃1c3s2 + s̃1s3

0 c2s̃1 c̃1c3 − s̃1s2s3 −c3s̃1s2 − c̃1s3

1 0 0 0

0 s2 c2s3 c2c3

 , (B.12)

which satisfies eqs. (2.67), as expected. As we have seen in sections 2.2 and 2.5, several

important couplings, including the couplings of each neutral scalar with two vector bosons,

involve the special antisymmetric combination

A = Im(B†B) =


0 −c2c̃1 s2s3c̃1 + c3s̃1 c3s2c̃1 − s3s̃1

c2c̃1 0 −c3s2c̃1 + s3s̃1 s2s3c̃1 + c3s̃1

−s2s3c̃1 − c3s̃1 c3s2c̃1 − s3s̃1 0 c2c̃1

−c3s2c̃1 + s3s̃1 −s2s3c̃1 − c3s̃1 −c2c̃1 0

 ,

(B.13)

where s̃1 = sin (α1 − β) and c̃1 = cos (α1 − β). Notice that, although three angles appear,

there are in fact only two independent parameters in the most general orthogonal and

antisymmetric 4× 4 matrix. Indeed, such a matrix can always be parameterized as
0 −c̄1 s̄1c̄2 s̄1s̄2

c̄1 0 −s̄1s̄2 s̄1c̄2

−s̄1c̄2 s̄1s̄2 0 c̄1

−s̄1s̄2 −s̄1c̄2 −c̄1 0

 , (B.14)

where c̄k = cos θk and s̄k = sin θk, for k = 1, 2. Thus, of the three angles in the matrix

R, only two combinations can be determined by measurements involving solely the neutral

scalars.

The complete set of Feynman rules for the C2HDM is presented on a webpage [56]. We

have checked explicitly that the couplings in sections 2.2 and 2.5 reproduce the C2HDM

Feynman rules in [56]. This is a highly non-trivial cross-check since the expressions are very

complicated when written in terms of the angles αi and β. Moreover, for those couplings

involving masses the equality is only obtained when using the relation

m2
3 =

m2
1R13(R12 tanβ −R11) +m2

2 R23(R22 tanβ −R21)

R33(R31 −R32 tanβ)
, (B.15)

which holds in the C2HDM [54]. The following relations are also useful:

A1, i+1 = − cosβ Ri1 − sinβ Ri2,

Ai+1, j+1 = −εijk [cosβ Rk1 + sinβ Rk2] . (B.16)
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In the limit of the real 2HDM (s2 → 0 and s3 → 0), one finds

A =


0 −c̃1 s̃1 0

c̃1 0 0 s̃1

−s̃1 0 0 c̃1

0 −s̃1 −c̃1 0

 . (B.17)

It is also interesting to consider what happens in the SM, where

φ0 = h+ iG0 =
(
i 1

)(G0

h

)
. (B.18)

Thus, V = (i 1), and

V †V =

(
1 −i
i 1

)
, (B.19)

confirming that Re(V †V ) = 12×2 and Im(V †V ) is antisymmetric.

B.2 Basis-independent treatment of the most general 2HDM

By using the basis-independent techniques introduced in refs. [24, 25], one can analyze the

most general CP-violating 2HDM (with no additional symmetries imposed on the scalar

potential) in terms of quantities that are independent of the choice of basis for the two

scalar doublet fields. All physical observables of the theory can be expressed in terms of

such basis-independent quantities. It is instructive to see how this formalism is related to

the treatment of the NHDM given in section 2.

Since the notation of ref. [25] differs somewhat from the notation used in this paper,

we provide here a brief introduction to the basis-independent treatment of the 2HDM. We

begin with the scalar potential in a generic basis given in eq. (2.2). The vevs of the scalar

doublet fields are given by

〈Φi〉 =
v√
2

(
0

v̂i

)
, (B.20)

where v = 2mW /g ' 246 GeV and v̂ = (v̂1, v̂2) is a complex vector of unit norm. A second

unit vector ŵ can be defined that is orthogonal to v̂,

ŵj = v̂∗i εij , (B.21)

where ε12 = −ε21 = 1 and ε11 = ε22 = 0. Indeed, the complex dot product, v̂∗j ŵj = 0,

where the sum over the repeated index j is implicit.

It is convenient to define two hermitian projection operators,

Vij ≡ v̂i v̂∗j , Wij ≡ ŵi ŵ∗j = δij − Vij . (B.22)

Note that v̂ and ŵ are eigenvectors of the matrix V . The matrices V and W can be used

to define the following manifestly basis-invariant real quantities that depend on the scalar
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potential parameters defined in the generic basis of scalar fields [cf. eq. (2.2)],

Y1 ≡ Tr(µV ) , (B.23)

Y2 ≡ Tr(µW ) , (B.24)

Z1 ≡ 2λij,k` VjiV`k , (B.25)

Z2 ≡ 2λij,k`WjiW`k , (B.26)

Z3 ≡ 2λij,k` VjiW`k , (B.27)

Z4 ≡ 2λij,k` VjkW`i . (B.28)

In addition, we shall define the following pseudo-invariant (potentially complex) quantities,

Y3 ≡ µij v
∗
iwj , (B.29)

Z5 ≡ 2λij,k` v
∗
iwjv

∗
kw` . (B.30)

Z6 ≡ 2λij,k` v
∗
i vjv

∗
kw` . (B.31)

Z7 ≡ 2λij,k` v
∗
iwjw

∗
kw` . (B.32)

The significance of the quantities defined by eqs. (B.23)–(B.32) become clearer af-

ter rewriting the scalar potential in the Higgs basis. Using the notation of eqs. (B.20)

and (B.21), the Higgs basis fields can be defined as,22

H1 ≡ v̂∗i Φi , H2 ≡ ŵ∗i Φi . (B.33)

In particular, note that the vevs of the Higgs basis fields are

〈H0
1 〉 =

v√
2
, 〈H0

2 〉 = 0 , (B.34)

as required by eq. (A.5). That is, starting from the scalar potential defined in the generic

basis [cf. eq. (2.2)], we simply set v̂ = (1, 0) and ŵ = (0, 1). Applying these results to

eqs. (B.23)–(B.32), we see that Y1,2,3 are the coefficients of the squared mass terms and

Z1,2,...,7 are the coefficients of the quartic terms of the scalar potential when expressed in

terms of the Higgs basis fields. In particular,

VH = Y1H
†
1H1 + Y2H

†
2H2 + [Y3H

†
1H2 + h.c.] +

1

2
Z1(H†1H1)2 +

1

2
Z2(H†2H2)2

+Z3(H†1H1)(H†2H2) + Z4(H†1H2)(H†2H1)

+

{
1

2
Z5(H†1H2)2 +

[
Z6(H†1H1) + Z7(H†2H2)

]
H†1H2 + h.c.

}
. (B.35)

In the Higgs basis, the minimization of the scalar potential yields

Y1 = −1

2
Z1v

2 , Y3 = −1

2
Z6v

2 . (B.36)

One key observation is that the Higgs basis as defined by eq. (B.34) is unique only up

to an overall phase redefinition of the Higgs basis field H2 → eiχH2. Indeed, in light of

22Eq. (B.33) defines the Higgs basis scalar fields for one particular choice in the class of Higgs bases.
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eq. (B.33), the phase freedom in defining the Higgs basis simply corresponds to ŵ → e−iχŵ.

It then follows that Y3, Z5, Z6 and Z7 also acquire a phase under H2 → eiχH2,

[Y3, Z6, Z7]→ e−iχ[Y3, Z6, Z7] and Z5 → e−2iχZ5 , (B.37)

which is why these quantities were called pseudo-invariants above. In contrast, Y1, Y2 and

Z1,2,3,4 are invariant under H2 → eiχH2.

Our goal now is to evaluate the matrices B and A defined in eqs. (2.55) and (2.56),

respectively. This requires the diagonalization of the charged Higgs and neutral Higgs

squared-mass matrices. First, we consider the charged Higgs squared-mass matrix, which

is given by eq. (2.10). It is convenient to rewrite this matrix as follows. Following ref. [25],

we note that we can expand an hermitian second-ranked tensor in terms of the eigenvectors

of V ,

Aij = Tr(V A)Vij + Tr(WA)Wij + (v̂∗kŵ`Ak`)v̂iŵ
∗
j + (ŵ∗kv̂`Ak`)ŵiv̂

∗
j . (B.38)

Applying eq. (B.38) to the hermitian charged Higgs squared-mass matrix, it follows that

(M2
±)ij =

(
Y1+

1

2
Z1v

2

)
Vij+

(
Y2+

1

2
Z3v

2

)
Wij+

(
Y3+

1

2
Z6v

2

)
v̂iŵ
∗
j +

(
Y ∗3 +

1

2
Z∗6v

2

)
ŵiv̂
∗
j ,

(B.39)

after making use of eqs. (B.23)–(B.31). After imposing the scalar potential minimum

conditions given in eq. (B.36), we end up with

(M2
±)ij =

(
Y2 +

1

2
Z3v

2

)
Wij . (B.40)

The diagonalization of M2
± is straightforward. Defining the diagonalization matrix U as in

eq. (2.19), it follows that

U =

(
v̂1 ŵ1

v̂2 ŵ2

)
, (B.41)

which satisfies,

U †W U =

(
0 0

0 1

)
. (B.42)

That is, of the two eigenvalue of M2
±, one is zero, corresponding to the charged Goldstone

boson, and the other is m2
H± = Y2 + 1

2Z3v
2.

Next, we obtain the matrix that diagonalizes the neutral Higgs squared-mass matrix. In

this analysis, it will prove useful to first perform the diagonalization in the Higgs basis, since

this allows us to easily identify the relevant basis-independent quantities. This has been car-

ried out in ref. [25]. Here we summarize the main results that we need for our present analy-

sis. The three physical neutral Higgs boson mass-eigenstates are determined by diagonaliz-

ing the 3×3 real symmetric squared-mass matrix that is defined in the Higgs basis [23, 25],

M2 = v2


Z1 ReZ6 − ImZ6

ReZ6
1
2(Z345 + Y2/v

2) −1
2 ImZ5

− ImZ6 −1
2 ImZ5

1
2(Z345 + Y2/v

2)− ReZ5

 , (B.43)
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j qj1 qj2

0 i 0

1 c12c13 −s12 − ic12s13

2 s12c13 c12 − is12s13

3 s13 ic13

Table 4. Invariant combinations of the neutral Higgs boson mixing angles θ12 and θ13, where

cij ≡ cos θij and sij ≡ sin θij .

where Z345 ≡ Z3 + Z4 + ReZ5. To identify the neutral Higgs mass-eigenstates, we

diagonalize the squared-mass matrix M2. The diagonalization matrix is a 3 × 3 real

orthogonal matrix that depends on three angles: θ12, θ13 and θ23,
h1

h2

h3

 =


c12c13 −s12c23 − c12s13s23 −c12s13c23 + s12s23

s12c13 c12c23 − s12s13s23 −s12s13c23 − c12s23

s13 c13s23 c13c23



√

2 ReH0
1 − v√

2 ReH0
2√

2 ImH0
2

 ,

(B.44)

where the hi are the mass-eigenstate neutral Higgs fields, cij ≡ cos θij and sij ≡ sin θij .

Under the rephasing H2 → eiχH2,

θ12 , θ13 are invariant, and θ23 → θ23 − χ . (B.45)

As shown in ref. [25], the invariant angles θ12 and θ13 are in fact basis-independent

quantities — that is, they can be expressed explicitly in terms of basis-independent

combinations of quantities defined in any scalar field basis.23

The neutral Goldstone boson and the physical neutral Higgs states (h0 ≡ G0 and h1,2,3,

respectively) are then given by:

hj =
1√
2

{
q∗j1

(
H0

1 −
v√
2

)
+ q∗j2H

0
2e
iθ23 + h.c.

}
, (B.46)

where the qj1 and qj2 are invariant combinations of θ12 and θ13, which are exhibited in

table 4. In particular, note that the quantities qj1 and qj2 are basis-invariants and the

neutral fields hk are also invariant with respect to a rephasing of the Higgs basis field H2.

To identify the diagonalizing matrix V defined in eq. (2.20),24 we make use of eq. (B.33)

to rewrite eq. (B.46) as follows,

Φi =


G+v̂i +H+ŵi

v√
2
v̂i +

1√
2

3∑
j=0

(
qj1v̂i + qj2e

−iθ23ŵi

)
hj

 , (B.47)

23More generally, one can show that any quantity defined in the Higgs basis that is invariant under the

rephasing of H2 → eiχH2 can be rewritten explicitly in a basis-independent form.
24Note that in the notation used here, hβ−1 ≡ S0

β , where β = 1, 2, 3, 4.
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for i = 1, 2. Hence, it immediately follows that

Vij = qj1v̂i + qj2e
−iθ23ŵi . (B.48)

Using eqs. (B.41) and (B.48), we can now evaluate the matrices B and A. First,

B = U †V =

(
i q11 q21 q31

0 q12e
−iθ23 q22e

−iθ23 q32e
−iθ23

)
. (B.49)

It is straightforward to check that

BB† = 2

(
1 0

0 1

)
, Re(B†B) = 14×4 (B.50)

as noted in eq. (2.65).

We immediately see that B is not an invariant matrix in light of eq. (B.45). Neverthe-

less, in eq. (2.51) we note that the matrix B always appears along with the charged Higgs

or Goldstone fields, namely BaβS
−
a (and its hermitian conjugate). Recall that under the

rephasing of the Higgs basis field H2 → eiχH2, we have ŵ → e−iχŵ, whereas v̂ is invariant.

Eq. (B.47) implies that G± is invariant and

H± → e±iχH± . (B.51)

From eq. (B.49) we see that B1j is invariant and B2j → eiχB2j in light of eq. (B.45),

whereas S−1 = G− is invariant and S−2 = H− → e−iχH− as noted above. Hence, the

combination BaβS
−
a is invariant as expected.

Next, we construct the orthogonal matrix B̃ defined in eq. (2.64),

B̃ =

ReB

ImB

 =


0 q11 q21 q31

0 Re(q12e
−iθ23) Re(q22e

−iθ23) Re(q32e
−iθ23)

1 0 0 0

0 Im(q12e
−iθ23) Im(q22e

−iθ23) Im(q32e
−iθ23)

 . (B.52)

Using the results of table 4,

B̃ =


0 c12c13 s12c13 s13

0 −s12c23 − c12s13s23 c12c23 − s12s13s23 c13s23

1 0 0 0

0 s12s23 − c12s13c23 −s12s13c23 − c12s23 c13c23

 . (B.53)

Indeed, one easily checks that B̃T B̃ = 14×4.

In the 2HDM, the charged Higgs basis and the Higgs basis coincide. Thus, the matrix

B̃ rotates the Higgs basis fields into the neutral Higgs mass eigenstate fields (which includes
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the massless Goldstone field, G0 =
√

2 ImH0
1 ). More precisely, comparison with eq. (B.44)

yields 
G0

h1

h2

h3

 = B̃T


√

2 ReH0
1 − v√

2 ReH0
2√

2 ImH0
1√

2 ImH0
2

 . (B.54)

Finally, we evaluate the matrix A,

A = Im(B†B) =


0 −q11 −q21 −q31

q11 0 Im(q∗12q22) Im(q∗12q32)

q21 − Im(q∗12q22) 0 Im(q∗22q32)

q31 − Im(q∗12q32) − Im(q∗22q32) 0

 , (B.55)

after using eq. (B.49). Once again, we can use the results of table 4 to obtain,

A =


0 −c12c13 −s12c13 −s13

c12c13 0 s13 −s12c13

s12c13 −s13 0 c12c13

s13 s12c13 −c12c13 0

 . (B.56)

As expected, the matrix A is invariant, as it depends only on the invariant angles θ12 and θ13

[cf. eq. (B.45)]. It is now straightforward to check that the interaction Lagrangian involving

the coupling of the gauge bosons to the scalars given in eqs. (2.52)–(2.54) reproduce the

corresponding 2HDM results given in ref. [25].

The power of the notation introduced in ref. [25] is clear in eq. (B.56), which depends

on the only two invariant angles. In contrast, the notation of eqs. (B.7) and (B.8) conven-

tionally used in the C2HDM community, leads to the matrix A given in eq. (B.13) which

seems to depend on three angles. The true physical content of eq. (B.13) becomes apparent

only after rewriting it as in eq. (B.14), which as in the case of eq. (B.56) depends only on

two independent parameters.

Note that A is a real orthogonal antisymmetric matrix, as required by eq. (2.62).

Indeed, the most general 4 × 4 real orthogonal antisymmetric matrix depends on two

parameters, which we have identified with the two invariant angles of the neutral Higgs

squared-mass matrix diagonalization.

In the 2HDM, the special form of the qj1 and qj2 allow us to rewrite eq. (B.55) as

A00 = 0 , Aj0 = −A0j = qj1 , Aij = εijkqk1 , (B.57)

where 0 labels the first row and column of A, and the indices i, j, k = 1, 2, 3 (with an

implicit sum over k) correspond to the second, third and fourth rows and columns of A.

This allows one to simplify the expression for the Zhihj vertex. This is special to the case

of N = 2 and does not generalize to the NHDM with N > 2.

Given the explicit forms for the matrices A and B given by eqs. (B.56) and (B.49)

respectively, one can immediately check that eq. (2.67) is satisfied.
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C Counting parameters that govern the A and B matrices

The matrices A and B enter the expression for the interaction Lagrangian that couples the

Higgs mass eigenstates to the gauge bosons and Goldstone bosons. The matrix A is mani-

festly invariant under a change of the scalar basis used in expressing the NHDM Lagrangian

in terms of interaction-eigenstate scalar fields. The matrix B is a pseudo-invariant quantity

that depends on N − 1 unphysical phases. However, these phases can be completely

absorbed into the definition of the N − 1 physical charged Higgs fields. In this appendix,

we discuss the number of parameters that govern the A and B matrix in the NHDM.

C.1 Independent parameters of the matrix A

The key properties of the matrix A are given in eq. (2.62). Namely, A is an arbitrary real

orthogonal antisymmetric 2N×2N matrix. First, we note that A is a 2N×2N nonsingular

matrix such that detA = 1. Since ATA = 12N×2N , it follows that detA = ±1, which

implies that A is nonsingular. Moreover, for any even-dimensional 2N ×2N antisymmetric

matrix A, the pfaffian of A, denoted by pfA, is defined by

pf A =
1

2nn!
εi1j1i2j2···injnAi1j1Ai2j2 · · ·Ainjn , (C.1)

where ε is the rank-2N Levi-Civita tensor, and the sum over repeated indices is implied.

A well-known result states that for any antisymmetric matrix A,25

detA = [pf A]2. (C.2)

In particular, if A is also orthogonal then detA = 1, in which case pf A = ±1.

Next, we note that the eigenvalues of any real antisymmetric matrix A are purely

imaginary. Moreover if λ is an eigenvalue of A then λ∗ is also an eigenvalue (see, e.g.,

ref. [58]). Thus, the eigenvalues of a 2N × 2N antisymmetric matrix A can be denoted by

±iai, (i = 1, 2, . . . , n) where the ai are real and positive. We now exploit the real normal

form of a nonsingular 2N × 2N real antisymmetric matrix A (see, e.g., appendix D.4 of

ref. [59]). In particular, there exists a real orthogonal matrix Q such that

QTAQ = diag

{(
0 a1

−a1 0

)
,

(
0 a2

−a2 0

)
, · · · ,

(
0 aN

−aN 0

)}
, (C.3)

is written in block diagonal form with 2× 2 matrices appearing along the diagonal and the

ai are real and positive. Note that the ai are the positive square roots of the eigenvalues

of ATA.

If in addition, A is a real orthogonal matrix, then we may use the fact that the

eigenvalues of a real orthogonal matrix are complex numbers of unit modulus. In light of

the above results, it follows that ai = 1 for all i = 1, 2, . . . , n. Thus,

QTAQ = J ≡ diag

{(
0 1

−1 0

)
,

(
0 1

−1 0

)
, · · · ,

(
0 1

−1 0

)}
︸ ︷︷ ︸

N

. (C.4)

25For a discussion of the properties of the pfaffian, see, e.g., ref. [57], appendix A.1.3.
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Hence, we conclude that any real orthogonal antisymmetric 2N × 2N matrix A can be

parameterized by

A = QJQT , (C.5)

where J is defined in eq. (C.4) and Q is a real orthogonal matrix. We now employ the

well-known property of the pfaffian that pf(QJQT ) = pf J detQ. In light of pf J = 1, it

follows that

detQ = pf A , (C.6)

which determines the sign of detQ.

As discussed in appendix D.4 of ref. [59], the orthogonal matrix Q in eq. (C.5) is

unique up to multiplication on the right by a 2N × 2N real orthogonal matrix S that

satisfies SJST = J . Such a matrix S is an element of Sp(N,R) ∩ O(2N) ∼= U(N),

where a proof of this isomorphism is given in ref. [60].26 Since O(2N) is parameterized by

N(2N − 1) continuous parameters and U(N) is parameterized by N2 parameters, we can

use the freedom to multiply Q on the right by S to remove N2 parameters from Q. This

leaves N(2N − 1)−N2 = N(N − 1) parameters in Q that cannot be removed.

That is, a real orthogonal antisymmetric 2N × 2N matrix A can be parameterized by

N(N − 1) continuous parameters.

C.2 Independent parameters of the matrix B

To determine the number of independent parameters that govern the N × 2N matrix B, it

is more convenient to consider the real orthogonal 2N×2N matrix B̃. The transpose of this

matrix rotates the charged Higgs basis fields into the neutral Higgs mass eigenstate fields S0
β ,

S0
β =

2N∑
k=1

B̃kβH0
k , (C.7)

where S0
1 ≡ G0 is the neutral Goldstone boson field, and

H0
k = (H0 , Re ϕC0

2 , . . . , Re ϕC0
N , G0 , Im ϕC0

2 , . . . , Im ϕC0
N ) . (C.8)

Note that H0 ≡ Re ϕC0
1 has the properties of the SM Higgs boson, G0 ≡ Im ϕC0

1 is the

neutral Goldstone boson, and 1√
2
ϕC0
k (k = 1, 2, . . . , N) are the neutral components of the

N scalar fields in the charged Higgs basis [cf. eq. (A.13)]. It then follows that

B̃j1 = δj,N+1 , B̃N+1,k = δk1 . (C.9)

It is convenient to remove the first column and the N + 1st row of B̃ to eliminate the

neutral Goldstone bosons state. The resulting (2N −1)× (2N −1) matrix will be called R.

26See problem 1.12 on p. 41 and its solution on p. 306 of ref. [60]. The proof of this result consists of

representing an arbitrary complex unitary N ×N matrix as a real 2N × 2N matrix. Following section 1.6

of ref. [60], the corresponding real 2N × 2N matrix can be identified by ŨR given in eq. (2.63). Indeed, one

can check that ŨR is a 2N × 2N orthogonal symplectic matrix.
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We label Rkβ with row and column indices that take on values from 1, 2, . . . , 2N , but

excluding k = N + 1 and β = 1. That is,

S0
β =

2N∑
k=1

k 6=N+1

RkβH0
k , for β = 2, 3, . . . , 2N . (C.10)

We can parameterize the matrix R as follows. First we define the 2 × 2 orthogonal

matrix,

rij =

(
cos θij − sin θij

sin θij cos θij

)
. (C.11)

We then define the (2N − 1)× (2N − 1) matrix R as a matrix whose matrix elements are

given by

Rk` =

{
δk` for k, ` 6= i, j ,

rij , for k, ` = i, j .
(C.12)

Then, R can be written recursively as [61]

R = R12R13 · · ·R1,2N−1R2N−2 , (C.13)

where R2N−2 can be expressed in block matrix form in terms of a (2N − 2)× (2N − 2) real

orthogonal matrix R2N−2,

R2N−2 ≡

(
1 0

0 R2N−2

)
. (C.14)

It is always possible to express R2N−2 by making use of the decomposition given in

eq. (C.28),

R2N−2 = RcUR , (C.15)

where Rc is a (2N − 2)× (2N − 2) matrix given in block form by

Rc = exp

(
C D

D −C

)
, (C.16)

where C and D are (N − 1)× (N − 1) real antisymmetric matrices, and the matrix UR is

a (2N − 2)× (2N − 2) real representation of the U(N − 1) subgroup of SO(2N − 2). Thus,

our final expression for the matrix R is

R = R12R13 · · ·R1,2N−1

(
1 0

0 RcUR

)
. (C.17)

We have already noted in section 2.3 that under the rephasing of the physical charged

Higgs fields, S+
a → eiχaS+

a , we must also transform Baβ → eiχaBaβ (in both cases for

a = 2, 3, . . . , N), so that the combinations BaβS
−
a and its charged conjugate appearing in

the interaction Lagrangian are invariant. Since UR in eq. (C.17) is a real representation
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of U(N − 1), which depends on (N − 1)2 parameters, it is convenient to decompose this

matrix into the product,

UR = URcURd , (C.18)

where

URd ∈ U(1)×U(1)× · · · × U(1)︸ ︷︷ ︸
N−1

, (C.19)

is a real representation of an element of the diagonal U(1) × U(1) × · · · × U(1) subgroup

of U(N − 1), which depends on N − 1 parameters, and URc incorporates the remaining

(N − 1)(N − 2) degrees of freedom of UR. Then, we see that URd represents the freedom

to perform separate rephasings of the N − 1 scalar doublets with zero vevs. That is, the

degrees of freedom in the matrix URd represent the freedom to redefine the charged Higgs

basis. Hence, the N − 1 parameters that govern the matrix URd are unphysical.

The remaining parameters that describe the matrix R are physical. We can count these

parameters as follows. First, the product R12R13 · · ·R1,2N−1 consists of 2N − 2 angles θ12,

θ13, . . . , θ1,2N−1. Second, the number of parameters that govern the (2N − 2) × (2N − 2)

matrix Rc is equal to the number of parameters needed to express the two (N−1)×(N−1)

real antisymmetric matrices C and D. This provides (N−1)(N−2) additional parameters.

Finally, we must include the (N−1)(N−2) parameters that govern the matrix URc. Thus,

we have 2N − 2 + 2(N − 1)(N − 2) = 2(N − 1)2 parameters. These are basis-invariant

parameters, since they do not depend on the choice of the charged Higgs basis.

The end result is that the matrix B̃ can be expressed in terms of 2(N − 1)2 physical

parameters. Indeed, this number can be obtained starting with the (N − 1)(2N − 1)

parameters that describe the (2N −1)× (2N −1) real orthogonal matrix R [cf. eq. (C.10)],

and then subtracting the N − 1 unphysical phases by absorbing them into the definition of

the physical charged Higgs fields as described above.

C.3 The embedding of the U(N) subgroup inside SO(2N)

We begin with the following theorem, which is useful in the analysis of spontaneous sym-

metry breaking of an SO(2N) symmetric potential in a theory with a second-rank anti-

symmetric tensor multiplet of scalars [62–64].

Theorem. Suppose that Σ0 is a 2N×2N real antisymmetric matrix that satisfies ΣT
0 Σ0 =

Σ0ΣT
0 = c212N×2N for some real number c. Then, if the generators of the Lie algebra of

SO(2N), henceforth denoted by so(2N), in the defining (2N -dimensional) representation

are given by {Ta, Xb}, where the iTa and iXb are real antisymmetric 2N × 2N matrices

that satisfy:

TaΣ0 + Σ0T
T
a = 0 , (C.20)

XbΣ0 − Σ0X
T
b = 0 , (C.21)

then the Ta span a u(N) Lie subalgebra of so(2N), while the remaining generators, Xb,

span elements of so(2N) whose exponentials comprise the SO(2N)/U(N) homogeneous

space. Moreover, Tr(TaXb) = 0.
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Proof. First, we show that if ΣT
0 Σ0 = Σ0ΣT

0 = c212N×2N and TaΣ0 + Σ0T
T
a = 0, then

the Ta span an U(N) Lie subalgebra. Note that these two conditions imply:

c2 T Ta = −ΣT
0 TaΣ0 . (C.22)

In light of eq. (C.3), there exists a real orthogonal matrix W such that WMW T =

diag(J1 ,J2 , . . . ,Jn) is block diagonal, where each block is a 2 × 2 matrix of the form

Jn ≡
(

0 zn
−zn 0

)
, where zn ∈ R and the z2

n are the eigenvalues of MMT (or MTM). Apply-

ing this result to Σ0, note that the eigenvalues of Σ0ΣT
0 are all degenerate and equal to c2.

Moreover, since the matrix

J̃ ≡

(
0 1N×N

−1N×N 0

)
. (C.23)

satisfies J̃ J̃T = 12N×2N , it follows that one can find real orthogonal matrices W1 and W2

such that W1Σ0W
T
1 = cW2J̃W

T
2 = diag(cJ , cJ , . . . , cJ ), where J is the 2× 2 matrix,

J ≡

(
0 1

−1 0

)
. (C.24)

That is, the factorization of Σ0 and cJ̃ both yield the same block diagonal matrix consisting

of N identical 2 × 2 blocks consisting of cJ . Thus, there exists a real orthogonal matrix

V = W−1
2 W1 such that V Σ0V

T = c J̃ . The inverse of this result is V ΣT
0 V

T = −c J̃ (since

J̃T = −J̃). We now define T̃a ≡ V TaV T . Then eq. (C.22) implies that

T̃ Ta =
−1

c2
V ΣT

0 V
T T̃aV Σ0V

T = J̃ T̃aJ̃ . (C.25)

Likewise, one can use the same matrix V to define X̃b ≡ V XbV
T . By an analogous

computation, c2XT = ΣT
0 XΣ0, which implies that X̃T

b = −J̃X̃bJ̃ .

Recall that Ta and Xb are both antisymmetric 2N × 2N matrices. Then, T̃a ≡ V TaV T

and X̃a ≡ V XaV
T are also antisymmetric. Hence, it follows that

T̃a = −J̃ T̃aJ̃ , X̃a = J̃X̃aJ̃ . (C.26)

Using the explicit form for J̃ , eq. (C.26) implies that T̃a and X̃b take the following block

form:

i T̃a =

(
A B

−B A

)
, iX̃b =

(
C D

D −C

)
, (C.27)

where A, B, C and D are N×N real matrices such that A, C and D are antisymmetric and

B is symmetric. Thus, we have exhibited a similarity transformation (note that V T = V −1)

that transforms the basis of the Lie algebra spanned by the Ta to one that is spanned by

the T̃a. Moreover, consider the isomorphism that maps i T̃a given in eq. (C.27) to the

N × N matrix A + iB. Since (A + iB)† = (A − iB)T = −(A + iB), we see that the

A+ iB are anti-hermitian generators (which are not generally traceless) that span a u(N)

subalgebra of so(2N). We can check the number of u(N) generators by counting the
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number of degrees of freedom of one real antisymmetric and one real symmetric matrix:
1
2N(N − 1) + 1

2N(N + 1) = N2, as expected.

Finally, multiplying the two equations c2 T Ta = −ΣT
0 TaΣ0 and c2XT

b = ΣT
0 XbΣ0, it

follows that c2 T Ta X
T
b = −ΣT

0 TaXbΣ0 (after employing ΣT
0 Σ0 = c2I2n). Taking the trace

yields TrTaXb = −TrTaXb, and we conclude that Tr TaXb = 0.

To show that the {Ta, Xb} span the full so(2N) Lie algebra, we have already noted

above that there are N2 generators, {Ta}. In addition, there are N(N−1) generators, {Xa},
corresponding to the number of parameters describing two real antisymmetric matrices [see

eq. (C.27)]. Thus, the total number of generators is N(2N − 1) which matches the total

number of so(2N) generators.

Any element of the SO(2N) group is an exponential of an element of the corresponding

so(2N) Lie algebra. This provides many possible choices for parameterizing an arbitrary

element of the SO(2N) group. We shall choose T̃a and X̃b as generators of the so(2N) Lie

algebra. Exponentiating the appropriate linear combinations of generators [cf. eq. (C.27)]

allows us to express any element R2N ∈ SO(2N) in the following form,

R2N = RcŨR , (C.28)

where

Rc ≡ exp

(
C D

D −C

)
, ŨR ≡ exp

(
A B

−B A

)
, (C.29)

where A, B, C and D are N ×N real matrices such that A, C and D are antisymmetric

and B is symmetric. Based on the discussion below eq. (C.27), we recognize ŨR as the

2N -dimensional real representation of the group U(N). That is, given an N ×N unitary

matrix U , one can identity,

ŨR ≡

(
ReU − ImU

ImU ReU

)
, (C.30)

as a 2N × 2N real orthogonal matrix that provides the explicit form for the embedding of

U(N) inside SO(2N).

Since the exponential of any element of the Lie algebra so(2N) yields an element of

SO(2N), one can also choose a different order in the product of exponentials to parameterize

an element of SO(2N). For example, one can also express any element R2N ∈ SO(2N) in

the following form,

R2N = W̃RR̃c , (C.31)

where

R̃c ≡ exp

(
C ′ D′

D′ −C ′

)
, W̃R =

(
ReW − ImW

ImW ReW

)
, (C.32)

where C ′ and D′ are real N × N antisymmetric matrices and W is an N × N unitary

matrix. In general, C ′ 6= C, D′ 6= D and W 6= U .
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D Cubic couplings of the Goldsone boson and physical Higgs scalars

It is quite remarkable that the cubic scalar couplings that involve a single or two Goldstone

fields can be simplified to expressions that involve either squared mass differences or squared

masses of the corresponding physical Higgs scalars, as exhibited in eqs. (2.90)–(2.93). This

was first noted in the context of the CP-conserving 2HDM in refs. [18, 38].

Achieving such simplified forms for these couplings is rather laborious. It is instructive

to provide some of the details of the derivation. As an example, we demonstrate below how

to derive the coupling between a neutral scalar (here denoted by S0
p) and two Goldstone

bosons G0 = S0
1 obtained in eq. (2.93). Starting from eq. (2.85), there seem to be three rele-

vant terms: those with (β, γ, δ) = (p, 1, 1), (β, γ, δ) = (1, p, 1), and (β, γ, δ) = (1, 1, p). How-

ever, the latter two vanish due to eqs. (2.30)–(2.31). Indeed, when β = 1, the result involves

(V †)1kvl + v∗kVl1 =

(
−i
v∗k
v

)
vl + v∗k

(
i
vl
v

)
= 0. (D.1)

Applying eqs. (2.30)–(2.31) to the remaining term, we find for 4v V3[S0
pG

0G0],

2

v
λij,klv

∗
i vj

[(
V †
)
pk
vl+v

∗
kVlp

]
=

[
−2
(
UD2

±U
†
)
kj

+
(
V D2

0V
†
)
kj

]
v̂j

(
V †
)
pk

+
[
−2
(
UD2

±U
†
)
il

+
(
V D2

0V
†
)
il

]
v̂∗i (V )lp

=
(
V †V D2

0V
†
)
pj
v̂j+v̂

∗
i

(
V D2

0V
†V
)
ip

=
(
V †V D2

0

)
pθ

Re
[
(V †)θj v̂j

]
+Re[v̂∗i Viθ]

(
D2

0V
†V
)
θp

=
[
V †V D2

0 Im
(
V †V

)]
p1
−
[
Im
(
V †V

)
D2

0V
†V
]

1p

=
[
Re
(
V †V

)
D2

0 Im
(
V †V

)]
p1
−
[
Im
(
V †V

)
D2

0Re
(
V †V

)]
1p

=−2m2
p

[
Im
(
V †V

)]
1p
, (D.2)

thus reproducing eq. (2.93). The most crucial step is the first, where eq. (2.46) was used

to relate these couplings with the mass matrices. The third line above is obtained by using

eqs. (2.32) and (2.44), where the (11) entry vanishes, which shows that the charged boson

masses do not contribute, as expected. The fourth line is obtained by breaking (V †)θj v̂j
in its real and imaginary parts, and then using eqs. (2.33) and (2.45) to show that the

imaginary part involves the vanishing entries of D2
0. Eq. (2.34) yields the fifth line. To

proceed, we break the remaining V †V matrix into its real and imaginary parts. According

to eq. (2.66) the real part is the unit matrix, while the imaginary part is antisymmetric.

The two terms involving the symmetric matrix Im(V †V )D2
0Im(V †V ) cancel each other.

Given eqs. (2.45) and (2.66), we reach the last line.

It is noteworthy that it took such a long calculation to obtain such a simple result. In

fact, it turns out that such proofs are simpler when performed in the charged Higgs basis.
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E Generalized sum rules

In this appendix, we rederive in detail the sum rules obtained by Gunion, Haber and Wudka

in ref. [17]. Following the conventions of ref. [17], we indicate vector bosons with indices

a, b, c, . . . and scalars with indices i, j, k, . . .. The Feynman rules for the cubic vertices are

AαaA
β
bA

γ
c : i gabc

[
(pa − pb)γ + (pb − pc)α + (pc − pa)β

]
≡ i gabc Γαβγ(pa, pb, pc), (E.1)

AαaA
β
c φi : i gabi g

αβ , (E.2)

Aαaφiφj : i gaij (pi − pj)α, (E.3)

with all momenta incoming, and the Feynman rules for the quartic vertices are

AαaA
β
b φiφj : i gabij g

αβ . (E.4)

For the sum rule involving four gauge bosons we also need the relation between the

quartic and cubic term. We adopt here the conventions of Cornwall, Levin and Tiktopou-

los [15]. We just need the relevant terms,

L = −Dabcd WaµW
µ
b WcνW

ν
d − Cabc ∂νWaµW

µ
b W

ν
c + · · · (E.5)

This gives the following Feynman rules,

AµaA
ν
bA

ρ
cA

σ
d : −8i(Dabcd g

µνgρσ+Dacbd g
µρgνσ+Dadbc g

µσgνρ), (E.6)

AαaA
β
bA

γ
c : −Cabc

[
(pa−pb)γ+(pb−pc)α+(pc−pa)β

]
=−Cabc Γαβγ(pa,pb,pc), (E.7)

where we note, for future reference, that comparing eq. (E.1) and eq. (E.7) we get,

Cabc = −i gabc. (E.8)

Cornwall, Levin and Tiktopoulos [15], and independently Llewellyn Smith [14]) show

that, in order for unitarity to hold, the couplings Cabc and Dabcd must be those of a gauge

theory. In particular,

Dabcd =
1

8
(CaceCbde − CadeCcbe), (E.9)

0 = CabeCcde − CaceCbde − CadeCcbe, (E.10)

where the last relation is the Jacobi identity. This means that Cabc are the structure

constants of the gauge group. As we want to write everything in terms of the structure

constants gabc of ref. [17], we use eq. (E.8) to obtain

Dabcd = −1

8
(gacegbde − gadegcbe), (E.11)

0 = gabegcde − gacegbde − gadegcbe. (E.12)
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Figure 1. Amplitudes for the scattering AaAb → AcAd.

E.1 AAAA sum rules

E.1.1 The amplitudes

The diagrams contributing to the scattering Aa(p1)+Ab(p2)→ Ac(p3)+Ad(p4) are given in

figure 1. In an obvious notation we will name the amplitudes according to the Mandelstam

variables channel (s, t or u) and by the particle being exchanged. We get

M4Point = (−i)28 (Dabcd gαβgγδ +Dacbd gαγgβδ +Dadbc gαδgβγ) fαβεδ, (E.13)

MA
s = (−i)(i gabe)(−i gcde)(−i)Γαβµ(p1, p2,−p1 − p2)Γδγν(−p4,−p3,−p1 − p2)

×
[
gµν − (p1 + p2)µ(p1 + p2)ν/M2

e

]
s−M2

e

fαβεδ, (E.14)

MA
t = (−i)(−i gace)(i gbde)(−i)Γαµγ(p1,−p1 + p3,−p3)Γβδν(p2,−p4, p4 − p2)

×
[
gµν − (p1 − p3)µ(p1 − p3)ν/M2

e

]
t−M2

e

fαβεδ, (E.15)

MA
u = (−i)(−i gade)(−i gcbe)(−i)Γαµδ(p1,−p1 + p4,−p4)Γβγν(p2,−p3, p3 − p2)

×
[
gµν − (p1 − p4)µ(p1 − p4)ν/M2

e

]
u−M2

e

fαβεδ, (E.16)

Mφ
s = (−i)(igabk)(igcdk)i

gαβ gγδ
s−M2

k

fαβεδ, (E.17)

Mφ
t = (−i)(igack)(igbdk)i

gαγ gβδ
t−M2

k

fαβεδ, (E.18)

Mφ
u = (−i)(igadk)(igbck)i

gαδ gβγ
u−M2

k

fαβεδ, (E.19)

where

fαβεδ = εα(p1)εβ(p2)εγ(p3)εδ(p4). (E.20)

E.1.2 The high energy limit

When the gauge bosons are longitudinally polarized, the diagrams of figure 1 grow with

energy for large center of mass energy
√
s. The most divergent behavior arises from the
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first four diagrams that grow like E4. To see this, one has to use the expression for the

polarization vector for the longitudinal case, which is given by

εL = (γβ, γ~β/β) ' pµ

M
+O

(
1

γ2

E

M

)
. (E.21)

To determine the coefficients of the high energy behavior (see eq. (E.31) below) we cannot

use the approximate expression on the right-hand side of eq. (E.21) because we would

then lose contributions from the E4 terms that modify the E2 terms. So we should use

consistently the definitions of the left-hand side and expand the result in powers of s, t or

u. For instance, for particle a we have,

εLa = (γaβa, γa~βa/βa), βa =

√
E2
a −M2

a

Ea
,

γa =
1√

1− β2
a

, Ea =
s+M2

a −M2
b

2
√
s

, (E.22)

and similarly for the other particles. Next we use the kinematics for the process

Aa(p1) +Ab(p2)→ Ac(p3) +Ad(p4), (E.23)

in order to write

p1 = (Ea, 0, 0, βaEa), p2 = (Eb, 0, 0,−βbEb), (E.24)

p3 = (Ec, βcEc sin θ, 0, βcEc cos θ), p4 = (Ed,−βdEd sin θ, 0,−βdEd cos θ), (E.25)

εLa = (γaβa, 0, 0, γa), εLb = (γbβb, 0, 0,−γb), (E.26)

εLc = (γcβc, γc sin θ, 0, γc cos θ), εLd = (γdβd,−γd sin θ, 0,−γd cos θ). (E.27)

We then use these expressions to evaluate all the amplitudes. In the end we substitute

cos θ in terms of the Mandelstam variable t, through the relation

cos θ =
t−M2

a −M2
c + 2EaEc

2EaEcβaβc
. (E.28)

At this point all the amplitudes are expressed in terms of the Mandelstam variables and

the masses. As the Mandelstam variables are not independent we can still use the relation

s+ t+ u = M2
a +M2

b +M2
c +M2

d , (E.29)

to express the result in terms of just two independent variables. Which ones should be

used will depend on the problem. Next we want to isolate the terms that grow with E4

and E2. To achieve this we make the scaling

s→ s/x, t→ t/x, u→ u/x, (E.30)

and perform an expansion for small x. The terms in E4 are the coefficients of x−2 and

the terms that grow like E2 are the coefficients of x−1. Therefore, we can write for each

amplitude

Mi = Asi s
2 +Atit

2 +Asti st+Bs
i s+Bt

i t+ constant, (E.31)
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where we assumed that the independent Mandelstam variables are s and t. We did this

consistent expansion using FeynCalc and Mathematica for the Lorentz algebra and se-

ries expansion, respectively. To have an idea of what is involved we just write the exact

amplitude for the s-channel exchange of a gauge boson:

MA
s =

−gabegcde

4M2
aM

2
bM

2
e (s−M2

e )

√
M2
c s

(M2
c !−M2

d+s)
2

(
M2
c −M2

d + s
)√ M2

ds

(M2
d−M2

c+s)
2

(
M2
d−M2

c + s
)

×

[√
M2
as(

M2
a −M2

b + s
)2 (M2

a −M2
b + s

)√ M2
b s(

−M2
a +M2

b + s
)2 (−M2

a +M2
b + s

)
×
(
M4
a

(
−M4

c +M2
c

(
s−M2

e

)
+M4

d +M2
d

(
3M2

e − s
)

+M2
e s
)

+M2
a

(
2M2

bM
2
e

(
M2
c +M2

d + s
)

+M4
c

(
s−M2

e

)
+M2

c

(
2M2

dM
2
e +M2

e (s− 2t)− s2
)

+3M4
dM

2
e −M4

d s+M2
dM

2
e s− 2M2

dM
2
e t+M2

d s
2 − 2M2

e st
)

+M4
b

(
M4
c +M2

c

(
3M2

e − s
)
−
(
M2
d +M2

e

) (
M2
d − s

))
+M2

b

(
M4
c

(
3M2

e − s
)

+M2
c

(
2M2

dM
2
e +M2

e (s− 2t) + s2
)

+M4
d

(
s−M2

e

)
+M2

d

(
M2
e (s− 2t)− s2

)
− 2M2

e st
)

+M2
e s
(
M2
c +M2

d + s
) (
M2
c +M2

d − s− 2t
)) ]

. (E.32)

This is a quite complicated expression, but making the series expansion as described above

gives simply

MA
s =

1

MaMbMcMd

[
1

4
gabegcde s

2 +
1

2
gabegcdest

+
1

4
gabegcde

[
M2
e +

(M2
a−M2

b )(M2
c −M2

d )

M2
e

]
s

+
1

2
gabegcde(M

2
a +M2

b +M2
c +M2

d +M2
e ) t+ constant

]
. (E.33)

If we had not taken the exact expression for the polarization vectors in eq. (E.21)

but only the approximate expression, we would have obtained instead of eq. (E.33) the

following expression,

MA
s =

1

MaMbMcMd

[
1

4
gabegcde s

2 +
1

2
gabegcde st

+
1

4
gabegcde

[
M2
e −2M2

a−2M2
b −M2

c −M2
d

]
s

+
1

2
gabegcde

[
−M2

a −M2
b +M2

e

]
t+ constant

]
, (E.34)

which shows that the E4 terms are correct but there is a difference in the E2 terms as

previously anticipated. Note that no such problem arises for the exchange of the scalars,

as the most divergent terms are of order E2. Nevertheless we adopt the same procedure

for all the diagrams.
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Diagram Âsi Âti Âsti

M4Point −2 (Dabcd +Dadbc) −2 (Dacbd +Dadbc) −4Dadbc

MA
s

1
4 gabe gcde 0 1

2 gabe gcde

MA
t 0 1

4 gace gbde
1
2 gace gbde

MA
u

1
4 gade gcbe −1

4 gade gcbe 0∑
MA

i 0 0 0

Table 5. Coefficients Âi.

The E4 terms. The first four diagrams yield terms that grow like E4. To simplify

the expressions we redefine the coefficients Âi = AiMaMbMcMd. The corresponding Âi
coefficients are given in table 5.

The last line in this table is obtained after we use the relations found in ref. [15] and

given in eq. (E.11). Namely,

Dabcd = −1

8
(gace gbde − gade gcbe), (E.35)

Dacbd = −1

8
(gabe gcde + gade gcbe), (E.36)

Dadbc = −1

8
(−gabe gcde − gace gbde), (E.37)

where the antisymmetry of the constants gabc was used. So the more divergent terms cancel

only with the gauge part. The constraints that emerge simply imply that we must have a

spontaneously broken gauge theory [14, 15] as given in eqs. (E.11)–(E.12).

The E2 terms. Having shown that a spontaneously broken gauge theory assures that

the most divergent high energy behavior cancels, we consider next the terms that diverge

like E2. Here the gauge theory part is not enough to achieve cancellation and we get

constraints on the gauge boson couplings to scalars. For convenience we define

B̂i ≡ 4MaMbMcMd Bi. (E.38)

We also note that once we use eq. (E.33) there is no contribution at this order for Bst
i . The

results are summarized in table 6.

E.1.3 The sum rule of ref. [17]

To obtain the sum rule in eq. (2.4) of ref. [17] we take as independent the Mandelstam

variables s and t. The coefficients of the terms growing with s and t must vanish. If we

take the coefficient of s we obtain the desired sum rule. To show this, we notice first that
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Diagram B̂si B̂ti

M4Point 8 (Dabcd +Dadbc) Σ −8 (Dacbd +Dadbc) Σ

MA
s gabegcde

[
M2
e +

(M2
a−M

2
b )(M2

c−M
2
d)

M2
e

]
2gabegcde(Σ +M2

e )

MA
t −2gacegbde(Σ−M2

e ) gacegbde
[
M2
e − 2Σ +

(M2
a−M

2
c )(M2

b−M
2
d)

M2
e

]
MA

u −gade gcbe
[
M2
e + 2Σ +

(M2
a−M

2
d)(M2

c−M
2
b )

M2
e

]
−gade gcbe

[
−M2

e + 4Σ +
(M2

a−M
2
d)(M2

c−M
2
b )

M2
e

]
Mφ

s −gabk gcdk 0

Mφ
t 0 −gack gbdk

Mφ
u gadk gbck gadk gbck

Table 6. Coefficients B̂i. We have defined Σ = (M2
a +M2

b +M2
c +M2

d ).

the sum of all contributions to B̂s
i is (sums implied)

8 (Dabcd +Dadbc) Σ + gabegcde

[
M2
e +

(M2
a −M2

b )(M2
c −M2

d )

M2
e

]
− 2gacegbde(Σ−M2

e )− gade gcbe
[
M2
e + 2Σ +

(M2
a −M2

d )(M2
c −M2

b )

M2
e

]
(E.39)

= gabk gcdk − gadk gbck,

where we have defined Σ = (M2
a + M2

b + M2
c + M2

d ). Now we use eqs. (E.35)–(E.37) to

obtain

8 (Dabcd +Dadbc) Σ = (gade gcbe + gabe gcde) Σ . (E.40)

Inserting this result into eq. (E.39) we obtain,

gabegcde

[
Σ +M2

e +
(M2

a −M2
b )(M2

c −M2
d )

M2
e

]
− gacegbde(2Σ− 2M2

e )

− gade gcbe
[
M2
e + Σ +

(M2
a −M2

d )(M2
c −M2

b )

M2
e

]
= gabk gcdk − gadk gbck. (E.41)

Now we use the Jacobi identity of eq. (E.12) in the form

(gabegcde − gacegbde − gadegcbe) Σ = 0, (E.42)

and subtract it from eq. (E.41). We then obtain the sum rule of eq. (2.4) of ref. [17],

∑
e

′gabe gcde

[
M2
e +

(M2
a −M2

b )(M2
c −M2

d )

M2
e

]
−
∑
e

′gade gcbe

[
M2
e +

(M2
a −M2

d )(M2
c −M2

b )

M2
e

]
−
∑
e

gace gbde
(
M2
a +M2

b +M2
c +M2

d − 2M2
e

)
=
∑
k

(gabk gcdk − gadk gbck) , (E.43)

where the prime in
∑′ indicates that the sum only runs over massive gauge bosons.
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Figure 2. Amplitudes for the scattering AaAb → Acφi.

E.1.4 Another sum rule

If we take the coefficient of t, that is the sum of the B̂t
i we obtain another sum rule:∑

e

′gace gbde

[
M2
e +

(M2
a −M2

c )(M2
b −M2

d )

M2
e

]
+
∑
e

′gade gcbe

[
M2
e +

(M2
a −M2

d )(M2
b −M2

c )

M2
e

]
−
∑
e

gabe gcde
(
M2
a +M2

b +M2
c +M2

d − 2M2
e

)
=
∑
k

(gack gbdk − gadk gbck) . (E.44)

Notice, however, that eq. (E.44) is not independent of eq. (E.43). It is just the result of

crossing symmetry from the s-channel to the t-channel.

E.2 AAAφ sum rules

E.2.1 The amplitudes

The diagrams contributing to the scattering Aa +Ab → Ac + φi are given in figure 2. The

corresponding amplitudes are

MA
s = (−i)(i gabe)(i geci)(−i)Γαβµ(p1, p2,−p1 − p2) gγν

×
[
gµν − (p1 + p2)µ(p1 + p2)ν/M2

e

]
s−M2

e

fαβγ , (E.45)

MA
t = (−i)(−i gace)(i gebi)(−i)Γαµγ(p1,−p1 + p3,−p3) gβν

×
[
gµν − (p1 − p3)µ(p1 − p3)ν/M2

e

]
t−M2

e

fαβγ , (E.46)

MA
u = (−i)(i gbce)(i gaei)(−i) Γβγν(p2,−p3, p3 − p2) gαµ

×
[
gµν − (p1 − p4)µ(p1 − p4)ν/M2

e

]
u−M2

e

fαβγ , (E.47)

Mφ
s = (−i)(igabk)(igcik)i

gαβ (−2p4 − p3)γ

s−M2
k

fαβγ , (E.48)

Mφ
t = (−i)(igack)(igbik)i

gαγ (−2p4 + p2)β
t−M2

k

fαβγ , (E.49)

Mφ
u = (−i)(igaik)(igbck)i

(−2p4 + p1)α gβγ
u−M2

k

fαβγ , (E.50)
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Diagram B̂s
i B̂u

i

MA
s −gabegeci

[
M2
a−M2

b+M2
e

2M2
e

]
−gabe geci

MA
t gace gebi

[
M2
a−M2

c+M2
e

2M2
e

]
gace gebi

[
M2
a−M2

c−M2
e

2M2
e

]
MA

u gaei gbce gaei gbce

[
−M2

b+M2
c+M2

e

2M2
e

]
Mφ

s gabk gcik 0

Mφ
t −gack gbik −gack gbik

Mφ
u 0 gaik gbck

Table 7. Coefficients B̂i.

where

fαβγ = εα(p1)εβ(p2)εγ(p3). (E.51)

E.2.2 The high energy limit

In this case it is convenient to choose as independent variables s and u. The results are

summarized in table 7. Again we used a definition similar to eq. (E.38),

B̂i ≡ 2MaMbMc Bi. (E.52)

E.2.3 The sum rule of ref. [17]

To obtain the sum rule in eq. (2.5) of ref. [17], we take as independent Mandelstam variables

s and u. The coefficients of the terms growing with s and u must vanish. If we take the

coefficient of s we obtain the desired sum rule.∑
e

′
[
gabe geci

[
M2
a −M2

b +M2
e

2M2
e

]
− gace gebi

[
M2
a −M2

c +M2
e

2M2
e

]
− gbce geai

]
=
∑
k

(gcik gabk − gbik gack) . (E.53)

E.2.4 Another sum rule

If we take the coefficient of u we get another sum rule,∑
e

′
[
gace gebi

[
M2
c −M2

a +M2
e

2M2
e

]
− gbce gaei

[
M2
c −M2

b +M2
e

2M2
e

]
+ gabe geci

]
=
∑
k

(gaik gbck − gbik gack) , (E.54)

which is just the crossed version of eq. (E.53).

E.3 AAφφ sum rules

E.3.1 The amplitudes

The diagrams contributing to the scattering Aa +Ab → φi + φj are given in figure 3.
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Figure 3. Amplitudes for the scattering AaAb → φiφj .

The diagram with the triple Higgs vertex does not exhibit any bad high energy behav-

ior, and therefore one does not have to consider it here. The other amplitudes are

M4Point = (−i)(i gabij gαβ εα(p1)εβ(p2), (E.55)

MA
s = (−i)(i gabe)(i geij)(−i)Γαβµ(p1, p2,−p1 − p2) (−p3 + p4)ν

×
[
gµν − (p1 + p2)µ(p1 + p2)ν/M2

e

]
s−M2

e

εα(p1)εβ(p2), (E.56)

MA
t = (−i)(i gaei)(i gbej)(−i)

[
gαβ − (p1 − p3)α(p1 − p3)β/M

2
e

]
t−M2

e

εα(p1)εβ(p2), (E.57)

MA
u = (−i)(i gaej)(i gbei)(−i)

[
gαβ − (p1 − p4)α(p1 − p4)β/M

2
e

]
u−M2

e

εα(p1)εβ(p2), (E.58)

Mφ
t = (−i)(igaik)(igbkj)i

(−2p3 + p1)α (2p4 − p2)β
t−M2

k

εα(p1)εβ(p2), (E.59)

Mφ
u = (−i)(igajk)(igbki)i

(−2p4 + p1)α (2p3 − p2)β
u−M2

k

εα(p1)εβ(p2). (E.60)

E.3.2 The high energy limit

In this case it is convenient to choose as independent variables t and u. The results are

summarized in table 8. Again we used a definition similar to eq. (E.38),

B̂i ≡MaMb Bi. (E.61)

E.3.3 The sum rule of ref. [17]

To obtain the sum rule in eq. (2.6) of ref. [17], we take as independent Mandelstam variables

t and u. The coefficients of the terms growing with t and u must vanish. If we take the

coefficient of t we obtain the desired sum rule.∑
k

gaikgbkj −
1

2
gabij +

1

4

∑
e

′ gaei gebj
M2
e

−
∑
e

1

2
gabe geij = 0. (E.62)
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Diagram B̂t
i B̂u

i

M4Point
s −1

2 gabij −1
2 gabij

MA
s −1

2 gabe geij
1
2 gabegeij

MA
t

1
4
gaei gbej
M2
e

0

MA
u 0 1

4
gaej gbei
M2
e

Mφ
t gaik gbkj 0

Mφ
u 0 gajk gbki

Table 8. Coefficients B̂i.

E.3.4 Another sum rule

If we take the coefficient of u we get another sum rule,∑
k

gajkgbki −
1

2
gabij +

1

4

∑
e

′ gaej gbei
M2
e

+
∑
e

1

2
gabe geij = 0, (E.63)

which is just the crossed version of eq. (E.62).

F Proof that [ZZS0
β] = [W+W−S0

β]

Theories based on SU(2)L ×U(1)Y involve the operators

T̂+T̂− + T̂−T̂+ = T̂ 2 − T̂ 2
3 , Q̂ = T̂3 + Ŷ. (F.1)

When acting on some neutral field,

Φ0
k =

1√
2

(
vk + ϕ0

k

)
, (F.2)

the operators Ŷ, T̂ and T̂3, when acting on a neutral (Q = 0) field Φ0
k, yield the corre-

sponding eigenvalues yk, Tk(Tk + 1) and (T3)k = −yk, respectively. Thus,

L =

N∑
k=1

(DµΦk)
† (DµΦk) (F.3)

⊃ g2

2

(
|vk|2 + v∗kϕ

0
k + vkϕ

0∗
k

)([
Tk(Tk + 1)− y2

k

]
W−µ W

+µ +
1

c2
W

[
y2
k

]
ZµZ

µ

)
,

where there is an implicit sum running over all neutral fields in the theory, from 1 to N0.27

Thus,

M2
W =

g2

2

∑
k

[
Tk(Tk + 1)− y2

k

]
|vk|2,

M2
Z =

g2

2

1

c2
W

∑
k

[
2y2
k

]
|vk|2, (F.4)

27Notice that nothing was assumed about the exact representations used, nor the value of N0.
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and

ρ =
M2
W

c2
WM

2
Z

=

∑
k

[
Tk(Tk + 1)− y2

k

]
|vk|2∑

k

[
2y2
k

]
|vk|2

. (F.5)

We now turn to the cubic couplings. Using

ϕ0
k =

2N0∑
β=1

VkβS
0
β , (F.6)

we find (
v∗kϕ

0
k + vkϕ

0∗
k

)
= 2v

∑
α

Re
[
(V †)αk

vk
v

]
S0
α, (F.7)

where v2 =
∑

k |vk|2. Substituting in eq. (F.3), we find the corresponding Feynman rules

as

[ZµZνS
0
α]F = i

g2v

c2
W

∑
k

[
2y2
k

]
Re
[
(V †)αk

vk
v

]
gµν ,

[W+
µ W

−
ν S

0
α]F = ig2v

∑
k

[
Tk(Tk + 1)− y2

k

]
Re
[
(V †)αk

vk
v

]
gµν . (F.8)

Defining the ratio of Feynman rules as

[ZµZνS
0
α] =

[ZµZνS
0
α]F

[ZµZνS0
α]FSM

,

[W+
µ W

−
ν S

0
α] =

[W+
µ W

−
ν S

0
α]F

[W+
µ W

−
ν S0

α]FSM

, (F.9)

we get

ρ3 ≡
[W+

µ W
−
ν S

0
α]

[ZµZνS0
α]

=

∑
k

[
Tk(Tk + 1)− y2

k

]
Re
[
(V †)αk vk

]∑
k

[
2y2
k

]
Re [(V †)αk vk]

. (F.10)

Notice the similarity between eqs. (F.5) and (F.10).

One knows from experiment that ρ = 1 to high precision.5 Barring a fine tuning of the

various vevs, that can only occur if all representations of the theory with scalar fields with

non-vanishing vevs satisfy

Tk(Tk + 1) = 3y2
k. (F.11)

Moreover, if eq. (F.11) is satisfied, then eq. (F.10) implies that [W+
µ W

−
ν S

0
α] is necessarily

equal to [ZµZνS
0
α]. Note that this conclusion does not depend on whether the scalar

potential is (or is not) CP-conserving.

We now apply eq. (F.10) in the case of the NHDM where Tk(Tk + 1) = 2y2
k = 1/2

for all k, and the matrix V in eq. (F.6) coincides with the matrix V in eq. (2.20). Then,

eqs. (2.34) and (2.56) imply that∑
k

Re
[
(V †)αk

vk
v

]
= −A1α. (F.12)

This agrees with the couplings obtained in eq. (2.52).
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